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Abstract

Pan-sharpening aims at fusing spectral and spatial in-

formation, which are respectively contained in the multi-

spectral (MS) image and panchromatic (PAN) image, to

produce a high resolution multi-spectral (HRMS) image. In

this paper, a new variational model based on a local gra-

dient constraint for pan-sharpening is proposed. Differ-

ent with previous methods that only use global constraints

to preserve spatial information, we first consider gradien-

t difference of PAN and HRMS images in different local

patches and bands. Then a more accurate spatial preser-

vation based on local gradient constraints is incorporated

into the objective to fully utilize spatial information con-

tained in the PAN image. The objective is formulated as

a convex optimization problem which minimizes two least-

squares terms and thus very simple and easy to implement.

A fast algorithm is also designed to improve efficiency. Ex-

periments show that our method outperforms previous vari-

ational algorithms and achieves better generalization than

recent deep learning methods.

1. Introduction

Remote sensing images have become widely used in

many practical applications, such as environmental moni-

toring, object positioning and classification. Due to phys-

ical constraints, satellites such as IKONOS, QuickBird-

2, WorldView-2 and WorldView-3 capture two images of

the same scene at the same time, where one image called

panchromatic (PAN) image is of high spatial resolution, and

the other called multi-spectral (MS) image is of low spatial

resolution but it contains good spectral content. In order to

obtain the high resolution multi-spectral (HRMS) images,
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(a) PAN image (b) MS image (c) Fused result

Figure 1: An example of our proposed method. The fused

result has rich details with promising spectral preservation.

pan-sharpening techniques which refer to fuse the low res-

olution spectral information with the spatial structure in the

PAN image have been developed.

1.1. Related works

In the past decades, many pan-sharpening methods have

been proposed. Among these existing methods, the most

common methods include the intensity hue-saturation tech-

nique (IHS) [8], the principal component analysis (PCA)

[21] and Brovey transform [15]. These methods are popu-

lar due to their relatively fast computation. But they usually

suffer from spectral distortion while increasing spatial res-

olution of fused results.

Beside component substitution, the multi-resolution

analysis (MRA) method is another popular pan-sharpening

method in which the PAN image and MS image are de-

composed into other planes by using some multi-resolution

tools, e.g., decimated wavelet transform (DWT) [22], a

trous wavelet transform (ATWT) [26] and Laplacian pyra-

mid (LP) [7]. The MRA method can sharpen MS image

effectively. However, this may cause some local dissimilar-

ities because the high frequencies extracted from the PAN

image are not exactly to those of the HRMS images.

Recently, in the light of the strong nonlinear mapping

ability of deep learning, researchers have begun explor-

ing the deep convolutional neuron network based methods.

Although these methods [17, 23, 30] obtain excellent per-
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formance, they require substantial computational resources

and training data, of which the latter is not easy obtained

in the pan-sharpening area since there is no true ground-

truth. Since all deep learning methods use synthetic data

for training, their generalization performance for real-world

data and new satellite is limited.

So from a practical perspective, variational methods

are reconsidered to pan-sharpening field. These method-

s [4, 5, 10, 13, 18, 32] achieve pan-sharpening by modeling

the relationship between PAN, MS and HRMS images in-

to an objective function with some prior knowledge, which

is universal and independent on specific training data. The

first variational pan-sharpening method P+XS technique [5]

preserves spectral well, but produces blurring effects. To

struggle against the blurred edges, a large part of methods

introduce a high-pass filter to describe structural similarity

while minimizing spectral distortion, such as guided filter-

based fusion (GDF) [13], Bayesian nonparametric dictio-

nary learning (BNDL) [12] and satellite image registration

and fusion (SIRF) [10]. However, they still suffer some

degradation due to indecent structural constraints.

1.2. Our contributions

In this paper, for the pan-sharpening problem, we focus

on spatial improvement by considering local gradient con-

straints while keeping the spectral information as undistort-

ed as possible. To improve spatial resolution, recent varia-

tional methods make assumptions based on the gradient dif-

ference of PAN and HRMS images. For example, MBF [4]

assumes this relationship follows the Gaussian distribution

while PHLP [18] considers it obeys the Laplacian distribu-

tion through statistical experiments.

All the previous methods assume that the gradient dif-

ference of PAN and HRMS is global linear. However, we

find that the relationship is not consistent in different local

image patches. To verify this viewpoint, we randomly scan

one line from a 8-band image and present the difference

of gradient values among the PAN image and each band

of HRMS image in Figure 2(d). Obviously, it is unreason-

able to model the gradient relationships between PAN and

HRMS images with only a global linear function. There-

fore, to avoid global constraints from limiting the modeling

flexibility, a new variational model based on local gradient

constraints is proposed. We formulate our objective func-

tion to consider the following two aspects:

• Spectral preservation: we assume that the down-

sampled HRMS image should be close to the original

MS image, which aims at preserving the exact spectral

information without introducing false information.

• Spatial improvement: a simple yet effective local lin-

ear regression model is proposed to constraint the gra-

dient difference of PAN and HRMS images, so as to

(a) HRMS (b) PAN

(c) Intensity scanning (d) Gradient scanning

Figure 2: 1D signals of intensity and gradient values in one

line of HRMS and PAN images.

effectively utilize the spatial information of PAN im-

age. To the best of our knowledge, this is the first vari-

ational model for the specific pan-sharpening problem

that based on the local constraint.

We show that by using our local gradient constraints, a

simple least-square term, which is easy to optimize, is suf-

ficient to model spatial preservation. To optimize the ob-

jective function, a fast iterative shrinkage-thresholding al-

gorithm (FISTA) is designed. Experiments show that our

method has a great advantage over non deep learning meth-

ods, both subjectively and objectively. Moreover, since we

adopt the universal local constraint, our proposed method

has a better generalization ability than deep learning based

methods that adopt the supervised learning strategy.

2. Motivation

At first, some auxiliary notations and definitions are in-

troduced to simplify our analysis, which will be used in the

following paper. The satellite typically captures two kinds

of images including a PAN image and a corresponding MS

image which has B bands (e.g., B = 8 for WorldView-

2 satellite). We denote the observed PAN image as P ∈
R

M×N and P ∈ R
M×N×B represents P that expanded

to B bands. The corresponding MS image is denoted by

M ∈ R
M
c
×N

c
×B and the pan-sharpened HRMS image is

denoted by X ∈ R
M×N×B , where c is a reduction ratio.

Since both the PAN and MS images are taken from the

same scene, the spatial structure of them should have a

strong similarity. The PAN image contains abundant spatial

information, which makes it play a significant role in im-
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proving the spatial resolution of the MS image. The first P

+ XS method [5] assumes that the PAN image can be mod-

eled as a global linear combination among all bands of the

HRMS image, i.e.,

∑B

b=1
wbXb = P + ε. (1)

However, even for the same object, different sensor has dif-

ferent response. In other words, differences in intensity of

the HRMS image and the PAN image may be very large,

as shown in Figure 2(c). To avoid this drawback, recent

approaches ensure the consistency of the high-pass filtered

components of PAN image and HRMS image. This require-

ment, which enforces structure similarity rather than inten-

sity similarity, is based on the following assumption:

∑B

b=1
wb∇Xb = ∇P + ε, (2)

where ∇ represents the gradient. To enforce spatial resolu-

tion, previous variational pan-sharpening methods often use

the ℓ2 norm [4] to enforce spatial resolution, or switch to

ℓ1 [25] when sparsity is desired. In SIRF [10], group spar-

sity is encouraged by introducing the ℓ2,1 norm. However,

according to empirical image statistics, assuming the error

ε obeys Gaussian (ℓ2) or Laplacian (ℓ1) assumptions are not

as appropriate as heavy-tailed distribution such as a hyper-

Laplacian [20]. Thus, the PHLP method [18] which adopts

the ℓ1/2 penalty on the gradients of the reconstruction error

is introduced to enforce structural preservation.

Although spatial improvement is achieved by using d-

ifferent sparse assumptions, we argue that modeling based

on equation (2) is not appropriate. First, equation (2) is

built from a global perspective, which is a relative rough as-

sumption. As shown in Figure 2(d), setting the weight w as

a global parameter cannot well model the local relationship

between ∇Xb and ∇P . Second, most previous method-

s simply set w as 1/B, which further reduce the modeling

flexibility. Thus, based on the above analysis, we propose

a new local linear model to better describe the relationship

between ∇X and ∇P at each band:

∇xi = ak∇pi + ck, ∀i ∈ ωk, (3)

where ωk represents an image block centered at location k.

For a random pixel i ∈ ωk, ∇xi and ∇pi are the intensity

of ∇X and ∇P at location i, ak and ck are the linear coef-

ficients which are constants in the local area ωk. We easily

find that equation (2) is a special form of our model with

ak = 1/wb and ck = ε/wb. Thus, our model equation (3)

can be seen as a general form of previous methods.

To get ak and ck, we minimize this objective function:

min
ak,ck

∑

i∈ωk

(∇xi − ak∇pi − ck)
2. (4)

Let the derivative of the equation (4) be zero, we can get:

ak =

1
|ω|

∑

i∈ωk
∇xi∇pi − µ(∇xk)µ(∇pk)

σ2(∇pk) + ε
, (5)

ck = µ(∇xk)− akµ(∇pk), (6)

where µ and σ2 are the mean and variance, respectively. ε
is a very small parameter to prevent the denominator from

being zero. Note that when ε→ 0, ak can be rewritten to:

ak =
cov(∇xk,∇pk)

σ2(∇pk)
=
cov(∇xk,∇pk)

σ(∇pk)σ(∇xk)
·
σ(∇xk)

σ(∇pk)

= ρ(∇pk,∇xk) ·
σ(∇xk)

σ(∇pk)
, (7)

where the cov() is the covariance and ρ is the correlation

coefficient. Equation (7) means when pk contains structures

that do not exist in xk, ρ(∇pk,∇xk) is very small and ak
tends to zero, and our model can greatly reduce the effect of

∇pk on ∇xk and vice versa. Moreover, shown in Figure 3,

both a and c can be positive or negative. This implies that

our assumption is much more robust than the equation (2)

which hypothesizes the coefficients are global constants.

However, a pixel i is involved in all the overlapping win-

dows ωk that covers i, so the value of ∇xi in equation (3)

is not identical when it is computed in different windows.

Thus, we follow the strategy of the guided filter [16] to av-

erage coefficients of all windows overlapping i by

∇xi = ai∇pi + ci, (8)

where ai =
1
|ω|

∑

k∈ωi
ak and ci =

1
|ω|

∑

k∈ωi
ck.

To clearly illustrate different value of a and c, we calcu-

late the value of a and c on 65,536 pixels by using equations

(5) and (6), the results are shown in Figure 3. We found a
and c have different values at different local patches, which

demonstrates that the previous global assumption is inaccu-

rate by simply setting w as a positive value that equals 1/B.

We therefore believe that our local linear model (3) is more

reasonable than the global one (2) for the spatial preserva-

tion.

3. Modeling

Most previous pan-sharpening methods firstly up-sample

the multi-spectral image to obtain low resolution multi-

spectral (LRMS) image M to the same size with the PAN

image P, and then propose a spectral preservation based on

the LRMS image to obtain the HRMS image X. However,

on the one hand, the up-sampling approach will introduce

incorrect information, and different up-sampling approach-

es may also affect the results. On the other hand, the objec-

tive function should be added more prior regularization ac-

cording to the specific up-sampling way. Therefore, instead
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Figure 3: According to the equation (3), we show statistical values of calculated a and c of all 65,536 pixels of each band

from a WorldView-2 image of size 256× 256. As can be seen, both a and c have various sign and magnitudes.

of up-sampling MS image, we argue that the down-sampled

HRMS image should be consistent with the MS image. The

following equation is presented for spectral preservation:

f1(X,M) =
1

2
‖ψX − M‖

2
2 , (9)

where ψ denotes a down-sampling operator.

Based on the above analysis in section 2, the spatial p-

reservation term can be written as follows:

f2(X,A,C,P)

=

B
∑

b=1

∑

k

∑

i∈ωk

(∇xb,i − ab,k∇pi − cb,k)
2, (10)

where A and C are matrix form of a and c. Note that since

each pixel of ∇x at location i has its own coefficients ai
and ci, for the entire image, equation (10) can be written in

matrix form via the ℓ2 regularization:

f2(X,A,C,P) =
1

2
‖∇X − A · ∇P − C‖

2
2 , (11)

where · is the element-wise multiplication. Thus, the final

objective function composed of the two energy functions

can be rewritten to

min
X,A,C

L = min
X,A,C

f1(X,M) + λf2(X,A,C,P), (12)

where λ is a regularization parameter.

Compared with previous model, the proposed one has

several advantages. First, the down-sampled way can make

better use of the spectral information of the observed LRM-

S image, which reduces the spectral distortion. Second, the

local regularization term preserves the differences in differ-

ent bands and patches simultaneously, making the gradient

constraints more refined. Last but not least, both f1 and f2
are least-square terms, which make it easy to optimize.

4. Optimization

In this section, our goal is to minimize the objective func-

tion (12). We first use Bregman iteration to solve the model.

By decomposing the problem into three sub-problems, each

problem can be solved in a closed form. We summarize our

optimization for pan-sharpening in Algorithm 1.

Update for X: first, we introduce an auxiliary variable

Xg = A ·∇P+C, then the objective function (12) becomes:

L =
1

2
‖ψX − M‖

2
2 +

λ

2
‖∇X − Xg‖

2
2 . (13)

This is a simple least-square optimization problem. Since ψ
can not be written in matrix form, the FISTA framework [6]

is applied to optimize the model to separate ψ. Under the

FISTA framework, the objective function is split into the

following iterative procedure:

Y = Yj − ψ−1(ψX − M)/L, (14)

where ψ−1 denotes the inverse operator of ψ, j is the jth
iteration. L is the Lipschitz constant for ψ−1(ψX − M).
Then X can be obtained by solving the following function:

X
j
= argmin

X

1

2
‖X − Y‖

2

2
+

λ

2

∥

∥

∥∇X − X
j
g

∥

∥

∥

2

2

= F
−1





F(Y) + λ
(

F(∇x)
∗F(Xj

g) + F(∇y)
∗F(Xj

g)
)

F(1) + λ (F(∇x)
∗F(∇x) + F(∇y)

∗F(∇x))



 , (15)

where F is the FFT operator and F()∗ denotes the com-

plex conjugate. ∇x and ∇y denote the horizontal and verti-

cal differential operators, respectively. F(1) is the Fourier

Transform of the delta function. All operations in equation

(15) are component-wise. Then the step size t and auxiliary

variable Y is updated:

tj+1 = (1 +
√

1 + 4(tj)2)/2, (16)

Yj+1 = Xj +
tj − 1

tj+1
(Xj − Xj−1). (17)

Update for a and c: with X, we update a and c accord-

ing to equations (5) and (6):

ajb,i =
1

|ω|

∑

k∈ωi

ajb,k, (18)

cjb,i =
1

|ω|

∑

k∈ωi

cjb,k, (19)
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Update for Xg: the Xg can be directly updated with

fixed a and c:

Xj+1
g = Aj · ∇P + Cj . (20)

Algorithm 1

Input: L, λ, t1 = 1, P, Y0, M.

for j = 1 to Max-Iteration do

Y = Yj − ψT (ψX − M)/L

Xj = argmin
X

1
2 ‖X − Y‖

2
2 + λ

∥

∥∇X − Xj
g

∥

∥

2

2

tj+1 = (1 +
√

1 + 4(tj)2)/2

Yj+1 = Xj + tj−1
tj+1 (X

j − Xj−1)

ajd,k =
cov(∇xj

d,k
,∇pd,k)

σ2(∇pd,k)+ε

cjd,k = µ(∇xjd,k)− ajd,kµ(∇pk)

Xj+1
g = Aj · ∇P + Cj

end for

Output: the HRMS image X.

5. Experiments

To demonstrate the effectiveness of proposed algorith-

m, we compare our method with five conventional pan-

sharpening methods: AWLP [24], BDSD [14], Indusion

[19], MTF-GLP [3], PRACS [11], as well as two variation-

al pan-sharpening methods: SIRF [10], PHLP [18]. For fair

comparison, we adjust parameters of each approach to get

their best performances. For visual convenience, we only

present the RGB bands of fused images but conduct exper-

iments in all spectral bands.

5.1. Evaluation at lower scale

Due to the lack of HRMS images of the same scene,

Walds synthesis protocol [28] is used in the simulated ex-

periments. On the basis of this protocol, pan-sharpening is

conducted on the degraded data, and the original MS image

is regarded as a ground truth which is used to compare with

the pan-sharpened image.

To evaluate different methods at lower scale, we intro-

duce both qualitative results and quantitative metrics for as-

sessing the fused images. Quantitative metrics including

spectral angle mapper (SAM) [31], universal image quali-

ty index averaged over the bands (QAVE) [29] and 8-band

extension of Q8 [2], relative dimensionless global error in

synthesis (ERGAS) [27] and the spatial correlation coeffi-

cient (SCC) [33]. These metrics are used to measure the

distortion of the spectral information and spatial structures.

For quantitative evaluation, we list the mean and stan-

dard deviation across 225 images with different methods in

Table 1. The best results are boldfaced and the last row

of the table indicate the ideal value. It can be seen that

our proposed approach significantly exceeds all convention-

al and variation methods, which we believe that our local

constraint is more reasonable than others before.

For qualitative analysis, Figure 4 presents the visual re-

sults of each methods while the corresponding residuals

are shown in Figure 5. Even though all the fused images

provide clear versions of the target image by visually, we

can still find several subtle discrepancies from residuals. It

can be seen that BDSD suffers severe spectral and spatial

distortion, followed by PRACS. In the case of Indusion,

strong artifacts introduced by the decimation can be no-

ticed. AWLP and MTF-GLP have different levels of spatial

distortion. SIRF performs poorly in keeping some spectral

features and PHLP leads to over-blurred result. Our method

achieves proper trade-off between spectral information and

sharp edges preservation.

5.2. Evaluation at the original scale

Since the PAN images are down-sampled in the simulat-

ed experiment, we apply these methods at the original scale

of PAN images as a complement. Since there are unavail-

able ground truth images, we adopt LRMS images as spec-

tral reference and PAN images as spatial reference. Further-

more, we use the reference-free measurement QNR [1] to

assess the pan-sharpened images. The QNR index is com-

posed by two components: spectral distortion index Dλ and

spatial distortion index Ds.

Performance indexes in Table 2 are obtained by calculat-

ing means and standard deviations over 200 test images. We

highlight the optimal value and find that PRACS presents

the best Dλ index while our method has the best perfor-

mance in terms of Ds and QNR metrics.

From a qualitative point of view, we scale up the small

region of parking lot in Figure 6. There is obvious spec-

tral distortion in bright area produced by Indusion, PRAC-

S, MTF-GLP, PHLP and SIRF. BDSD and AWLP exist a

slight degree of color variation compared to the LRMS im-

age. Only our proposed method not only makes full use

of the position information provided by PAN image, but al-

so prevents the spectral content from distorting. Since we

lack of the ground truth, the residuals to the LRMS image

are shown in Figure 7. The LRMS image loses many high-

resolution spatial details but contains abundant spectral in-

formation. Thus, the smooth regions of residuals should

tend to be gray while edges of structures should show ap-

parently. Again, we observe that our model also performs

well in dealing with original scale images.

5.3. Comparison with deep learning based methods

Due to the powerful non-linear modeling ability, deep

learning technology has been explored to handle pan-

sharpening. Therefore, we also compare our model with

two recent deep learning based methods, i.e., PNN [23] and

PanNet [30]. These two methods are designed in a super-

vised fashion to learn the mapping function from labeled da-

ta. To evaluate both pan-sharpening performance and gen-
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Table 1: Quality metrics of different methods on 225 satellite images from WorldView-3.

Algorithm Q8 QAVE SAM ERGAS SCC

Indusion [19] 0.799 ± 0.017 0.799 ± 0.015 6.385 ± 1.544 4.340 ± 0.699 0.825 ± 0.026

PRACS [11] 0.836 ± 0.023 0.822 ± 0.025 6.675 ± 1.628 3.834 ± 0.718 0.835 ± 0.040

BDSD [14] 0.871 ± 0.010 0.867 ± 0.013 7.158 ± 1.909 3.631 ± 0.621 0.856 ± 0.032

AWLP [24] 0.849 ± 0.028 0.844 ± 0.029 6.219 ± 1.487 3.697 ± 0.697 0.865 ± 0.029

MTF-GLP [3] 0.871 ± 0.023 0.858 ± 0.030 6.639 ± 1.723 3.494 ± 0.723 0.857 ± 0.047

PHLP [18] 0.859 ± 0.013 0.835 ± 0.011 5.748 ± 0.926 3.747 ± 0.590 0.845 ± 0.024

SIRF [9, 10] 0.863 ± 0.013 0.859 ± 0.002 6.140 ± 1.416 3.564 ± 0.553 0.866 ± 0.019

Proposed 0.891 ± 0.023 0.890 ± 0.023 5.460 ± 1.309 3.172 ± 0.603 0.891 ± 0.027

ideal value 1 1 0 0 1

(a) LRMS (b) Indusion (c) PRACS (d) BDSD (e) AWLP

(f) MTF-GLP (g) PHLP (h) SIRF (i) Proposed (j) Ground truth

Figure 4: Comparison with different methods (source: WorldView-3). The size of PAN is 400× 400.

(a) Indusion (b) PRACS (c) BDSD (d) AWLP (e) MTF-GLP (f) PHLP (g) SIRF (h) Proposed

Figure 5: The residuals between the HRMS image reconstructions and the ground truth from Figure 4.

eralization ability, the compared models of both PNN and

PanNet are only trained on WorldView-3. While for testing,

we use the data from both WorldView-2 and WorldView-3.

Since PNN and PanNet are trained on WorldView-3, they

have good visual quality on the testing image that from the

same satellite, as shown in Figure 8. However, the general-

ization ability of PNN and PanNet is limited due to the su-

pervised learning strategy. As shown in Figure 9, the resid-

uals of PNN and PanNet contain more detail and spectral

information. This is because once the training is finished,

the network parameters of PNN and PanNet will be fixed

and cannot adapt to the new type of data. On the contrary,

our model adopts the local constraint, which is a universal

regularization and is independent of data. This makes our

model has a better generalization ability than PNN and Pan-

Net. This advantage is further proved in Table 3.
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(a) LRMS (b) PAN (c) Indusion (d) BDSD (e) PRACS

(f) MTF-GLP (g) AWLP (h) PHLP (i) SIRF (j) Proposed

Figure 6: The fusion results at the original scale (source: WorldView-3). The size of PAN is 400× 400.

(a) Indusion (b) BDSD (c) PRACS (d) MTF-GLP (e) AWLP (f) PHLP (g) SIRF (h) Proposed

Figure 7: The residuals to the LRMS image from Figure 6. Note that ideal residuals should have smooth regions close to

gray while the edges of structures should be apparent.

Table 2: Quality metrics evaluated at original scales

on 200 satellite images from WorldView-3.

Algorithm Dλ Ds QNR

BDSD [14] 0.079 ± 0.035 0.128 ± 0.034 0.803 ± 0.048

Indusion [19] 0.055 ± 0.023 0.073 ± 0.018 0.876 ± 0.034

PRACS [14] 0.019 ± 0.006 0.103 ± 0.021 0.880 ± 0.021

AWLP [24] 0.065 ± 0.026 0.108 ± 0.018 0.835 ± 0.037

MTF-GLP [3] 0.049 ± 0.018 0.072 ± 0.018 0.883 ± 0.032

SIRF [9, 10] 0.070 ± 0.027 0.088 ± 0.027 0.849 ± 0.047

PHLP [18] 0.029 ± 0.020 0.077 ± 0.019 0.896 ± 0.035

Proposed 0.030 ± 0.012 0.050 ± 0.015 0.922 ± 0.024

ideal value 0 0 1

We also test on data at original scales. As shown in Fig-

ure 10, both PNN and PanNet have spectral distortion even

though their models are trained on the same data source,

i.e., WorldView-3. This spectral distortion is more obvi-

ous when PNN and PanNet are directly tested on new satel-

lite, i.e., WorldView-2, as shown in Figure 11. On the con-

trary, our model achieves a good trade-off between spatial

and spectral preservation. The corresponding quantitative

(a) Ground truth (b) PNN (c) PanNet (d) Proposed

(e) |(a) - (b)| (f) |(a) - (c)| (g) |(a) - (d)|

Figure 8: Visual comparison with deep learning. PNN and

PanNet are trained and tested on WorldView–3 images.

results are shown in Table 4, which further proves the gen-

eralization ability of our model to original scale images.
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Table 3: Quality metrics of different methods on WorldView-3 and WorldView-2 satellites. “-WV3” and

“-WV2” indicates testing on WorldView-3 and WorldView-2, respectively.

Algorithm Q8 QAVE SAM ERGAS SCC

PNN-WV3 [23] 0.882 ± 0.005 0.891 ± 0.003 4.752 ± 0.870 3.277 ± 0.473 0.915 ± 0.009

PanNet-WV3 [30] 0.925 ± 0.005 0.928 ± 0.010 4.128 ± 0.787 2.469 ± 0.347 0.943 ± 0.018

Proposed-WV3 0.891 ± 0.023 0.890 ± 0.023 5.460 ± 1.309 3.172 ± 0.603 0.891 ± 0.027

PNN-WV2 [23] 0.694 ± 0.251 0.710 ± 0.246 4.696 ± 1.535 4.720 ± 0.751 0.904 ± 0.015

PanNet-WV2 [30] 0.723 ± 0.179 0.728 ± 0.180 4.091 ± 2.090 5.569 ± 0.876 0.845 ± 0.032

Proposed-WV2 0.775 ± 0.189 0.774 ± 0.196 2.940 ± 1.585 3.598± 0.587 0.915± 0.019

ideal value 1 1 0 0 1

(a) Ground truth (b) PNN (c) PanNet (d) Proposed

(e) |(a) - (b)| (f) |(a) - (c)| (g) |(a) - (d)|

Figure 9: Visual comparison with deep learning. PNN and

PanNet are trained on WorldView–3 images and tested on

WorldView–2 images to evaluate generalization ability.

Table 4: Quality metrics evaluated at original scales on

WorldView-3 and WorldView-2 satellites.

Algorithm Dλ Ds QNR

PNN-WV3 [23] 0.036 ± 0.008 0.087 ± 0.021 0.880 ± 0.022

PanNet-WV3 [30] 0.023 ± 0.008 0.071 ± 0.013 0.908 ± 0.015

Proposed-WV3 0.030 ± 0.012 0.050 ± 0.015 0.922 ± 0.024

PNN-WV2 [23] 0.054 ± 0.055 0.035 ± 0.033 0.915 ± 0.080

PanNet-WV2 [30] 0.091 ± 0.079 0.125 ± 0.113 0.803 ± 0.161

Proposed-WV2 0.011 ± 0.005 0.035 ± 0.015 0.954 ± 0.018

ideal value 0 0 1

6. Conclusion

We propose a pan-sharpening method that incorporates

a local constraint for image spatial preservation. First-

ly, we show our local penalty can outperform global one

through statistical verification. Secondly, based on this lo-

cal constraint, we build a new variational model for pan-

sharpening. We also derive an simple optimization algorith-

m to efficiently solve the proposed model. The experiment

proves that our model can achieve better spectral and spatial

preservation compared with other methods. Moreover, due

(a) LRMS (b) PNN (c) PanNet (d) Proposed

(e) PAN (f) |(a) - (b)| (g) |(a) - (c)| (h) |(a) - (d)|

Figure 10: Comparison with deep learning on a original s-

cale WorldView-3 image.

(a) LRMS (b) PNN (c) PanNet (d) Proposed

(e) PAN (f) |(a) - (b)| (g) |(a) - (c)| (h) |(a) - (d)|

Figure 11: Comparison with deep learning on a original s-

cale WorldView-2 image.

to the proposed universal local constraint, our model has a

better generalization ability than recent deep learning based

method. Since our method does not require training phase,

it has enough flexibility to directly deal with new satellites

and achieve satisfactory performance.
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