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Abstract

Pan-sharpening aims at fusing spectral and spatial in-
formation, which are respectively contained in the multi-
spectral (MS) image and panchromatic (PAN) image, to
produce a high resolution multi-spectral (HRMS) image. In
this paper, a new variational model based on a local gra-
dient constraint for pan-sharpening is proposed. Differ-
ent with previous methods that only use global constraints
to preserve spatial information, we first consider gradien-
t difference of PAN and HRMS images in different local
patches and bands. Then a more accurate spatial preser-
vation based on local gradient constraints is incorporated
into the objective to fully utilize spatial information con-
tained in the PAN image. The objective is formulated as
a convex optimization problem which minimizes two least-
squares terms and thus very simple and easy to implement.
A fast algorithm is also designed to improve efficiency. Ex-
periments show that our method outperforms previous vari-
ational algorithms and achieves better generalization than
recent deep learning methods.

1. Introduction

Remote sensing images have become widely used in
many practical applications, such as environmental moni-
toring, object positioning and classification. Due to phys-
ical constraints, satellites such as IKONOS, QuickBird-
2, WorldView-2 and WorldView-3 capture two images of
the same scene at the same time, where one image called
panchromatic (PAN) image is of high spatial resolution, and
the other called multi-spectral (MS) image is of low spatial
resolution but it contains good spectral content. In order to
obtain the high resolution multi-spectral (HRMS) images,
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Figure 1: An example of our proposed method. The fused
result has rich details with promising spectral preservation.

pan-sharpening techniques which refer to fuse the low res-
olution spectral information with the spatial structure in the
PAN image have been developed.

1.1. Related works

In the past decades, many pan-sharpening methods have
been proposed. Among these existing methods, the most
common methods include the intensity hue-saturation tech-
nique (IHS) [8], the principal component analysis (PCA)
[21] and Brovey transform [15]. These methods are popu-
lar due to their relatively fast computation. But they usually
suffer from spectral distortion while increasing spatial res-
olution of fused results.

Beside component substitution, the multi-resolution
analysis (MRA) method is another popular pan-sharpening
method in which the PAN image and MS image are de-
composed into other planes by using some multi-resolution
tools, e.g., decimated wavelet transform (DWT) [22], a
trous wavelet transform (ATWT) [26] and Laplacian pyra-
mid (LP) [7]. The MRA method can sharpen MS image
effectively. However, this may cause some local dissimilar-
ities because the high frequencies extracted from the PAN
image are not exactly to those of the HRMS images.

Recently, in the light of the strong nonlinear mapping
ability of deep learning, researchers have begun explor-
ing the deep convolutional neuron network based methods.
Although these methods [17, 23, 30] obtain excellent per-
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formance, they require substantial computational resources
and training data, of which the latter is not easy obtained
in the pan-sharpening area since there is no true ground-
truth. Since all deep learning methods use synthetic data
for training, their generalization performance for real-world
data and new satellite is limited.

So from a practical perspective, variational methods
are reconsidered to pan-sharpening field. These method-
s [4,5,10, 13, 18,32] achieve pan-sharpening by modeling
the relationship between PAN, MS and HRMS images in-
to an objective function with some prior knowledge, which
is universal and independent on specific training data. The
first variational pan-sharpening method P+XS technique [5]
preserves spectral well, but produces blurring effects. To
struggle against the blurred edges, a large part of methods
introduce a high-pass filter to describe structural similarity
while minimizing spectral distortion, such as guided filter-
based fusion (GDF) [13], Bayesian nonparametric dictio-
nary learning (BNDL) [12] and satellite image registration
and fusion (SIRF) [10]. However, they still suffer some
degradation due to indecent structural constraints.

1.2. Our contributions

In this paper, for the pan-sharpening problem, we focus
on spatial improvement by considering local gradient con-
straints while keeping the spectral information as undistort-
ed as possible. To improve spatial resolution, recent varia-
tional methods make assumptions based on the gradient dif-
ference of PAN and HRMS images. For example, MBF [4]
assumes this relationship follows the Gaussian distribution
while PHLP [18] considers it obeys the Laplacian distribu-
tion through statistical experiments.

All the previous methods assume that the gradient dif-
ference of PAN and HRMS is global linear. However, we
find that the relationship is not consistent in different local
image patches. To verify this viewpoint, we randomly scan
one line from a 8-band image and present the difference
of gradient values among the PAN image and each band
of HRMS image in Figure 2(d). Obviously, it is unreason-
able to model the gradient relationships between PAN and
HRMS images with only a global linear function. There-
fore, to avoid global constraints from limiting the modeling
flexibility, a new variational model based on local gradient
constraints is proposed. We formulate our objective func-
tion to consider the following two aspects:

e Spectral preservation: we assume that the down-
sampled HRMS image should be close to the original
MS image, which aims at preserving the exact spectral
information without introducing false information.

e Spatial improvement: a simple yet effective local lin-
ear regression model is proposed to constraint the gra-
dient difference of PAN and HRMS images, so as to

(b) PAN

(a) HRMS
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(c) Intensity scanning (d) Gradient scanning
Figure 2: 1D signals of intensity and gradient values in one
line of HRMS and PAN images.

effectively utilize the spatial information of PAN im-
age. To the best of our knowledge, this is the first vari-
ational model for the specific pan-sharpening problem
that based on the local constraint.

We show that by using our local gradient constraints, a
simple least-square term, which is easy to optimize, is suf-
ficient to model spatial preservation. To optimize the ob-
jective function, a fast iterative shrinkage-thresholding al-
gorithm (FISTA) is designed. Experiments show that our
method has a great advantage over non deep learning meth-
ods, both subjectively and objectively. Moreover, since we
adopt the universal local constraint, our proposed method
has a better generalization ability than deep learning based
methods that adopt the supervised learning strategy.

2. Motivation

At first, some auxiliary notations and definitions are in-
troduced to simplify our analysis, which will be used in the
following paper. The satellite typically captures two kinds
of images including a PAN image and a corresponding MS
image which has B bands (e.g., B = 8 for WorldView-
2 satellite). We denote the observed PAN image as P €
RMXN and P € RM*NXB represents P that expanded
to B bands. The corresponding MS image is denoted by
M € R%*%*B and the pan-sharpened HRMS image is
denoted by X € RMXNXEB ‘where ¢ is a reduction ratio.

Since both the PAN and MS images are taken from the
same scene, the spatial structure of them should have a
strong similarity. The PAN image contains abundant spatial
information, which makes it play a significant role in im-
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proving the spatial resolution of the MS image. The first P
+ XS method [5] assumes that the PAN image can be mod-
eled as a global linear combination among all bands of the
HRMS image, i.e.,

B
szlwab =P+e. (1)

However, even for the same object, different sensor has dif-
ferent response. In other words, differences in intensity of
the HRMS image and the PAN image may be very large,
as shown in Figure 2(c). To avoid this drawback, recent
approaches ensure the consistency of the high-pass filtered
components of PAN image and HRMS image. This require-
ment, which enforces structure similarity rather than inten-
sity similarity, is based on the following assumption:

B
>, wVXy=VP+e, )

where V represents the gradient. To enforce spatial resolu-
tion, previous variational pan-sharpening methods often use
the ¢, norm [4] to enforce spatial resolution, or switch to
{1 [25] when sparsity is desired. In SIRF [10], group spar-
sity is encouraged by introducing the {5 ; norm. However,
according to empirical image statistics, assuming the error
€ obeys Gaussian (¢5) or Laplacian (¢;) assumptions are not
as appropriate as heavy-tailed distribution such as a hyper-
Laplacian [20]. Thus, the PHLP method [ 18] which adopts
the ¢, 5 penalty on the gradients of the reconstruction error
is introduced to enforce structural preservation.

Although spatial improvement is achieved by using d-
ifferent sparse assumptions, we argue that modeling based
on equation (2) is not appropriate. First, equation (2) is
built from a global perspective, which is a relative rough as-
sumption. As shown in Figure 2(d), setting the weight w as
a global parameter cannot well model the local relationship
between V.X;, and VP. Second, most previous method-
s simply set w as 1/B, which further reduce the modeling
flexibility. Thus, based on the above analysis, we propose
a new local linear model to better describe the relationship
between VX and VP at each band:

Vz; = apVp; + cg, Vi € wy, 3

where wy, represents an image block centered at location k.
For a random pixel ¢ € wy, Vz,; and Vp; are the intensity
of VX and VP at location 7, a; and ¢y, are the linear coef-
ficients which are constants in the local area wy,. We easily
find that equation (2) is a special form of our model with
ar = 1/wp and ¢, = €/wp. Thus, our model equation (3)
can be seen as a general form of previous methods.
To get a, and cg, we minimize this objective function:

Inin Zi@dk (Va; —apVp; —cp)”. 4)

Let the derivative of the equation (4) be zero, we can get:

o7 Dicwy, VT VP — (V) u(Vpr) )
ar =
k o2(Vpg) + ¢ ’

e = w(Vag) —app(Vpr), (6)

where p and o2 are the mean and variance, respectively. &
is a very small parameter to prevent the denominator from
being zero. Note that when € — 0, a; can be rewritten to:

R cov(Vayg, Vpp) _ cov(Vay, Vpy) o(Vag)
ko a?(Vp) -~ o(Vpr)o(Vay) o(Vpr)
\Y%

= p(Vpk, Vag) - ZEV;::;’ (M

where the cov() is the covariance and p is the correlation
coefficient. Equation (7) means when pj, contains structures
that do not exist in xx, p(Vpg, V) is very small and ay
tends to zero, and our model can greatly reduce the effect of
Vpg on Vzy, and vice versa. Moreover, shown in Figure 3,
both a and c can be positive or negative. This implies that
our assumption is much more robust than the equation (2)
which hypothesizes the coefficients are global constants.

However, a pixel ¢ is involved in all the overlapping win-
dows wy, that covers ¢, so the value of Vz; in equation (3)
is not identical when it is computed in different windows.
Thus, we follow the strategy of the guided filter [16] to av-
erage coefficients of all windows overlapping i by

Vz; =a;Vp; + ¢, (8

where @; = ﬁ ZkEw,; ap and ¢; = ﬁ ZkEwi Cp.

To clearly illustrate different value of a and ¢, we calcu-
late the value of a and c on 65,536 pixels by using equations
(5) and (6), the results are shown in Figure 3. We found a
and c have different values at different local patches, which
demonstrates that the previous global assumption is inaccu-
rate by simply setting w as a positive value that equals 1/B.
We therefore believe that our local linear model (3) is more
reasonable than the global one (2) for the spatial preserva-
tion.

3. Modeling

Most previous pan-sharpening methods firstly up-sample
the multi-spectral image to obtain low resolution multi-
spectral (LRMS) image M to the same size with the PAN
image P, and then propose a spectral preservation based on
the LRMS image to obtain the HRMS image X. However,
on the one hand, the up-sampling approach will introduce
incorrect information, and different up-sampling approach-
es may also affect the results. On the other hand, the objec-
tive function should be added more prior regularization ac-
cording to the specific up-sampling way. Therefore, instead
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Figure 3: According to the equation (3), we show statistical values of calculated a and c of all 65,536 pixels of each band
from a WorldView-2 image of size 256 x 256. As can be seen, both a and ¢ have various sign and magnitudes.

of up-sampling MS image, we argue that the down-sampled
HRMS image should be consistent with the MS image. The
following equation is presented for spectral preservation:

1
[IX,M) = o [vX — M]3, ©)

where ¢/ denotes a down-sampling operator.
Based on the above analysis in section 2, the spatial p-
reservation term can be written as follows:

f2 (Xv Aa Cv P)
B
b=

Z Z (Vay; — ap Vi — cp k), (10)

1 k i€wg

where A and C are matrix form of a and ¢. Note that since
each pixel of Vz at location ¢ has its own coefficients a;
and ¢;, for the entire image, equation (10) can be written in
matrix form via the /5 regularization:

1
f2(X,A,C.P) = [VX—A - VP-C[;, (I

where - is the element-wise multiplication. Thus, the final
objective function composed of the two energy functions
can be rewritten to

)g}i%‘c:)gki%fl(va)"F)‘fQ(XvA’C?P)v (12)
where ) is a regularization parameter.

Compared with previous model, the proposed one has
several advantages. First, the down-sampled way can make
better use of the spectral information of the observed LRM-
S image, which reduces the spectral distortion. Second, the
local regularization term preserves the differences in differ-
ent bands and patches simultaneously, making the gradient
constraints more refined. Last but not least, both f; and f5
are least-square terms, which make it easy to optimize.

4. Optimization

In this section, our goal is to minimize the objective func-
tion (12). We first use Bregman iteration to solve the model.

By decomposing the problem into three sub-problems, each
problem can be solved in a closed form. We summarize our
optimization for pan-sharpening in Algorithm 1.

Update for X: first, we introduce an auxiliary variable
Xy = A-VP+C, then the objective function (12) becomes:

1 A
L=5 WX =M+ [VX=X,[l;. (3

This is a simple least-square optimization problem. Since 1)
can not be written in matrix form, the FISTA framework [6]
is applied to optimize the model to separate 1. Under the
FISTA framework, the objective function is split into the
following iterative procedure:

Y=Y -4 (X -M)/L, (14)
where 1)~1 denotes the inverse operator of ¢, j is the jth
iteration. L is the Lipschitz constant for 1~ (X — M).

Then X can be obtained by solving the following function:

X0 = argmins [X— Y2 + 2 HVX X ”2
X 2 27 9 Ill2

I (f(Y) + A (F(Va) F (X)) +f(vy)*f<xg>)> )
FO) + XN (F(Ve) F(Va) + F(Vy) " F(Va)) |’

where F is the FFT operator and F()* denotes the com-

plex conjugate. V and V, denote the horizontal and verti-

cal differential operators, respectively. F(1) is the Fourier

Transform of the delta function. All operations in equation

(15) are component-wise. Then the step size ¢ and auxiliary
variable Y is updated:

P = (LI A))/2, (16)
th—1

j+1 J
Y = X'+ ti+1

(X9 —XI7h), (17)

Update for a and c: with X, we update a and ¢ accord-
ing to equations (5) and (6):

. 1 )
=) = J
Thi = Tl 2k, Pt (18)

. 1 A
=]
%i = 1y Zke% C ks (19)
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Update for X,: the X, can be directly updated with
fixed a and c:

X/t = A7 VP + C. (20)

Algorithm 1
Input: L, \, t' =1, P, YO, M.
for j = 1 to Max-Iteration do
Y=Y - T (X~ M)/L
X/ = argmini ||X — Y||§ +A HVX - Xf]Hz

X
= (14 /1 +4(17)%)/2
Y =X 4 G (X - XY

i cou(Va} . Vpar)
ade__ 02(Vpa,k)+e
Clek = M(inz,k) - afi‘,kﬂ(Vpk)
X/t =A7 VP +
end for
Output: the HRMS image X.

5. Experiments

To demonstrate the effectiveness of proposed algorith-
m, we compare our method with five conventional pan-
sharpening methods: AWLP [24], BDSD [14], Indusion
[19], MTF-GLP [3], PRACS [11], as well as two variation-
al pan-sharpening methods: SIRF [10], PHLP [18]. For fair
comparison, we adjust parameters of each approach to get
their best performances. For visual convenience, we only
present the RGB bands of fused images but conduct exper-
iments in all spectral bands.

5.1. Evaluation at lower scale

Due to the lack of HRMS images of the same scene,
Walds synthesis protocol [28] is used in the simulated ex-
periments. On the basis of this protocol, pan-sharpening is
conducted on the degraded data, and the original MS image
is regarded as a ground truth which is used to compare with
the pan-sharpened image.

To evaluate different methods at lower scale, we intro-
duce both qualitative results and quantitative metrics for as-
sessing the fused images. Quantitative metrics including
spectral angle mapper (SAM) [31], universal image quali-
ty index averaged over the bands (QAVE) [29] and 8-band
extension of Q8 [2], relative dimensionless global error in
synthesis (ERGAS) [27] and the spatial correlation coeffi-
cient (SCC) [33]. These metrics are used to measure the
distortion of the spectral information and spatial structures.

For quantitative evaluation, we list the mean and stan-
dard deviation across 225 images with different methods in
Table 1. The best results are boldfaced and the last row
of the table indicate the ideal value. It can be seen that
our proposed approach significantly exceeds all convention-
al and variation methods, which we believe that our local
constraint is more reasonable than others before.

For qualitative analysis, Figure 4 presents the visual re-
sults of each methods while the corresponding residuals
are shown in Figure 5. Even though all the fused images
provide clear versions of the target image by visually, we
can still find several subtle discrepancies from residuals. It
can be seen that BDSD suffers severe spectral and spatial
distortion, followed by PRACS. In the case of Indusion,
strong artifacts introduced by the decimation can be no-
ticed. AWLP and MTF-GLP have different levels of spatial
distortion. SIRF performs poorly in keeping some spectral
features and PHLP leads to over-blurred result. Our method
achieves proper trade-off between spectral information and
sharp edges preservation.

5.2. Evaluation at the original scale

Since the PAN images are down-sampled in the simulat-
ed experiment, we apply these methods at the original scale
of PAN images as a complement. Since there are unavail-
able ground truth images, we adopt LRMS images as spec-
tral reference and PAN images as spatial reference. Further-
more, we use the reference-free measurement QNR [1] to
assess the pan-sharpened images. The QNR index is com-
posed by two components: spectral distortion index Dy and
spatial distortion index D;.

Performance indexes in Table 2 are obtained by calculat-
ing means and standard deviations over 200 test images. We
highlight the optimal value and find that PRACS presents
the best Dy index while our method has the best perfor-
mance in terms of D, and QNR metrics.

From a qualitative point of view, we scale up the small
region of parking lot in Figure 6. There is obvious spec-
tral distortion in bright area produced by Indusion, PRAC-
S, MTF-GLP, PHLP and SIRF. BDSD and AWLP exist a
slight degree of color variation compared to the LRMS im-
age. Only our proposed method not only makes full use
of the position information provided by PAN image, but al-
so prevents the spectral content from distorting. Since we
lack of the ground truth, the residuals to the LRMS image
are shown in Figure 7. The LRMS image loses many high-
resolution spatial details but contains abundant spectral in-
formation. Thus, the smooth regions of residuals should
tend to be gray while edges of structures should show ap-
parently. Again, we observe that our model also performs
well in dealing with original scale images.

5.3. Comparison with deep learning based methods

Due to the powerful non-linear modeling ability, deep
learning technology has been explored to handle pan-
sharpening. Therefore, we also compare our model with
two recent deep learning based methods, i.e., PNN [23] and
PanNet [30]. These two methods are designed in a super-
vised fashion to learn the mapping function from labeled da-
ta. To evaluate both pan-sharpening performance and gen-
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Table 1: Quality metrics of different methods on 225 satellite images from WorldView-3.

Algorithm \ Q8 QAVE SAM ERGAS scc
Indusion [19] | 0.799 +0.017 0.799 £ 0.015 6.385+ 1.544 4340 £ 0.699  0.825 + 0.026
PRACS[11] | 0.8364+0.023 0.82240.025 6.675+1.628 3.834+0.718 0.835 4 0.040
BDSD [14] 0.871 4+ 0.010 0.867 £0.013 7.158 £1.909 3.631 +0.621 0.856 + 0.032
AWLP [24] 0.849 +0.028 0.844 £0.029 6.219 + 1.487 3.697 +0.697 0.865 + 0.029
MTE-GLP [3] | 0.871 +0.023 0.858 +0.030 6.639 + 1.723 3.494 4+ 0.723  0.857 4 0.047
PHLP [18] 0.859 4+ 0.013  0.835+0.011 5.748 +£0.926 3.747 +0.590 0.845 £ 0.024
SIRF [9, 10] 0.863 +0.013  0.859 £0.002 6.140 + 1.416  3.564 4+ 0.553  0.866 + 0.019
Proposed 0.891 + 0.023  0.890 & 0.023 5.460 4 1.309  3.172 + 0.603  0.891 + 0.027
ideal value | 1 1 0 0 1

(f) MTE-GLP

(g) PHLP

(h) SIRF

(i) Proposed

(j) Ground truth

Figure 4: Comparison with different methods (source: WorldView-3). The size of PAN is 400 x 400.

(a) Indusion

(b) PRACS

(c) BDSD

(d) AWLP

(e) MTF-GLP

(f) PHLP

(h) Proposed

() SIRF

Figure 5: The residuals between the HRMS image reconstructions and the ground truth from Figure 4.

eralization ability, the compared models of both PNN and
PanNet are only trained on WorldView-3. While for testing,
we use the data from both WorldView-2 and WorldView-3.
Since PNN and PanNet are trained on WorldView-3, they
have good visual quality on the testing image that from the
same satellite, as shown in Figure 8. However, the general-
ization ability of PNN and PanNet is limited due to the su-
pervised learning strategy. As shown in Figure 9, the resid-

uals of PNN and PanNet contain more detail and spectral
information. This is because once the training is finished,
the network parameters of PNN and PanNet will be fixed
and cannot adapt to the new type of data. On the contrary,
our model adopts the local constraint, which is a universal
regularization and is independent of data. This makes our
model has a better generalization ability than PNN and Pan-
Net. This advantage is further proved in Table 3.
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(b) PAN

(f) MTE-GLP (g) AWLP

(h) PHLP

(i) SIRF (j) Proposed

Figure 6: The fusion results at the original scale (source: WorldView-3). The size of PAN is 400 x 400.

(a) Indusion (b) BDSD (c) PRACS

(d) MTF-GLP

(e) AWLP (f) PHLP (g) SIRF (h) Proposed

Figure 7: The residuals to the LRMS image from Figure 6. Note that ideal residuals should have smooth regions close to

gray while the edges of structures should be apparent.

Table 2: Quality metrics evaluated at original scales
on 200 satellite images from WorldView-3.

Algorithm | Dy D, QNR
BDSD [14] 0.079 + 0.035 0.128 £ 0.034 0.803 £ 0.048
Indusion [19] 0.055 + 0.023 0.073 £ 0.018 0.876 £ 0.034
PRACS [14] 0.019 + 0.006 0.103 £ 0.021 0.880 + 0.021
AWLP [24] 0.065 £ 0.026 0.108 £ 0.018 0.835 £ 0.037
MTF-GLP [3] 0.049 £ 0.018 0.072 £ 0.018 0.883 £ 0.032
SIRF [9, 10] 0.070 £ 0.027 0.088 + 0.027 0.849 + 0.047
PHLP [18] 0.029 + 0.020 0.077 £ 0.019 0.896 + 0.035
Proposed 0.030 £ 0.012 0.050 + 0.015 0.922 + 0.024
ideal value | 0 0 1

We also test on data at original scales. As shown in Fig-
ure 10, both PNN and PanNet have spectral distortion even
though their models are trained on the same data source,
i.e., WorldView-3. This spectral distortion is more obvi-
ous when PNN and PanNet are directly tested on new satel-
lite, i.e., WorldView-2, as shown in Figure 11. On the con-
trary, our model achieves a good trade-off between spatial
and spectral preservation. The corresponding quantitative

(a) Ground truth (b) PNN (c) PanNet

(© |@ - ®)]

O @-©@ (@ l@- @

Figure 8: Visual comparison with deep learning. PNN and
PanNet are trained and tested on WorldView—3 images.

results are shown in Table 4, which further proves the gen-
eralization ability of our model to original scale images.
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Table 3: Quality metrics of different methods on WorldView-3 and WorldView-2 satellites. “~-WV3” and
“-WV2” indicates testing on WorldView-3 and WorldView-2, respectively.

Algorithm Q8 QAVE SAM ERGAS scc
PNN-WV3 [23] | 0.882+£0.005 0.891+£0.003 475240870 3277 4+0.473 0.915 % 0.009
PanNet-WV3 [30] | 0.925 £ 0.005 0.928 = 0.010  4.128 - 0.787  2.469 4 0.347  0.943 + 0.018
Proposed-WV3 | 0.891 +0.023 0.890 £0.023 5460 +1.309  3.172 £ 0.603  0.891 =+ 0.027
PNN-WV2[23] [ 0.694 £0251 0.710£0246 4.696+1.535 4720+£0.751 0.904 £0.015
PanNet-WV2 [30] | 0.723 £0.179 0728 £0.180  4.091 £2.090  5.569 & 0.876  0.845 & 0.032
Proposed-WV2 | 0.775 £ 0.189  0.774 £ 0.196  2.940 = 1.585  3.598+0.587  0.915+ 0.019
ideal value \ 1 1 0 0 1

(d) Proposed

(c) PanNet

(a) Ground truth (b) PNN

® @ - @]

(©) [(a) - (b)]

(2 |@)-(d)]

Figure 9: Visual comparison with deep learning. PNN and
PanNet are trained on WorldView-3 images and tested on
WorldView-2 images to evaluate generalization ability.

Table 4: Quality metrics evaluated at original scales on
WorldView-3 and WorldView-2 satellites.

Algorithm ‘ Da D QNR
PNN-WV3 [23] 0.036 £ 0.008 0.087 £ 0.021 0.880 £ 0.022
PanNet-WV3 [30] 0.023 + 0.008 0.071 £ 0.013 0.908 £ 0.015
Proposed-WV3 0.030 £+ 0.012 0.050 + 0.015 0.922 + 0.024
PNN-WV2 [23] 0.054 £ 0.055 0.035 £ 0.033 0.915 £ 0.080
PanNet-WV2 [30] 0.091 £ 0.079 0.125 £ 0.113 0.803 £ 0.161
Proposed-WV2 0.011 +£ 0.005 0.035 £ 0.015 0.954 £+ 0.018
ideal value | 0 0 1

6. Conclusion

We propose a pan-sharpening method that incorporates
a local constraint for image spatial preservation. First-
ly, we show our local penalty can outperform global one
through statistical verification. Secondly, based on this lo-
cal constraint, we build a new variational model for pan-
sharpening. We also derive an simple optimization algorith-
m to efficiently solve the proposed model. The experiment
proves that our model can achieve better spectral and spatial
preservation compared with other methods. Moreover, due

(b) PNN (c) PanNet (d) Proposed

(e) PAN ®l@-b0) @ |@-© O |@-@)

Figure 10: Comparison with deep learning on a original s-
cale WorldView-3 image.

(a) LRMS

(b) PNN (c) PanNet

(d) Proposed

(e) PAN ® |@) - )

(® @ - (©

) @) - (d)]

Figure 11: Comparison with deep learning on a original s-
cale WorldView-2 image.

to the proposed universal local constraint, our model has a
better generalization ability than recent deep learning based
method. Since our method does not require training phase,
it has enough flexibility to directly deal with new satellites
and achieve satisfactory performance.
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