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Abstract

Unsupervised domain mapping aims to learn a function

GXY to translate domain X to Y in the absence of paired

examples. Finding the optimal GXY without paired data

is an ill-posed problem, so appropriate constraints are re-

quired to obtain reasonable solutions. While some promi-

nent constraints such as cycle consistency and distance

preservation successfully constrain the solution space, they

overlook the special properties of images that simple geo-

metric transformations do not change the image’s seman-

tic structure. Based on this special property, we develop

a geometry-consistent generative adversarial network (Gc-

GAN), which enables one-sided unsupervised domain map-

ping. GcGAN takes the original image and its counterpart

image transformed by a predefined geometric transforma-

tion as inputs and generates two images in the new domain

coupled with the corresponding geometry-consistency con-

straint. The geometry-consistency constraint reduces the

space of possible solutions while keep the correct solutions

in the search space. Quantitative and qualitative compar-

isons with the baseline (GAN alone) and the state-of-the-art

methods including CycleGAN [66] and DistanceGAN [5]

demonstrate the effectiveness of our method.

1. Introduction

Domain mapping or image-to-image translation, which

targets at translating an image from one domain to another,

has been intensively investigated over the past few years.

Let X ∈ X denote a random variable representing source

domain images and Y ∈ Y represent target domain images.

According to whether we have access to a paired sample

{(xi, yi)}
N
i=1, domain mapping can be studied in a super-

∗equal contribution

vised or unsupervised manner. While several works have

successfully produced high-quality translations by focusing

on supervised domain mapping with constraints provided

by cross-domain image pairs [46, 26, 59, 58], the progress

of unsupervised domain mapping is relatively slow.

In unsupervised domain mapping, the goal is to model

the joint distribution PXY given samples drawn from the

marginal distributions PX and PY in individual domains.

Since the two marginal distributions can be inferred from

an infinite set of possible joint distributions, it is difficult

to guarantee that an individual input x ∈ X and the output

GXY (x) are paired up in a meaningful way without addi-

tional assumptions or constraints.

To address this problem, recent approaches have ex-

ploited the cycle-consistency assumption, i.e., a mapping

GXY and its inverse mapping GY X should be bijections

[66, 28, 61]. Specifically, when feeding an example x ∈ X
into the networks GXY ◦GY X : X → Y → X , the output

should be a reconstruction of x and vise versa for y, i.e.,

GY X(GXY (x)) ≈ x and GXY (GY X(y)) ≈ y. Further,

DistanceGAN [5] showed that maintaining the distances

between images within domains allows one-sided unsuper-

vised domain mapping.

Existing constraints overlook the special properties of

images that simple geometric transformations (global geo-

metric transformations without shape deformation) do not

change the image’s semantic structure. Here, semantic

structure refers to the information that distinguishes differ-

ent object/staff classes, which can be easily perceived by

humans regardless of trivial geometric transformations such

as rotation. Based on this property, we develop a geometry-

consistency constraint, which helps in reducing the search

space of possible solutions while still keeping the correct set

of solutions under consideration, and results in a geometry-

consistent generative adversarial network (GcGAN).

Our geometry-consistency constraint is motivated by the

12427



Input Ground Truth GAN alone GAN alone (rot) GcGAN GcGAN (rot)

Figure 1: Geometry consistency. The original input image is denoted by x, and the predefined function f(·) is a 90◦ clockwise rotation

(rot). GAN alone: G1

XY (x). GAN alone (rot): f−1(G1

X̃Ỹ
(f(x))). GcGAN: G2

XY (x). GcGAN (rot): f−1(G2

X̃Ỹ
(f(x)). It can be seen

that GAN alone produces geometrically-inconsistent output images, indicating that the learned GXY and GX̃Ỹ are far away from the

correct mapping functions. By enforcing geometry consistency, our method results in more sensible domain mapping.

fact that a given geometric transformation f(·) between

the input images should be preserved by related transla-

tors GXY and GX̃Ỹ , if X̃ and Ỹ are the domains obtained

by applying f(·) on the examples of X and Y , respec-

tively. Mathematically, given a random example x from the

source domain X and a predefined geometric transforma-

tion function f(·), geometry consistency can be expressed

as f(GXY (x)) ≈ GX̃Ỹ (f(x)) and f−1(GX̃Ỹ (f(x))) ≈
GXY (x), where f−1(·) is the inverse function of f(·). Be-

cause it is unlikely that GXY and GX̃Ỹ always fail in the

same location, GXY and GX̃Ỹ co-regularize each other by

the geometry-consistency constraint and thus correct each

others’ failures in local regions of their respective trans-

lations (see Figure 1 for an illustration). Our geometry-

consistency constraint allows one-sided unsupervised do-

main mapping, i.e.,GXY can be trained independently from

GY X . In this paper, we employ two simple but represen-

tative geometric transformations as examples, i.e., vertical

flipping (vf ) and 90 degrees clockwise rotation (rot), to il-

lustrate geometry consistency. Quantitative and qualitative

comparisons with the baseline (GAN alone) and the state-

of-the-art methods including CycleGAN [66] and Distance-

GAN [5] demonstrate the effectiveness of our method.

2. Related Work

Generative Adversarial Networks. Generative adver-

sarial networks (GANs) [21, 45, 14, 47, 51, 3] learn two

networks, i.e., a generator and a discriminator, in a staged

zero-sum game fashion to generate images from inputs.

Many tasks have recently been developed based on deep

convolutional GANs, such as image inpainting, style trans-

fer, and domain adaptation [7, 62, 46, 48, 31, 60, 9, 52, 23,

53, 64, 27, 50, 19, 18, 35, 63]. The key component enabling

GANs is the adversarial constraint, which enforces the

generated images to be indistinguishable from real images.

Domain Mapping. Recent adversarial domain mapping

has been studied in a supervised or unsupervised manner

with respect to paired or unpaired inputs. There are a va-

riety of literatures [46, 31, 26, 59, 56, 58, 25, 37, 4, 10]

on supervised domain mapping. One representative exam-

ple is conditional GAN [26], which learned the discrimina-

tor to distinguish (x, y) and (x,GXY (x)) instead of y and

GXY (x), where (x, y) is a meaningful pair across domains.

Further, Wang et al. [59] showed that conditional GANs can

be used to generate high-resolution images with a novel fea-

ture matching loss, as well as multi-scale generator and dis-

criminator architectures. While there has been significant

progress in supervised domain mapping, many real-word

applications can not provide aligned images across domains

because data preparation is expensive. Thus, different con-

straints and frameworks have been proposed for image-to-

image translation in the absence of training pairs.

In unsupervised domain mapping, only unaligned exam-

ples in individual domains are provided, making the task

more practical but more difficult. Unpaired domain map-

ping has a long history, and some successes in adversarial

networks have recently been presented [40, 66, 5, 39, 42,

38, 6, 11]. For example, Liu and Tuzel [40] introduced

coupled GAN (CoGAN) to learn cross-domain represen-

tations by enforcing a weight-sharing constraint. Subse-

quently, CycleGAN [66], DiscoGAN [28], and DualGAN

[61] enforced that translators GXY and GY X should be

bijections. Thus, jointly learning GXY and GY X by en-

forcing cycle consistency can help to produce convinc-

ing mappings. Since then, many constraints and assump-

tions have been proposed to improve cycle consistency

[8, 17, 24, 32, 34, 11, 2, 67, 20, 44, 39, 36, 1]. Recently, Be-

naim and Wolf [5] reported that maintaining the distances

between samples within domains allows one-sided unsuper-

vised domain mapping. GcGAN is also a one-sided frame-

work coupled with our geometry-consistency constraint,

and produces competitive and even better translations than

the two-sided CycleGAN in various applications.

3. Preliminaries

Let X and Y be two domains with unpaired training ex-

amples {xi}
N
i=1 and {yj}

M
j=1, where xi and yj are drawn
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Figure 2: An illustration of the differences between CycleGAN [66], DistanceGAN [5], and our GcGAN. x and y are random examples

from domain X and Y , respectively. d(xi, xj) is the distance between images xi and xj . f(·) is a predefined geometric transformation

function for images, which satisfies f−1(f(x)) = f(f−1(x)) = x. GXY and GX̃Ỹ are the generators (or translators) which target

the domain translation tasks from X to Y and X̃ to Ỹ , where X̃ and Ỹ are two domains obtained by applying f(·) on all the images

in X and Y , respectively. DY is an adversarial discriminator in domain Y . The red dotted lines denote the unsupervised constraints

with respect to cycle consistency (x ≈ GY X(GXY (x))), distance consistency (x ≈ GY X(GXY (x))), and our geometry consistency

(f(GXY (x)) ≈ GX̃Ỹ (f(x))), respectively.

from the marginal distributions PX and PY , where X and

Y are two random variables associated with X and Y , re-

spectively. In the paper, we exploit style transfer without

undesirable semantic distortions, and have two goals. First,

we need to learn a mapping GXY such that GXY (X) has

the same distribution as Y , i.e., PGXY (X) ≈ PY . Second,

the learned mapping function only changes the image style

without distorting the semantic structures.

While many works have modeled the invertibility be-

tween GXY and GY X for convincing mappings since the

success of CycleGAN, here we propose to enforce geom-

etry consistency as a constraint that allows one-sided do-

main mapping. Let f(·) be a predefined geometric trans-

formation. We can obtain two extra domains X̃ and Ỹ
with examples {x̃i}

N
i=1 and {ỹj}

M
j=1 by applying f(·) on

X and Y , respectively. We learn an additional transla-

tor GX̃Ỹ : X̃ → Ỹ while learning GXY : X → Y ,

and introduce our geometry-consistency constraint based

on the predefined transformation such that the two net-

works can co-regularize each other. Our framework en-

forces that GXY (x) and GX̃Ỹ (x̃) should keep the same ge-

ometric transformation with the one between x and x̃, i.e.,

f(GXY (x)) ≈ GX̃Ỹ (x̃), where x̃ = f(x). We denote the

two adversarial discriminators as DY and DỸ with respect

to domains Y and Ỹ , respectively.

4. Proposed Method

We present our geometry-consistency constraint and Gc-

GAN beginning with a review of the cycle-consistency con-

straint and the distance constraint. An illustration of the dif-

ferences between these constraints is shown in Figure 2.

4.1. Unsupervised Constraints

Cycle-consistency constraint. Following the cycle-

consistency assumption [28, 66, 61], through the translators

GXY ◦ GY X : X → Y → X and GY X ◦ GXY : Y →
X → Y , the examples x and y in domain X and Y should

recover the original images, i.e., x ≈ GY X(GXY (x)) and

y ≈ GXY (GY X(y)). Cycle consistency is implemented

by a bidirectional reconstruction process that requires GXY

andGY X to be jointly learned, as shown in Figure 2 (Cycle-

GAN). The cycle consistency loss Lcyc(GXY , GY X , X, Y )
takes the form as:

Lcyc = Ex∼PX
[‖GY X(GXY (x))− x‖1]

+ Ey∼PY
[‖GXY (GY X(y))− y‖1].

(1)

Distance constraint. The assumption behind the distance

constraint is that the distance between two examples xi and

xj in domain X should be preserved after mapping to do-

main Y , i.e., d(xi, xj) ≈ a · d(GXY (xi), GXY (xj)) + b,
where d(·) is a predefined function to measure the distance

between two examples and a and b are the linear coefficient

and bias. In DistanceGAN [5], the distance consistency loss

Ldis(GXY , X, Y ) is the exception to the absolute differ-

ences between distances:

Ldis = Exi,xj∼PX
[|φ(xi, xj)− ψ(xi, xj)|],

φ(xi, xj) =
1

σX
(‖xi − xj‖1 − µX),

ψ(xi, xj) =
1

σY
(‖GXY (xi)−GXY (xj)‖1 − µY ),

(2)

where µX , µY (σX , σY ) are the means (standard devia-

tions) of distances of all the possible pairs of (xi, xj) within
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domain X and (yi, yj) within domain Y , respectively.

4.2. Geometry­consistent Generative Adversarial
Networks

Adversarial constraint. Taking GXY as an example, an

adversarial loss Lgan(GXY , DY , X, Y ) [21] enforcesGXY

and DY to simultaneously optimize each other in an mini-

max game, i.e., minGXY
maxDY

Lgan(GXY , DY , X, Y ). In

other words, DY aims to distinguish real examples {y}
from translated samples {GXY (x)}. By contrast, GXY

aims to fool DY so that DY can label a fake example

y′ = GXY (x) as a sample satisfying y′ ∼ PY . The ob-

jective can be expressed as:

Lgan = Ey∼PY
[logDY (y)]

+ Ex∼PX
[log(1−DY (GXY (x)))].

(3)

In the transformed domains X̃ and Ỹ , we employ the

adversarial loss Lgan(GX̃Ỹ , DỸ , X̃, Ỹ ) that has the same

form to Lgan(GXY , DY , X, Y ).

Geometry-consistency constraint. As shown in Figure 2

(GcGAN), given a predefined geometric transformation

function f(·), we feed the images x ∈ X and x̃ = f(x) into

the translators GXY and GX̃Ỹ , respectively. Following our

geometry-consistency constraint, the outputs y′ = GXY (x)
and ỹ′ = GX̃Ỹ (x̃) should also satisfy ỹ′ ≈ f(y′) like x and

x̃. Considering both f(·) and the inverse geometric transfor-

mation function f−1(·), our complete geometry consistency

loss Lgeo(GXY , GX̃Ỹ , X, Y ) has the following form:

Lgeo = Ex∼PX
[‖GXY (x)− f−1(GX̃Ỹ (f(x)))‖1]

+ Ex∼PX
[‖GX̃Ỹ (f(x))− f(GXY (x))‖1].

(4)

This geometry-consistency loss can be seen as a recon-

struction loss that relies on the predefined geometric

transformation function f(·). In this paper, we only take

two common geometric transformations as examples,

namely vertical flipping (vf ) and 90◦ clockwise rotation

(rot), to demonstrate the effectiveness of our geometry-

consistency constraint. Note that, GXY and GX̃Ỹ have the

same architecture and share all the parameters.

Full objective. By combining our geometry-consistency

constraint with the standard adversarial constraint, a re-

markable one-sided unsupervised domain mapping can

be targeted. The full objective for our GcGAN

LGcGAN (GXY , GX̃Ỹ , DY , DỸ , X, Y ) will be:

LGcGAN = Lgan(GXY , DY , X, Y )

+ Lgan(GX̃Ỹ , DỸ , X, Y )

+ λLgeo(GXY , GX̃Ỹ , X, Y ),

(5)

where λ (λ = 20.0 in all the experiments) is a trade-off

hyperparameter to weight the contribution of Lgan and

Lgeo during the model training. Carefully tuning λ may

give preferable results to specific translation tasks.

Network architecture. The full framework of our GcGAN

is illustrated in Figure 2. Our experimental settings,

network architectures, and learning strategies follow Cy-

cleGAN. We employ the same discriminator and generator

as CycleGAN depending on the specific tasks. Specifically,

the generator is a standard encoder-decoder, where the

encoder contains two convolutional layers with stride 2 and

several residual blocks [22] (6 / 9 blocks with respect to

128× 128 / 256× 256 of input resolution), and the decoder

contains two deconvolutional layers also with stride 2.

The discriminator distinguishes images at the patch level

following PatchGANs [26, 33]. Like CycleGAN, we also

use an identity mapping loss [55] in all of our experiments

(except SVHN → MNIST), including our baseline (GAN

alone). For other details, we use LeakyReLU as nonlinear-

ity for the discriminators and instance normalization [57]

to normalize convolutional feature maps.

Learning and inference. We use the Adam solver [29] with

a learning rate of 0.0002 and coefficients of (0.5, 0.999),

where the latter is used to compute running averages of gra-

dients and their squares. The learning rate is fixed in the

initial 100 epochs, and linearly decays to zero over the next

100 epochs. Following CycleGAN, the negative log likeli-

hood objective is replaced with a more stable and effective

least-squares loss [43] for Lgan. The discriminator is up-

dated with random samples from a history of generated im-

ages stored in an image buffer [54] of size 50. The generator

and discriminator are optimized alternately. In the inference

phase, we feed an image only into the learned generator

GXY to obtain a translated image.

5. Experiments

We apply our GcGAN to a wide range of applications

and make both quantitative and qualitative comparisons

with the baseline (GAN alone) and previous state-of-the-

art methods including DistanceGAN and CycleGAN. We

also study different ablations (based on rot) to analyze

our geometry-consistency constraint. Since adversarial net-

works are not always stable, every independent experiment

could result in slightly different scores. The scores in the

quantitative analysis are computed by the average on three

independent experiments.

5.1. Quantitative Analysis

The results demonstrate that our geometry-consistency

constraint can not only partially filter out the candidate so-

lutions having mode collapse or semantic distortions and

thus produce more sensible translations, but also compati-
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Input Ground Truth GAN alone GcGAN Input Ground Truth GAN alone GcGAN

Figure 3: Qualitative comparison on Cityscapes (Parsing ⇋ Image) and Google Maps (Map ⇋ Aerial photo). GAN alone suffers from

mode collapse. Translated images by GcGAN contain more details. GcGAN = GAN alone+ geometry consistency.

ble with other unsupervised constraints such as cycle con-

sistency [66] and distance preservation [5].

Cityscapes. Cityscapes [12] contains 3975 image-label

pairs, with 2975 used for training and 500 for validation

(test in this paper). For a fair comparison with CycleGAN,

the translators are trained at a resolution of 128 × 128 in

an unaligned fashion. We evaluate our domain mappers us-

ing FCN scores and scene parsing metrics following pre-

vious works [41, 12, 66]. Specifically, for parsing → im-

age, we assume that a high-quality translated image should

produce qualitative semantic segmentation like real images

when feeding it into a scene parser. Thus, we employ the

pretrained FCN-8s [41] provided by pix2pix [26] to pre-

dict semantic labels for the 500 translated images. The

label maps are then resized to the original resolution of

1024 × 2048 and compared against the ground truth labels

using some standard scene parsing metrics including pixel

accuracy, class accuracy, and mean IoU [41]. For image

→ parsing, since the fake labels are in the RGB format, we

simply convert them into class-level labels using the nearest

neighbor search strategy. In particular, we have 19 (cate-

gory labels) + 1 (ignored label) categories for Cityscapes,

each with a corresponding color value (RGB). For a pixel i
in a translated parsing, we compute the distances between

the 20 groundtruth color values and the color value of pixel

i. The label of pixel i should be the one with the small-

est distance. Then, the aforementioned metrics are used to

evaluate our mapping on the 19 category labels.

The parsing scores are presented in Table 1. Our Gc-

GAN outperforms the baseline (GAN alone) by a large mar-

gin. We take the average of pixel accuracy, class accu-

racy, and mean IoU as the final score for analysis [65], i.e.,

score = (pixel acc + class acc + mean IoU)/3. For im-

age → parsing, GcGAN (32.6%) yields a slightly higher

score than CycleGAN (32.0%). For parsing → image, Gc-

GAN (29.0% ∼ 29.5%) obtains a convincing improvement

of 1.3% ∼ 1.8% over distanceGAN (27.7%).

We next perform ablation studies to further discuss Gc-

GAN. The scores are reported in Table 1. Specifically,

GcGAN-rot-Seperate shows that the generator GXY em-

ployed in GcGAN is sufficient to handle both the style trans-

fers (without shape deformation) X → Y and X̃ → Ỹ .

GcGAN-Mix-{comb, rand} demonstrate that persevering a

geometric transformation can filter out most of the candi-

date solutions having mode collapse or undesired shape de-

formation, but preserving more ones can not leach more.

Besides, GcGAN-Mix-rand performs slightly worse than

GcGAN-Mix-comb. One of the possible reasons is that nei-

ther Xrot→Yrot nor Xvf→Yvf are sufficiently trained in the

random case, which would decrease the effect of the afore-

mentioned co-regularization mechanism. For GcGAN-rot

+ Cycle, we set the trade-off parameter for Lcyc to 10.0 as

published in CycleGAN. The consistent improvement is a
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method
image → parsing parsing → image

pixel acc class acc mean IoU pixel acc class acc mean IoU

Benchmark Performance

CoGAN [40] 0.45 0.11 0.08 0.40 0.10 0.06

BiGAN/ALI [15, 16] 0.41 0.13 0.07 0.19 0.06 0.02

SimGAN [54] 0.47 0.11 0.07 0.20 0.10 0.04

CycleGAN (Cycle) [66] 0.58 0.22 0.16 0.52 0.17 0.11

DistanceGAN [5] - - - 0.53 0.19 0.11

GAN alone (baseline) 0.514 0.160 0.104 0.437 0.161 0.098

GcGAN-rot 0.574 0.234 0.170 0.551 0.197 0.129

GcGAN-vf 0.576 0.232 0.171 0.548 0.196 0.127

Ablation Studies (Robustness & Compatibility)

LGcGAN w/o Lgeo (λ = 0) 0.486 0.163 0.102 0.396 0.148 0.088

LGcGAN w/o Lgan(X̃, Ỹ ) 0.549 0.199 0.139 0.526 0.184 0.111

GcGAN-rot-Seperate 0.575 0.233 0.170 0.545 0.196 0.124

GcGAN-Mix-comb 0.573 0.229 0.168 0.545 0.197 0.128

GcGAN-Mix-rand 0.564 0.217 0.156 0.547 0.192 0.123

GcGAN-rot + Cycle 0.587 0.246 0.182 0.557 0.201 0.132

Table 1: Parsing scores on Cityscapes. LGcGAN : The objective in Eqn. 5 with rot. GcGAN-rot-Separate: GXY and GX̃Ỹ do not share

parameters. GcGAN-Mix-comb: Training GcGAN with both vf and rot in each iteration. GcGAN-Mix-rand: Training GcGAN with

randomly chosen vf and rot in each iteration. GcGAN-rot + Cycle: GcGAN-rot with the cycle-consistency constraint.

method class acc (%)

Benchmark Performance

DistanceGAN (Dist.) [5] 26.8

CycleGAN (Cycle) [66] 26.1

Self-Distance [5] 25.2

GcGAN-rot 32.5

GcGAN-vf 33.3

Ablation Studies (Compatibility)

Cycle + Dist. [5] 18.0

GcGAN-rot + Dist. 34.0

GcGAN-rot + Cycle 33.8

GcGAN-rot + Dist. + Cycle 33.2

Table 2: Quantitative scores for SVHN → MNIST.

credible support that our geometry-consistency constraint

is compatible with the widely-used cycle-consistency con-

straint. Moreover, when setting λ = 0 in LGcGAN , both

GXY and GY X perform badly. One of the possible rea-

sons is that, without the geometry consistency constraint,

jointly modeling X→Y and X̃→Ỹ with the shared gen-

erator GXY would decrease the performance due to do-

main diversities caused by the geometric transformations.

When removing Lgan(GX̃Ỹ , DỸ ), the obtained scores are

much higher than baseline (GAN alone) because Y ′ can

partially correct Ỹ ′ so that GXY is able to handle the map-

ping X̃→Ỹ , and then Ỹ ′ can constrain the mappingX→Y .

As the analysis, when learning both Lgan(GXY , DY ) and

Lgan(GX̃Ỹ , DỸ ) with Lgeo, the co-regularization help gen-

erate preferable translations.

SVHN → MNIST. We apply our approach to the SVHN →
MNIST translation task. The translation models are trained

on 73257 and 60000 training images of resolution 32 × 32
contained in the SVHN and MNIST training sets, respec-

tively. The experimental settings follow DistanceGAN [5],

including the default trade-off parameters for Lcyc and Ldis.

We compare our GcGAN with both DistanceGAN and Cy-

cleGAN in this translation task. To obtain quantitative re-

sults, we feed the translated images into a pretrained classi-

fier trained on the MNIST training split, as done in [5].

Classification accuracies are reported in Table 2. Both

GcGAN-rot and GcGAN-vf outperform DistanceGAN and

CycleGAN by a large margin (about 6% ∼ 7%). From

the ablations, adding our geometry-consistency constraint

to current unsupervised domain mapping frameworks will

achieve different levels of improvements against the origi-

nal ones. Note that, it seems that the distance-preservation

constraint is not compatible with the cycle-consistency con-

straint on this task, but our geometry-consistency constraint

can improve both ones.

Google Maps. We obtain 2194 (map, aerial photo) pairs of

images in and around New York City from Google Maps

[26], and split them into training and test sets with 1096

and 1098 pairs, respectively. We train Map ⇋ Aerial photo

translators with an image size of 256×256 using the training

set in an unsupervised manner (unpaired) by ignoring the

pair information. For Aerial photo → Map, we make com-
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DistanceGAN [5] GcGAN

Figure 4: Qualitative comparison for SVHN → MNIST.

parisons with CycleGAN using average RMSE and pixel

accuracy (%). Given a pixel i with the ground-truth RGB

value (ri, gi, bi) and the predicted RGB value (r′i, g
′

i, b
′

i), if

max(|ri − r′i|, |gi − g′i|, |bi − b′i|) < δ, we consider this is

an accurate prediction. Since maps only contain a limited

number of different RGB values, it is reasonable to compute

pixel accuracy using this strategy (δ1 = 5 and δ2 = 10 in

this paper). For Map → Aerial photo, we only show some

qualitative results in Figure 3.

method RMSE acc (δ1) acc (δ2)

Benchmark Performance

CycleGAN [66] 28.15 41.8 63.7

GAN alone (baseline) 33.27 19.3 42.0

GcGAN-rot 28.31 41.2 63.1

GcGAN-vf 28.50 37.3 58.9

Ablation Studies (Robustness & Compatibility)

GcGAN-rot-Separate 30.25 40.7 60.8

GcGAN-Mix-comb 27.98 42.8 64.6

GcGAN-rot + Cycle 28.21 40.6 63.5

Table 3: Quantitative scores for Aerial photo → Map.

From the scores presented in Table 3, GcGAN produces

superior translations to the baseline (GAN alone). In partic-

ular, GcGAN yields an 18.0% ∼ 21.9% improvement over

the baseline with respect to pixel accuracy when δ = 5.0,

demonstrating that the fake maps obtained by our GcGAN

contain more details. In addition, GcGANs achieve com-

petitive scores compared with CycleGAN.

5.2. Qualitative Evalutation

The qualitative results are shown in Figure 3, Figure 4,

and Figure 5. Our geometry-consistency constraint improve

the training of GAN alone, and helps to generate empiri-

cally more impressive translations on various applications.

The following applications are trained in the image size of

256× 256 with the rot geometric transformation.

Horse → Zebra. We apply GcGAN to the widely studied

object transfiguration application task, i.e., Horse → Zebra.

The images are randomly sampled from ImageNet [13] us-

ing the keywords (i.e., wild horse and zebra). The numbers

of training images are 939 and 1177 for horse and zebra, re-

spectively. We find that training GcGAN without parameter

sharing would produce preferable translations for the task.

Synthetic ⇋ Real. We employ the 2975 training images

from Cityscapes as the real-world scenes, and randomly se-

lect 3060 images from SYNTHIA-CVPR16 [49], which is

a virtual urban scene benchmark, as the synthetic images.

Summer ⇋ Winter. The images used for the season trans-

lation tasks are provided by CycleGAN. The training set

sizes for Summer and Winter are 1273 and 854.

Photo ⇋ Artistic Painting. We translate natural images to

artistic paintings with different art styles, including Monet,

Cezanne, Van Gogh, and Ukiyo-e. We also perform Gc-

GAN on the translation task of Monet’s paintings → pho-

tographs. We use the photos and paintings (Monet: 1074,

Cezanne: 584, Van Gogh: 401, Ukiyo-e: 1433, and Pho-

tographs: 6853) collected by CycleGAN for training.

Day ⇋ Night. We randomly extract 4500 training images

for both Day and Night from the 91 webcam sequences cap-

tured by [30].

6. Conclusion

In this paper, we propose to enforce geometry consis-

tency as a constraint for unsupervised domain mapping,

which can be viewed as a predefined geometric transforma-

tion f(·) preserving the geometry of a scene. The geometry-

consistency constraint makes the translation networks on

the original images and transformed images co-regularize

each other, which not only provides an effective remedy to

the mode collapse problem suffered by standard GANs, but

also reduces the semantic distortions in the translation. We

evaluate our model, i.e., the geometry-consistent generative

adversarial network (GcGAN), both qualitatively and quan-

titatively in various applications. The experimental results

demonstrate that GcGAN achieves competitive and some-

times even better translations than the state-of-the-art meth-

ods including DistanceGAN and CycleGAN. Finally, our

geometry-consistency constraint is compatible with other

well-studied unsupervised constraints.
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Horse → Zebra Monet → Photo

Input CycleGAN GcGAN Input CycleGAN GcGAN

Real → Synthetic Synthetic → Real

Input GAN alone GcGAN Input GAN alone GcGAN

Winter → Summer Summer → Winter

Input GAN alone GcGAN Input GAN alone GcGAN

Photo → Artistic Painting

Photographs Monet Cezanne Van Gogh Ukiyo-e

Day → Night Night → Day

Input GcGAN Input GcGAN Input GcGAN Input GcGAN

Figure 5: Qualitative results on different applications, including Horse → Zebra, Monet → Photo, Synthetic ⇋ Real, Summar ⇋ Winter,

Photo → Artist Painting, and Day ⇋ Night. GcGAN has the potential to produce realistic images. Zoom in for better view.
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