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Abstract

Deep neural networks have achieved great successes on

the image captioning task. However, most of the existing

models depend heavily on paired image-sentence datasets,

which are very expensive to acquire. In this paper, we make

the first attempt to train an image captioning model in an

unsupervised manner. Instead of relying on manually la-

beled image-sentence pairs, our proposed model merely re-

quires an image set, a sentence corpus, and an existing vi-

sual concept detector. The sentence corpus is used to teach

the captioning model how to generate plausible sentences.

Meanwhile, the knowledge in the visual concept detector is

distilled into the captioning model to guide the model to rec-

ognize the visual concepts in an image. In order to further

encourage the generated captions to be semantically con-

sistent with the image, the image and caption are projected

into a common latent space so that they can reconstruct

each other. Given that the existing sentence corpora are

mainly designed for linguistic research and are thus with

little reference to image contents, we crawl a large-scale im-

age description corpus of two million natural sentences to

facilitate the unsupervised image captioning scenario. Ex-

perimental results show that our proposed model is able to

produce quite promising results without any caption anno-

tations.

1. Introduction

The research on image captioning has made an impres-

sive progress in the past few years. Most of the proposed

methods learn a deep neural network model to generate cap-

tions conditioned on an input image [7, 10, 13, 20, 21, 40,

41, 42]. These models are trained in a supervised learning

manner based on manually labeled image-sentence pairs, as

illustrated in Figure 1 (a). However, the acquisition of these

paired image-sentence data is a labor intensive process. The

scales of existing image captioning datasets, such as Mi-
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Figure 1. Conceptual differences between the existing captioning

methods: (a) supervised captioning [40], (b) novel object caption-

ing [2, 3], (c) cross-domain captioning [8, 43], (d) pivot caption-

ing [15], (e) semi-supervised captioning [9], and (f) our proposed

unsupervised captioning.

crosoft COCO [30], are relatively small compared with im-

age recognition datasets, such as ImageNet [34] and Open-

Images [25]. The image and sentence varieties within these

image captioning datasets are limited to be under 100 object

categories. As a result, it is difficult for the captioning mod-

els trained on such paired image-sentence data to generalize

to images in the wild [37]. Therefore, how to relieve the de-

pendency on the paired captioning datasets and make use

of other available data annotations to well generalize image

captioning models is becoming increasingly important, and

thus warrants deep investigations.

Recently, there have been several attempts at relaxing the

reliance on paired image-sentence data for image caption-

ing training. As shown in Figure 1 (b), Hendricks et al. [3]

proposed to generate captions for novel objects, which are

not present in the paired image-caption training data but ex-

ist in image recognition datasets, e.g., ImageNet. As such,

novel object information can be introduced into the gener-
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ated captioning sentence without additional paired image-

sentence data. A thread of work [8, 43] proposed to trans-

fer and generalize the knowledge learned in existing paired

image-sentence datasets to a new domain, where only un-

paired data is available, as shown in Figure 1 (c). In this

way, no paired image-sentence data is needed for train-

ing a new image captioning model in the target domain.

Recently, as shown in Figure 1 (d), Gu et al. [15] pro-

posed to generate captions in a pivot language (Chinese)

and then translate the pivot language captions to the target

language (English), which requires no more paired data of

images and target language captions. Chen et al. [9] pro-

posed a semi-supervised framework for image captioning,

which uses an external text corpus, shown in Figure 1 (d),

to pre-train their image captioning model. Although these

methods have achieved improved results, a certain amount

of paired image-sentence data is indispensable for training

the image captioning models.

To the best of our knowledge, no work has explored un-

supervised image captioning, i.e., training an image cap-

tioning model without using any labeled image-sentence

pairs. Figure 1 (f) shows this new scenario, where only

one image set and one external sentence corpus are used in

an unsupervised training setting, which, if successful, can

dramatically reduce the labeling work required to create a

paired image-sentence dataset. However, it is very chal-

lenging to figure out how we can leverage the independent

image set and sentence corpus to train a reliable image cap-

tioning model.

Recently, several models, relying on only monolingual

corpora, have been proposed for unsupervised neural ma-

chine translation [4, 26]. The key idea of these methods

is to map the source and target languages into a common

space by a shared encoder with cross-lingual embeddings.

Compared with unsupervised machine translation, unsuper-

vised image captioning is even more challenging. The im-

ages and sentences reside in two modalities with signifi-

cantly different characteristics. Convolutional neural net-

work (CNN) [28] usually acts as an image encoder, while

recurrent neural network (RNN) [18] is naturally suitable

for encoding sentences. Due to their different structures and

characteristics, the encoders of image and sentence cannot

be shared, as in unsupervised machine translation.

In this paper, we make the first attempt to train im-

age captioning models without any labeled image-sentence

pairs. Specifically, three key objectives are proposed. First,

we train a language model on the sentence corpus using the

adversarial text generation method [12], which generates a

sentence conditioned on a given image feature. As illus-

trated in Figure 1 (f), we do not have the ground-truth cap-

tion of a training image in the unsupervised setting. There-

fore, we employ adversarial training [14] to generate sen-

tences such that they are indistinguishable from the sen-

tences within the corpus. Second, in order to ensure that the

generated captions contain the visual concepts in the image,

we distill [17] the knowledge provided by a visual concept

detector into the image captioning model. Specifically, a

reward will be given when a word, which corresponds to

the detected visual concepts in the image, appears in the

generated sentence. Third, to encourage the generated cap-

tions to be semantically consistent with the image, the im-

age and sentence are projected into a common latent space.

Given a projected image feature, we can decode a caption,

which can further be used to reconstruct the image feature.

Similarly, we can encode a sentence from the corpus to the

latent space feature and thereafter reconstruct the sentence.

By performing bi-directional reconstructions, the generated

sentence is forced to closely represent the semantic mean-

ing of the image, in turn improving the image captioning

model.

Moreover, we develop an image captioning model ini-

tialization pipeline to overcome the difficulties in training

from scratch. We first take the concept words in a sen-

tence as input and train a concept-to-sentence model us-

ing the sentence corpus only. Next, we use the visual con-

cept detector to recognize the visual concepts present in an

image. Integrating these two components together, we are

able to generate a pseudo caption for each training image.

The pseudo image-sentence pairs are used to train a cap-

tion generation model in the standard supervised manner,

which then serves as an initialization for our image caption-

ing model.

In summary, our contributions are four-fold:

• We make the first attempt to conduct unsupervised im-

age captioning without relying on any labeled image-

sentence pairs.

• We propose three objectives to train the image caption-

ing model.

• We propose a novel model initialization pipeline ex-

ploiting unlabeled data. By leveraging the visual con-

cept detector, we generate a pseudo caption for each

image and initialize the image captioning model using

the pseudo image-sentence pairs.

• We crawl a large-scale image description corpus con-

sisting of over two million sentences from the Web

for the unsupervised image captioning task. Our ex-

perimental results demonstrate the effectiveness of our

proposed model in producing quite promising image

captions.

2. Related Work

2.1. Image Captioning

Supervised image captioning has been extensively stud-

ied in the past few years. Most of the proposed models use

one CNN to encode an image and one RNN to generate
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Figure 2. The architecture of our unsupervised image captioning model, consisting of an image encoder, a sentence generator, and a

discriminator. A CNN encodes a given image into a feature representation, based on which the generator outputs a sentence to describe

the image. The discriminator is used to distinguish whether a caption is generated by the model or from the sentence corpus. Moreover,

the generator and discriminator are coupled in a different order to perform image and sentence reconstructions. The adversarial reward,

concept reward, and image reconstruction reward are jointly introduced to train the generator via policy gradient. Meanwhile, the generator

is also updated by gradient descent to minimize the sentence reconstruction loss. For the discriminator, its parameters are updated by the

adversarial loss and image reconstruction loss via gradient descent.

a sentence describing the image [40], respectively. These

models are trained to maximize the probability of generat-

ing the ground-truth caption conditioned on the input image.

As paired image-sentence data is expensive to collect, some

researchers tried to leverage other data available to improve

the performances of image captioning models. Anderson et

al. [2] trained an image caption model with partial super-

vision. Incomplete training sequences are represented by

finite state automaton, which can be used to sample com-

plete sentences for training. Chen et al. [8] developed an

adversarial training procedure to leverage unpaired data in

the target domain. Although improved results have been

obtained, the novel object captioning or domain adaptation

methods still need paired image-sentence data for training.

Gu et al. [15] proposed to first generate captions in a pivot

language and then translate the pivot language caption to

the target language. Although no image and target language

caption pairs are used, their method depends on image-pivot

pairs and a pivot-target parallel translation corpus. In con-

trast to the methods aforementioned, our proposed method

does not need any paired image-sentence data.

2.2. Unsupervised Machine Translation

Unsupervised image captioning is similar in spirit to un-

supervised machine translation, if we regard the image as

the source language. In the unsupervised machine trans-

lation methods [4, 26, 27], the source language and target

language are mapped into a common latent space so that

the sentences of the same semantic meanings in different

languages can be well aligned and the following transla-

tion can thus be performed. However, the unsupervised im-

age captioning task is more challenging because images and

sentences reside in two modalities with significantly differ-

ent characteristics.

3. Unsupervised Image Captioning

Unsupervised image captioning relies on a set of images

I = {I1, . . . , INi
}, a set of sentences Ŝ = {Ŝ1, . . . , ŜNs

},

and an existing visual concept detector, where Ni and Ns

are the total numbers of images and sentences, respectively.

Please note that the sentences are obtained from an external

corpus, which is not related to the images. For simplicity,

we will omit the subscripts and use I and Ŝ to represent

an image and a sentence, respectively. In the following,

we first describe the architecture of our image captioning

model. Afterwards, we will introduce how to perform the

training based on the given data.

3.1. The Model

As shown in Figure 2, our proposed image captioning

model consists of an image encoder, a sentence generator,

and a sentence discriminator.

Encoder. One image CNN encodes the input image into

one feature representation fim:

fim = CNN(I). (1)

Common image encoders, such as Inception-ResNet-
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v2 [36] and ResNet-50 [16], can be used here. In this paper,

we simply choose Inception-V4 [36] as the encoder.

Generator. Long short-term memory (LSTM), acting

as the generator, decodes the obtained image representation

into a natural sentence to describe the image content. At

each time-step, the LSTM outputs a probability distribution

over all the words in the vocabulary conditioned on the im-

age feature and previously generated words. The generated

word is sampled from the vocabulary according to the ob-

tained probability distribution:

x−1 = FC(fim),

xt = West, t ∈ {0 . . . n− 1},

[pt+1,h
g
t+1] = LSTMg(xt,h

g
t ), t ∈ {−1 . . . n− 1},

st ∼ pt, t ∈ {1 . . . n},

(2)

where FC and ∼ denote the fully-connected layer and sam-

pling operation, respectively. n is the length of the gener-

ated sentence with We denoting the word embedding ma-

trix. xt, st, h
g
t , and pt are the LSTM input, a one-hot vec-

tor representation of the generated word, the LSTM hidden

state, and the probability over the dictionary at the t-th time

step, respectively. s0 and sn denote the start-of-sentence

(SOS) and end-of-sentence (EOS) tokens, respectively. h
g
−1

is initialized with zero. For unsupervised image captioning,

the image is not accompanied by sentences describing its

content. Therefore, one key difference between our genera-

tor and the sentence generator in [40] is that st is sampled

from the probability distribution pt, while the LSTM in-

put word is from the ground-truth caption during training

in [40].

Discriminator. The discriminator is also implemented

as an LSTM, which tries to distinguish whether a partial

sentence is a real sentence from the corpus or is generated

by the model:

[
qt,h

d
t

]
= LSTMd(xt,h

d
t−1), t ∈ {1 . . . n}, (3)

where hd
t is the hidden state of the LSTM. qt indicates

the probability that the generated partial sentence St =
[s1 . . . st] is regarded as real by the discriminator. Simi-

larly, given a real sentence Ŝ from the corpus, the discrim-

inator outputs q̂t, t ∈ {1, . . . , l}, where l is the length of Ŝ.

q̂t is the probability that the partial sentence with the first t

words in Ŝ is deemed as real by the discriminator.

3.2. Training

As we do not have any paired image-sentence data avail-

able, we cannot train our model in the supervised learning

manner. In this paper, we define three novel objectives to

make unsupervised image captioning possible.

3.2.1 Adversarial Caption Generation

The sentences generated by the image captioning model

need to be plausible to human readers. Such a goal is usu-

ally ensured by training a language model on a sentence

corpus. However, as discussed before, the supervised learn-

ing approaches cannot be used to train the language model

in our setting. Inspired by the recent success of the adver-

sarial text generation method [12], we employ the adversar-

ial training [14] to ensure the plausible sentence generation.

The generator takes an image feature as input and generates

one sentence conditioned on the image feature. The dis-

criminator distinguishes whether a sentence is generated by

the model or is a real sentence from the corpus. The gener-

ator tries to fool the discriminator by generating sentences

as real as possible. To achieve this goal, we give the gen-

erator a reward at each time-step and name this reward as

adversarial reward. The reward value for the t-th generated

word is the logarithm of the probability estimated by the

discriminator:

radvt = log(qt). (4)

By maximizing the adversarial reward, the generator gradu-

ally learns to generate plausible sentences. For the discrim-

inator, the corresponding adversarial loss is defined as:

Ladv = −

[

1

l

l∑

t=1

log(q̂t) +
1

n

n∑

t=1

log(1− qt)

]

. (5)

3.2.2 Visual Concept Distillation

The adversarial reward only encourages the model to gen-

erate plausible sentences following grammar rules, which

may be irrelevant to the input image. In order to gen-

erate relevant image captions, the captioning model must

learn to recognize the visual concepts in the image and in-

corporate such concepts in the generated sentence. There-

fore, we propose to distill the knowledge from an existing

visual concept detector into the image captioning model.

Specifically, when the image captioning model generates

a word whose corresponding visual concept is detected in

the input image, we give a reward to the generated word.

Such a reward is called a concept reward, with the reward

value indicated by the confidence score of that visual con-

cept. For an image I , the visual concept detector out-

puts a set of concepts and corresponding confidence scores:

C = {(c1, v1), . . . , (ci, vi), . . . , (cNc
, vNc

)}, where ci is the

i-th detected visual concept, vi is the corresponding confi-

dence score, and Nc is the total number of detected visual

concepts. The concept reward assigned to the t-th generated

word st is given by:

rct =

Nc∑

i=1

I(st = ci) ∗ vi, (6)
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Figure 3. The architectures for image reconstruction (a) and sentence reconstruction (b), respectively, with the generator and discriminator

coupled in a different order.

where I(·) is the indicator function.

3.2.3 Bi-directional Image-Sentence Reconstruction

With the adversarial training and concept reward, the cap-

tioning quality would be largely determined by the visual

concept detector because it is the only bridge between im-

ages and sentences. However, the existing visual concept

detectors can only reliably detect a limited number of object

concepts. The image captioning model should understand

more semantic concepts of the image for a better generaliza-

tion ability. To achieve this goal, we propose to project the

images and sentences into a common latent space such that

they can be used to reconstruct each other. Consequently,

the generated caption would be semantically consistent with

the image.

Image Reconstruction. The generator produces a sen-

tence conditioned on an image feature, as shown in Fig-

ure 3 (a). The sentence caption should contain the gist of

the image. Therefore, we can reconstruct the image from

the generated sentence, which can encourage the generated

captions to be semantically consistent with the image. How-

ever, one hurdle for doing so lies in that it is very difficult to

generate images containing complex objects, e.g., people,

of high-resolution using current techniques [6, 23]. There-

fore, in this paper, we turn to reconstruct the image features

instead of the full image. As shown in Figure 3 (a), the

discriminator can be viewed as a sentence encoder. A fully-

connected layer is stacked on the discriminator to project

the last hidden state hd
n to the common latent space for im-

ages and sentences:

x′ = FC(hd
n), (7)

where x′ can be further viewed as the reconstructed image

feature from the generated sentence. Therefore, we define

an additional image reconstruction loss for training the dis-

criminator:

Lim = ‖x−1 − x′‖22. (8)

It can also be observed that the generator together with the

discriminator constitutes the image reconstruction process.

Therefore, an image reconstruction reward for the genera-

tor, which is proportional to the negative reconstruction er-

ror, can be defined as:

rimt = −Lim. (9)

Sentence Reconstruction. Similarly, as shown in Fig-

ure 3 (b), the discriminator can encode one sentence and

project it into the common latent space, which can be

viewed as one image representation related to the given sen-

tence. The generator can reconstruct the sentence based on

the obtained representation. Such a sentence reconstruction

process could also be viewed as a sentence denoising auto-

encoder [39]. Besides aligning the images and sentences in

the latent space, it also learns how to decode a sentence from

an image representation in the common space. In order to

make a reliable and robust sentence reconstruction, we add

noises to the input sentences by following [26]. The objec-

tive of the sentence reconstruction is defined as the cross-

entropy loss:

Lsen = −

l∑

t=1

log
(
p(st = ŝt|ŝ1, . . . , ŝt−1)

)
, (10)

where ŝt is the t-th word in sentence Ŝ.

3.2.4 Integration

The three objectives are jointly considered to train our im-

age captioning model. For the generator, as the word sam-

pling operation is not differentiable, we train the genera-

tor using policy gradient [35], which estimates the gradi-

ents with respect to trainable parameters given the joint re-

ward. More specifically, the joint reward consists of ad-

versarial reward, concept reward, and image reconstruction

reward. Besides the gradients estimated by policy gradient,

the sentence reconstruction loss also provides gradients for
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the generator via back-propagation. These two types of gra-

dients are both employed to update the generator. Let θ de-

note the trainable parameters in the generator. The gradient

with respect to θ is given by:

∇θL(θ) = −E






n∑

t=1






n∑

s=t

γs( radvs
︸︷︷︸

adversarial

+ λcr
c
s

︸︷︷︸

concept

)

+ λimrims
︸ ︷︷ ︸

image reconstruction

−bt




∇θ log(s

⊤

t pt)




+ λsen∇θLsen(θ)

︸ ︷︷ ︸

sentence
reconstruction

,

(11)

where γ is a decay factor, and bt is the baseline reward esti-

mated using self-critic [33]. λc, λim and λsen are the hyper-

parameters controlling the weights of different terms.

For the discriminator, the adversarial and image recon-

struction losses are combined to update the parameters via

gradient descent:

LD = Ladv + λimLim. (12)

During our training process, the generator and discriminator

are updated alternatively.

3.3. Initialization

It is challenging to adequately train our image caption-

ing model from scratch with the given unlabeled data, even

with the proposed three objectives. Therefore, we propose

an initialization pipeline to pre-train the generator and dis-

criminator.

Regarding the generator, we would like to generate a

pseudo caption for each training image, and then use the

pseudo image-caption pairs to initialize an image caption-

ing model. Specifically, we first build a concept dic-

tionary consisting of the object classes in the OpenIm-

ages dataset [25]. Second, we train a concept-to-sentence

(con2sen) model using the sentence corpus only. Given

a sentence, we use a one-layer LSTM to encode the con-

cept words within the sentence into a feature representation,

and use another one-layer LSTM to decode the represen-

tation into the whole sentence. Third, we detect the con-

cepts of each image by the existing visual concept detec-

tor. With the detected concepts and the concept-to-sentence

model, we are able to generate a pseudo caption for each im-

age. Fourth, we train the generator with the pseudo image-

caption pairs using the standard supervised learning method

as in [40]. Such an image captioner is named as feature-to-

sentence (feat2sen) and used to initialize the generator.

Regarding the discriminator, parameters are initialized

by training an adversarial sentence generation model on the

sentence corpus.

Cropped image of handsome young man
with labrador outdoors.

Man on a green grass with dog. Cynologist

British Shorthair cat isolated on white. Smiling 
expression, happy

Figure 4. Two images and their accompanying descriptions from

Shutterstock.

4. Experiments

In this section, we evaluate the effectiveness of our pro-

posed method. To quantitatively evaluate our unsupervised

captioning method, we use the images in the MSCOCO

dataset [30] as the image set (excluding the captions). The

sentence corpus is collected by crawling the image descrip-

tions from Shutterstock1. The object detection model [19]

trained on OpenImages [25] is used as the visual concept

detector. We first introduce sentence corpus crawling and

experimental settings. Next, we present the performance

comparisons as well as the ablation studies.

4.1. Shutterstock Image Description Corpus

We collect a sentence corpus by crawling the image de-

scriptions from Shutterstock for the unsupervised image

captioning research. Shutterstock is an online stock pho-

tography website, which provides hundreds of millions of

royalty-free stock images. Each image is uploaded with a

description written by the image composer. Some images

and description samples are shown in Figure 4. We hope

the crawled image descriptions to be somewhat related to

the training images. Therefore, we directly use the name

of the eighty object categories in the MSCOCO dataset as

the search keywords. For each keyword, we download the

search results of the top one thousand pages. If the number

of pages available is less than one thousand, we will down-

load all the results. There are roughly a hundred images in

one page, resulting in 100, 000 descriptions for each object

category. After removing the sentences with less than eight

words, we collect 2, 322, 628 distinct image descriptions in

total.

4.2. Experimental Settings

Following [22], we split the MSCOCO dataset, with

113,287 images for training, 5,000 images for validation,

and the remaining 5,000 images for testing. Please note that

the training images are used to build the image set, with the

corresponding captions left unused for any training. All the

descriptions in the Shutterstock image description corpus

are tokenized by the NLTK toolbox [5]. We build a vocab-

ulary by counting all the tokenized words and removing the

1https://www.shutterstock.com
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concepts bookcase, clothing, desk, person, table
con2sen back to school concept . back to school concept . back to school . back to school concept
feat2sen back view of a man in a clothing and a laptop . rear view people collection . backside
adv young woman working on laptop in office .
adv + con young woman working on laptop at desk in cafe
adv + con + im young man working on laptop at home with laptop and drink
Ours w/o init young woman working on laptop computer at home
Ours young man working on laptop at home office
concepts vehicle
con2sen bangkok , thailand - june <UNK> : vehicle on the road in bangkok , thailand .
feat2sen beautiful landscape with tree in the forest .
adv young woman sitting on a bench in park on sunny day
adv + con two wooden boat in the sea at sunset .
adv + con + im a small fishing boat in the middle of the sea
Ours w/o init small fishing boat tied to a tree in the sea
Ours a boat on the coast of the sea

concepts bowl, cat, plate, tableware
con2sen a cat in a white plate with a bowl of tableware
feat2sen the cat is sleeping on the floor .
adv white wine glass isolated on white background with clipping path
adv + con white wine in a glass on dark background
adv + con + im a plate of red wine on a dark background
Ours w/o init the cat is sleeping in the garden .
Ours a black and white cat on a wooden background

concepts bowl, food, hat
con2sen food in a bowl with a hat on a white background
feat2sen portrait of a happy young couple in santa hat
adv happy young mother and her daughter sleeping in bed
adv + con fresh orange juice in a wicker basket on a white background
adv + con + im composition of fresh carrot on a plate , food
Ours w/o init fresh organic vegetable on wooden background . healthy food
Ours top view of a bowl of healthy food

Figure 5. The qualitative results by the unsupervised captioning methods trained with different objectives. Best viewed by zooming in.

Table 1. Performance comparisons of unsupervised captioning

methods on the test split [22] of the MSCOCO dataset.

Method B1 B2 B3 B4 M R C S

Ours w/o init 38.2 20.6 9.9 4.8 11.2 27.5 22.9 6.6

Ours 41.0 22.5 11.2 5.6 12.4 28.7 28.6 8.1

con2sen 37.2 20.0 9.6 4.7 12.3 27.3 22.5 8.2

feat2sen 38.7 21.3 10.3 5.0 12.4 28.3 23.5 8.0

adv 34.0 15.6 6.5 2.9 8.7 24.2 11.8 3.8

adv + con 37.9 19.8 9.4 4.6 11.4 26.5 24.1 7.3

adv + con + im 37.8 19.9 9.5 4.6 11.9 26.8 25.5 7.5

words with frequency lower than 40. The object category

names of the used object detection model are then merged

into the vocabulary. Finally, there are 18, 667 words in our

vocabulary, including special SOS, EOS, and an Unkown

token. We perform a further filtering process by removing

the sentences containing more than 15% Unknown token.

After filtering, we retain 2, 282, 444 sentences.

The LSTM hidden dimension and the shared latent

space dimension are fixed to 512. The weighting hyper-

parameters are chosen to make different rewards roughly at

the same scale. Specifically, λc, λim, λsen are set to be 10,

0.2, and 1, respectively. γ is set to be 0.9. We train our

model using the Adam optimizer [24] with a learning rate

of 0.0001. During the initialization process, we minimize

the cross-entropy loss using Adam with the learning rate

0.001. When generating the captions in the test phase, we

use beam search with a beam size of 3.

We report the BLEU [31], METEOR [11], ROUGE [29],

CIDEr [38], and SPICE [1] scores computed with the coco-

caption code 2. The ground-truth captions of the images in

the test split are used for computing the evaluation metrics.

4.3. Experimental Results and Analysis

The top region of Table 1 illustrates the unsupervised

image captioning results on the test split of the MSCOCO

dataset. The captioning model obtained with the proposed

unsupervised training method achieves promising results,

with CIDEr as 28.6%. Moreover, we also report the results

of training our model from scratch (“Ours w/o init”) to ver-

ify the effect of our proposed initialization pipeline. With-

2https://github.com/tylin/coco-caption

out initialization, the CIDEr value drops to 22.9%, which

shows that the initialization pipeline can benefit the model

training and thus boost image captioning performances.

Ablation Studies. The results of the ablation studies are

illustrated in the bottom region of Table 1. It can be ob-

served that “con2sen” and “feat2sen” generate reasonable

results with CIDEr as 22.5% and 23.5%, respectively. As

such, “con2sen” can be used to generate pseudo image-

caption pairs for training “feat2sen”. And “feat2sen” can

make a meaningful initialization of the generator of our cap-

tioning model.

When only the adversarial objective is introduced to train

the captioning model, “adv” alone leads to much worse re-

sults. One cause for this is due to the linguistic character-

istics of the crawled image descriptions from Shutterstock,

which is significantly different from that of the COCO cap-

tion. Another cause is that the adversarial objective only

enforces genuine sentence generation but does not ensure

its semantic correlation with the image content. Because

of the linguistic characteristic difference, most metrics also

drop even after introducing the concept objective in “adv +

con” and further incorporating image reconstruction objec-

tive in “adv + con + im”. Although the generated sentences

of these two baselines may look plausible, the evaluation

results with respect to the COCO captions are not satisfac-

tory. However, by considering all the objectives together,

our proposed method substantially improves the captioning

performances.

Qualitative Results. Figure 5 shows some qualitative

results of unsupervised image captioning. In the top-left

image, the object detector fails to detect the “laptop”.

So “con2sen” model says nothing about the laptop. On

the contrary, the other models successfully recognize lap-

tops and incorporate such concepts into the generated cap-

tion. In the top-right image, only a small region of the

cat is visible. With such a small region, our full caption-

ing model recognizes that it is “a black and white

cat”. The object detector cannot provide any informa-

tion about color attribute. We are pleased to see that the

bi-directional reconstruction objective is able to guide the

captioning model to recognize and express such visual at-

tributes in the generated description sentence. In the bottom
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Figure 6. The averaged number of correct concept words in each

sentence generated during the training process.

two images, “vehicle” and “hat” are detected by error,

which severely affects the results of “con2sen”. On the con-

trary, after training the captioning model with the proposed

objectives, the captioning model is able to correct such er-

rors and generate plausible captions.

Effect of Concept Reward. Figure 6 shows the av-

eraged number of correct concept words in each sentence

generated during the training process. It can be observed

that the number of “adv” drops quickly in the beginning.

The reason is that the adversarial objective is not related to

the visual concepts in the image. “Ours w/o init” continu-

ously increases from zero to about 0.6. The concept reward

consistently improves the ability of the captioning model to

recognize visual concepts. For “adv + con”, “adv + con +

im”, and “Ours”, the number is about 0.8. One reason is

that the initialization pipeline gives a good starting point.

Another possible reason is that the concept reward prevents

the captioning model from drifting towards degradation.

4.4. Performance Comparisons under the Unpaired
Captioning Setting

The performance of unsupervised captioning model may

seem unsatisfactory in terms of the evaluation metrics on the

COCO test split. This is mainly due to the different linguis-

tic characteristics between COCO captions and crawled im-

age descriptions. To further demonstrate the effectiveness

of the proposed three objectives, we compare with [15] un-

der the same unpaired captioning setting, where the COCO

captions of the training images are used but in an unpaired

manner. Specifically, we replace the crawled sentence cor-

pus with the COCO captions of the training images. All the

other settings are kept the same as the unsupervised cap-

tioning settings. A new vocabulary with 11, 311 words is

created by counting all the words in the training captions

and removing the words with frequency less than 4.

The results of unpaired image captioning are shown in

Table 2. It can be observed that the captioning model can

be consistently improved based on the unpaired data, by

including the three proposed objectives step by step. Due

to exposure bias [32], some of the captions generated by

Table 2. Performance comparisons on the test split [22] of the

MSCOCO dataset under the unpaired setting.

Method B1 B2 B3 B4 M R C S

Pivoting [15] 46.2 24.0 11.2 5.4 13.2 - 17.7 -

Ours w/o init 53.8 35.5 23.1 15.6 16.6 39.9 46.7 9.6

Ours 58.9 40.3 27.0 18.6 17.9 43.1 54.9 11.1

con2sen 50.6 30.8 18.2 11.3 15.7 37.9 33.9 9.1

feat2sen 51.3 31.3 18.7 11.8 15.3 38.1 35.4 8.8

adv 55.6 35.5 23.1 15.7 17.0 40.8 45.8 10.1

adv + con 56.2 37.2 24.2 16.2 17.3 41.5 48.8 10.5

adv + con + im 56.4 37.5 24.5 16.5 17.4 41.6 49.0 10.5

“feat2sen” are poor sentences. The adversarial objective en-

courages these generated sentences to appear genuine, re-

sulting in improved performances. With only adversarial

training, the model tends to generate sentences unrelated

to the image. This problem is mitigated by the concept

reward and thus “adv + con” leads to an even better per-

formance. By only including the image reconstruction ob-

jective, “adv + con + im” provides a minor improvement.

However, if we include the sentence reconstruction objec-

tive, our full captioning model achieves another significant

improvement, with CIDEr value increasing from 49% to

54.9%. The reason is that the bi-directional image and sen-

tence reconstruction can further leverage the unpaired data

to encourage the generated caption to be semantically con-

sistent with the image. The proposed method obtains signif-

icantly better results than [15], which may be because that

the information in the COCO captions is more adequately

exploited in our proposed method.

5. Conclusions

In this paper, we proposed a novel method to train an

image captioning model in an unsupervised manner with-

out using any paired image-sentence data. As far as we

know, this is the first attempt to investigate this problem.

To achieve this goal, we presented three training objectives,

which encourage that 1) the generated captions are indistin-

guishable from sentences in the corpus, 2) the image cap-

tioning model conveys the object information in the image,

and 3) the image and sentence features are aligned in the

common latent space and perform bi-directional reconstruc-

tions from each other. A large-scale image description cor-

pus consisting of over two million sentences was further

collected from Shutterstock to facilitate the unsupervised

image captioning method. The experimental results demon-

strate that the proposed method can produce quite promis-

ing results without using any labeled image-sentence pairs.

In the future, we will conduct human evaluations for unsu-

pervised image captioning.

Acknowledgement

This work is partially supported by NSF awards

1704309, 1722847, and 1813709.

4132



References

[1] Peter Anderson, Basura Fernando, Mark Johnson, and

Stephen Gould. Spice: Semantic propositional image cap-

tion evaluation. In ECCV, 2016.

[2] Peter Anderson, Stephen Gould, and Mark Johnson.

Partially-supervised image captioning. In NeurIPS, 2018.

[3] Lisa Anne Hendricks, Subhashini Venugopalan, Marcus

Rohrbach, Raymond Mooney, Kate Saenko, Trevor Dar-

rell, Junhua Mao, Jonathan Huang, Alexander Toshev, Oana

Camburu, et al. Deep compositional captioning: Describ-

ing novel object categories without paired training data. In

CVPR, 2016.

[4] Mikel Artetxe, Gorka Labaka, Eneko Agirre, and

Kyunghyun Cho. Unsupervised neural machine trans-

lation. In ICLR, 2018.

[5] Steven Bird, Ewan Klein, and Edward Loper. Natural lan-

guage processing with Python: analyzing text with the natu-

ral language toolkit. O’Reilly Media, Inc., 2009.

[6] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale gan training for high fidelity natural image synthesis.

arXiv preprint arXiv:1809.11096, 2018.

[7] Long Chen, Hanwang Zhang, Jun Xiao, Liqiang Nie, Jian

Shao, Wei Liu, and Tat-Seng Chua. Sca-cnn: Spatial and

channel-wise attention in convolutional networks for image

captioning. In CVPR, 2017.

[8] Tseng-Hung Chen, Yuan-Hong Liao, Ching-Yao Chuang,

Wan-Ting Hsu, Jianlong Fu, and Min Sun. Show, adapt and

tell: Adversarial training of cross-domain image captioner.

In ICCV, 2017.

[9] Wenhu Chen, Aurelien Lucchi, and Thomas Hofmann. A

semi-supervised framework for image captioning. arXiv

preprint arXiv:1611.05321, 2016.

[10] Xinpeng Chen, Lin Ma, Wenhao Jiang, Jian Yao, and Wei

Liu. Regularizing rnns for caption generation by reconstruct-

ing the past with the present. In CVPR, 2018.

[11] Michael Denkowski and Alon Lavie. Meteor universal: Lan-

guage specific translation evaluation for any target language.

In Proceedings of the ninth workshop on statistical machine

translation, 2014.

[12] William Fedus, Ian Goodfellow, and Andrew M Dai.

Maskgan: Better text generation via filling in the . In ICLR,

2018.

[13] Zhe Gan, Chuang Gan, Xiaodong He, Yunchen Pu, Kenneth

Tran, Jianfeng Gao, Lawrence Carin, and Li Deng. Seman-

tic compositional networks for visual captioning. In CVPR,

2017.

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

[15] Jiuxiang Gu, Shafiq Joty, Jianfei Cai, and Gang Wang. Un-

paired image captioning by language pivoting. In ECCV,

2018.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016.

[17] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015.

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural computation, 1997.

[19] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu,

Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wo-

jna, Yang Song, Sergio Guadarrama, et al. Speed/accuracy

trade-offs for modern convolutional object detectors. In

CVPR, 2017.

[20] Wenhao Jiang, Lin Ma, Xinpeng Chen, Hanwang Zhang, and

Wei Liu. Learning to guide decoding for image captioning.

In AAAI, 2018.

[21] Wenhao Jiang, Lin Ma, Yu-Gang Jiang, Wei Liu, and Tong

Zhang. Recurrent fusion network for image captioning. In

ECCV, 2018.

[22] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic align-

ments for generating image descriptions. In CVPR, 2015.

[23] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.

Progressive growing of gans for improved quality, stability,

and variation. In ICLR, 2018.

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[25] Ivan Krasin, Tom Duerig, Neil Alldrin, Vittorio Ferrari,

Sami Abu-El-Haija, Alina Kuznetsova, Hassan Rom, Jasper

Uijlings, Stefan Popov, Shahab Kamali, Matteo Malloci,

Jordi Pont-Tuset, Andreas Veit, Serge Belongie, Victor

Gomes, Abhinav Gupta, Chen Sun, Gal Chechik, David Cai,

Zheyun Feng, Dhyanesh Narayanan, and Kevin Murphy.

Openimages: A public dataset for large-scale multi-label

and multi-class image classification. Dataset available from

https://storage.googleapis.com/openimages/web/index.html,

2017.

[26] Guillaume Lample, Ludovic Denoyer, and Marc’Aurelio

Ranzato. Unsupervised machine translation using monolin-

gual corpora only. In ICLR, 2018.

[27] Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic De-

noyer, and Marc’Aurelio Ranzato. Phrase-based & neural

unsupervised machine translation. In EMNLP, 2018.
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