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Abstract

To overcome the limitations of existing hyperspectral

cameras on spatial/temporal resolution, fusing a low res-

olution hyperspectral image (HSI) with a high resolution

RGB (or multispectral) image into a high resolution HSI

has been prevalent. Previous methods for this fusion task

usually employ hand-crafted priors to model the underlying

structure of the latent high resolution HSI, and the effect of

the camera spectral response (CSR) of the RGB camera on

super-resolution accuracy has rarely been investigated. In

this paper, we first present a simple and efficient convolu-

tional neural network (CNN) based method for HSI super-

resolution in an unsupervised way, without any prior train-

ing. Later, we append a CSR optimization layer onto the

HSI super-resolution network, either to automatically select

the best CSR in a given CSR dataset, or to design the op-

timal CSR under some physical restrictions. Experimental

results show our method outperforms the state-of-the-arts,

and the CSR optimization can further boost the accuracy of

HSI super-resolution.

1. Introduction

Hyperspectral imaging systems capture detailed spectral

distribution of a scene, and have found numerous applica-

tions in remote sensing [7, 34], object classification [8],

anomaly detection [41], fluorescent analysis [15, 16], and

so on.

For these applications, images with sufficient spectral

and spatial resolution are usually desired [20, 37]. How-

ever, to achieve high spectral resolution, traditional hyper-

spectral imaging systems [6, 18, 36] often sacrifice the tem-

poral and spatial resolution. In contrast, conventional RGB

(or multispectral) cameras integrate the radiance across a

wide wavelength range, and can easily capture high spatial

resolution images in real time. Therefore, a natural way to

obtain high resolution HSI is to fuse the low resolution HSI

with its corresponding high resolution RGB image, which

acts as spatial guidance.

Most existing approaches for HSI super-resolution of a

hybrid camera system [1, 2, 3, 12, 14, 24, 28, 30, 31, 45]

employ various hand-crafted priors to model the underlying

structure of the latent high resolution HSI. Nevertheless, to

hammer out proper priors for a specific scene remains to be

an art.

Recent alternative approaches [13, 35] leverage on deep

learning to alleviate the dependence on hand-crafted priors,

and show that the CNN scheme can effectively exploit the

intrinsic characteristics of HSIs. Nevertheless, these meth-

ods either use the CNN scheme to refine the initialized re-

sults in a supervised way [13], or resort to step-by-step alter-

nating optimization [35]. In this work, we present a simple

and efficient CNN-based end-to-end method for HSI super-

resolution with RGB guidance, which can effectively ap-

proximate the spectral nonlinear mapping between the RGB

and the spectral space, and utilize the spatial consistency.

Neither delicate hand-crafted priors nor training data are

needed in our method. This allows our method to handle

various scenes more easily.

In addition, all these methods mainly focus on RGB-

guided HSI super-resolution under a given CSR function

of the RGB camera. Recent researches on HSI super-

resolution from a single RGB image [5, 17, 33] have shown

that the CSR is critical in improving super-resolution accu-

racy. This motivates to explore the effect of CSR in our hy-

brid super-resolution task. Through experiments, we have

found that the performance of HSI super-resolution meth-

ods for the hybrid camera system is obviously dependent

on the CSR. To optimize the RGB guidance, in this paper,

we present a CSR optimization layer to automatically de-

termine the best CSR in a given CSR dataset, or even to

design an unprecedented CSR function that is optimal for

the task of RGB-guided HSI super-resolution. To the best

of our knowledge, this work is the first to evaluate the effect

of CSR in a hybrid hyperspectral imaging system, and opti-

mize the RGB guidance for hybrid HSI super-resolution. In

summary, our main contributions are that

1. we present an unsupervised CNN-based method for

HSI super-resolution, which can effectively exploit the

underlying characteristics of the HSI and adapt itself

to variant scenes more easily;
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2. we evaluate the effect of RGB CSR functions for HSI

super-resolution, and develop a CSR selection layer to

retrieve the best CSR of a given CSR dataset;

3. Beyond CSR selection, we simulate the CSR as a

convolution layer to learn the optimal CSR for RGB-

guided HSI super-resolution.

2. Related Work

HSI super-resolution is closely related to multispectral

image (MSI) pan-sharping, in which a low resolution MSI

is usually fused with a high resolution panchromatic image

[29]. The upscaling ratio of existing methods [10, 42] is

usually no more than four times.

To lift the HSI super-resolution ratio, the recent trend

is to use a RGB (or MSI) image to guide the HSI super-

resolution. Most existing approaches for RGB-guided HSI

super-resolution are based on matrix factorization [1, 3, 14,

24, 28, 30]. Kawakami et al. [24] used matrix factoriza-

tion method to learn a spectral dictionary representation in

the low resolution HSI under the sparsity assumption, and

restored the high resolution HSI using shared sparse coeffi-

cients estimated from the RGB observation. Wycoff et al.

[40] took into account the non-negative physical property of

the materials in the scene to improve performance. Yokoya

et al. [44] used a coupled non-negative matrix factorization

approach without any sparse constraints, while Lanaras et

al. [30] employed similar approach with sparse constraints.

Later, Dong et al. [14] further employed non-negative struc-

tured sparse coding model for HSI super-resolution after the

matrix factorization.

Besides, Bayesian representation [2, 3] is also used for

HSI super-resolution. Akhtar et al. [2] learned the spec-

tral dictionary by using non-parametric Bayesian model and

constructed the high resolution HSI with the learned dic-

tionary under sparse constraints. Later, Akhtar et al. [3]

employed a Bayesian representation model and used the hi-

erarchical Beta process with Gaussian process prior for HSI

super-resolution.

Another class of HSI super-resolution methods are based

on tensor factorization [12, 31, 45]. Dian et al. [12] pro-

posed to use non-local sparse tensor factorization for this

super-resolution task. Li et al. [31] formulated the esti-

mation of the dictionaries and the core tensor as a coupled

tensor factorization of the low resolution HSI and the high

resolution multispectral image. Zhang et al. [45] presented

a clustering manifold structure based HSI super-resolution

method under tensor representation.

The aforementioned methods from these three cate-

gories all formulate the fusion problem as the optimiza-

tion problem constrained by various hand-crafted priors,

like low-rankness and sparsity. More recently, CNN-based

approaches have been presented for HSI super-resolution

[13, 35], in which hand-crafted prior modeling is no longer

necessary. Dian et al. [13] initially restored the high resolu-

tion HSI from the fusion framework via solving a Sylvester

equation, and then employed CNN-based method to en-

hance the initialized results with prior training on a HSI

dataset in a supervised way. Qu et al. [35] attempted

to solve the HSI super-resolution problem using an unsu-

pervised encoder-decoder architecture without training in a

HSI dataset. Although it restored the high resolution HSI by

using a CNN-based end-to-end network in an unsupervised

way, this method needs to be carefully optimized step-by-

step in an alternating way. In this work, we present a CNN-

based end-to-end method for HSI super-resolution, which is

easy to optimize and independent of prior training on a HSI

dataset.

In parallel to hybrid fusion, HSI super-resolution from a

single RGB image has attracted attention, and the very re-

cent trend is to optimize the CSR of the RGB image so as

to maximize the reconstruction accuracy. Arad and Ben-

Shahar [5] first recognized that the quality of HSI recovery

from a single RGB image is sensitive to the CSR selection.

Fu et al. [17] presented a CNN-based method to select the

optimal CSR in a CSR dataset, which has much lower time

complexity. Nie et al. [33] went beyond selection and auto-

matically designed optimal CSR using CNN.

Inspired by these methods, we investigate the effect of

CSR functions for HSI super-resolution with RGB guid-

ance, and develop a CSR optimization layer to select or

design the CSR to boost the accuracy of hybrid HSI super-

resolution.

3. RGB-Guided HSI Super-resolution

In this section, we first formulate the problem for HSI

super-resolution with RGB guidance and describe the moti-

vation for our method. Then, we introduce our CNN-based

method for the HSI super-resolution, which can effectively

learn the internal recurrence of spectral information and

guarantee spatial consistency.

3.1. Formulation and Motivation

The aim is to restore a high resolution HSI X ∈ R
B×MN

by fusing a low resolution HSI Xl ∈ R
B×mn and a high

resolution RGB image Y ∈ R
b×MN . M , N , and B are the

number of rows, columns, and bands for the restored high

resolution HSI X. Correspondingly, m and n denote the

number of rows and columns for the low resolution image

Xl. The input low resolution HSI Xl is the downsampled

version of X in the spatial dimension and the high resolu-

tion RGB Y can be obtained by downsampling X across

spectra. The relationship among these three images is gen-

erally linear and can be described as

Xl = XH, and Y = CX, (1)
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Figure 1. Overview of our CNN-based HSI super-resolution with RGB guidance.

where H ∈ R
MN×mn denotes the downsampling along

spatial dimension, and C ∈ R
b×B is the CSR function to

integrate the spectra into R, G, and B channels.

Most state-of-the-art methods model HSI super-

resolution from a low resolution HSI and a high resolution

RGB image as

E(X) = Ed(X,Xl,Y) + λEs(X), (2)

where λ is a predefined parameter. The first term

Ed(X,Xl,Y) is the data term such that the recovered X

should be projected to Xl and Y under constraints in Equa-

tion (1). The second term Es(X) is the prior regularization

for X. To model this term, previous works [1, 3, 14, 24, 30]

often assume that the scene contains a small number of dis-

tinct materials and can be described in a linear way under

sparsity assumption.

Recently, [22] shows that the nonlinear mapping be-

tween RGB values and spectra for each spatial point can

effectively assist HSI recovery from a single RGB image.

[11] reveals that the nonlinear spectral representation of the

HSI can significantly improve the accuracy of restored HSI

instead of the linear representation.

Accordingly, we present a CNN-based method for HSI

super-resolution with RGB guidance, which can effectively

learn the nonlinear spectral representation and add the spa-

tial constraints in an unsupervised way. Concretely, we uti-

lize multiple CNN layers in spectral CNN to deeply learn

the nonlinear mapping between spectra and RGB space,

and employ spatial constraint for the high resolution HSI

to guarantee the spatial consistency. Besides, our method

uses the input RGB image to further guide the HSI super-

resolution with the spectral CNN. Figure 1 shows the HSI

super-resolution network for a hybrid camera system.

3.2. Spectral CNN with RGB Guidance

To better model the spectral relationship between the

HSI and RGB image, the low resolution HSI is first down-

sampled across spectra to a RGB image by a pre-determined

CSR, which is denoted as Yl = CXl. A spectral CNN is

designed to learn the spectral nonlinear mapping between

[23] [25]

N
S

S
R

O
u
rs

Figure 2. The RMSE results of NSSR and our HSI recovery net-

work on ICVL and two CSR datasets. The red and green bars

indicate the best and worst CSR functions for the HSI recovery in

a brute force way, respectively.

the RGB values and the corresponding spectra from the

downsampled RGB image and the low resolution HSI. Be-

sides, the input RGB image is also used to guide the spatial

information reconstruction, which is modeled by stacking

the input RGB image and the output for each layer. Thus,

the spectral CNN consists of L layers and the output of the

l-th layer can be expressed as

Fl = LeakyReLU(Wl ∗ stack(Fl−1,Y) + bl), (3)

where F0 = 0 and LeakyReLU(x) = max{x, αx}, denot-

ing a leaky rectified linear unit [32], and we empirically set

α = 0.05. Wl and bl represent the convolutional kernels

and biases for the l-th layer, respectively. In the experi-

ments, we empirically set L = 5. To learn the intrinsic

recurrence of spectral information, the size of the convolu-

tional kernels is set to be 1× 1.

The parameters for the HSI super-resolution network are

denoted as Θ = {W,b}, and can be achieved by mini-

mizing the Mean Squared Error (MSE) between the recon-

structed HSI X̂l and the corresponding ground truth image

Ls(Θ) = ‖f(Yl,Θ)−Xl‖
2. (4)

3.3. Spatial Constraints

The learned parameters in Equation (4) are also shared

for the high resolution RGB image and the latent high reso-

lution HSI in the learning process. Thus, the relationship
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between high resolution RGB and latent high resolution

HSI can be expressed as

X = f(Y,Θ). (5)

According to Equation (1), the latent high resolution HSI

should be consistent with low resolution HSI and high res-

olution RGB image after linear mappings. Given the rela-

tionship in Equation (5), the spatial constraints from inputs,

which are also used to learn the model parameters, can be

described as

Ld(Θ) = ‖Y −Cf(Y,Θ)‖2 + τ1‖Xl − f(Y,Θ)H‖2.
(6)

3.4. Learning Details

In our method, the spectral nonlinear mapping and spa-

tial consistency are involved into a unified framework to

learn the model, and high resolution HSI is restored by min-

imizing the loss

Lsd = Ld(Θ) + τ2Ls(Θ) + η1‖Θ‖2
2
. (7)

The underlying characteristics of the latent high resolution

HSI in Equation (7) is modeled in deep prior instead of

hand-crafted priors and learned only on the input images

with no need for the training set in an unsupervised way.

The loss is minimized with the adaptive moment estima-

tion method [26] and τ1, τ2, η1 are set to 50, 50, 10−4, re-

spectively. The learning rate is initially set to be 0.01, which

will be divided by 10 every 2000 iterations. All convolution

layer’s weights are initialized by the method in [19].

4. CSR Optimization

In this section, we first describe the motivation for the

CSR optimization, then introduce two approaches for CSR

optimization layer, which is appended in front of the spectra

reconstruction network as shown in the orange box in Fig-

ure 1, and they are jointly learned when optimizing the CSR

layer.

4.1. Motivation

Previous researches on HSI recovery from a single RGB

image [5, 17, 33] have shown that the CSR significantly

affects the quality of HSI recovery. However, this effect

has never been investigated in existing literature on RGB-

guided HSI super-resolution. To investigate the effect from

the CSR, we perform HSI super-resolution methods by us-

ing the synthetic RGB images from a HSI dataset under dif-

ferent CSR functions in a brute force way.

Figure 2 shows the results from NSSR [14] and our

method on ICVL dataset (more details will be provided in

Section 5). It can be observed that HSI super-resolution

with RGB guidance is also obviously dependent on the used

Shared Weights

RGB Images
Selected Image

Camera 1 Camera 𝒏
(a) The optimal CSR selection

400nm 700nm


HSI RGB Image𝟏 × 𝟏 Converlutional Kernels

(b) The optimal CSR design

Figure 3. The illustration of the CSR optimization.

CSR. Therefore, to boost the accuracy of hybrid HSI super-

resolution, it is essential to optimize the CSR.

Here, we present two approaches to obtain the optimal

CSR. For existing RGB cameras, we design a selection con-

volution layer to retrieve the optimal CSR. Beyond the CSR

selection, the optimal CSR is further learned under some

physical restrictions by simulating the CSR as a convolu-

tion layer. The optimized CSR is selected or designed to

boost HSI super-resolution, so the CSR optimization layer

should be appended onto the HSI super-resolution network

and learned together with high resolution HSI restoration.

Note that, our CNN-based HSI super-resolution method

itself works on the input image pair only, without requiring

any training data. Therefore, it is possible in principle to

optimize the CSR for the given input image pair. However,

we have found that the optimal CSR varies a lot according

to the input scene, and it is not meaningful to customize

a RGB camera for every scene. Therefore, we optimize the

CSR by using a HSI dataset, such that the selected/designed

CSR is generally applicable.

4.2. Optimal CSR Selection

To select the optimal CSR function from existing cam-

eras, RGB images for each HSI are first synthesized with

all CSR functions in a candidate dataset, described as

Yj,t = CjXt for the j-th CSR function and the t-

th HSI in the training dataset. For each scene, the in-

put RGB images are obtained by stacking all RGB im-

ages under different CSR functions, and denoted as Yt =
stack(Y1,t, · · · ,Yj,t, · · · ,YJ,t).

The optimal CSR selection is equivalent to the RGB im-

age selection in Yt, which is synthesized with the selected

optimal CSR. As shown in Figure 3a, we first separate RGB

bands into three branches, which share the same 1× 1 con-

volution kernel V . Thus, the output of this optimal CSR
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selection network can be expressed as

Ŷt = stack(V ∗ Yt(R),V ∗ Yt(G),V ∗ Yt(B)), (8)

where Yt(R), Yt(G), and Yt(B) denote all the red, green,

and blue channels in Yt, respectively.

As the simulated RGB image should be positive, the

weight for CSR selection should be nonnegative. To cor-

rectly identify the best CSR, a sparsity constraint is intro-

duced. The V can be determined by minimizing the MSE

under the nonnegative sparse constraint between the se-

lected RGB image Ŷt and the corresponding ground truth

image

Lcs(V ) =
1

T

T∑

t=1

‖Ŷt(V )−Yt‖
2+η2‖V ‖1, s.t. V ≥ 0,

(9)

where Ŷt is the t-th output, Yt is the t-th ground truth im-

age, and T is the number of training samples. A larger value

in V implies that its corresponding CSR is better for HSI

recovery. Consequently, the largest value in V reveals the

optimal CSR.

4.3. Optimal CSR Learning

The linear relationship between RGB and the latent high

resolution HSI is Y = CX. Each row of the CSR function

C can be regarded as the weight in the 1 × 1 convolution

layer with three kernels. As shown in Figure 3b, each spatial

point could be interpreted as the output activation map of a

convolution. Thus, the layer for optimal CSR learning can

be expressed as

Ŷ = U ∗X, (10)

where U is the convolutional representation of C.

As the simulated RGB image should be positive, all val-

ues in CSR are non-negative. Besides, according to [33],

the CSR function should be smooth to facilitate filter real-

ization. Thus, the values in U can be determined by min-

imizing the MSE under the nonnegative smooth constraint

between the synthesized RGB image Ŷ and the correspond-

ing ground truth image

Lco(U) =
1

T

T∑

t=1

‖U ∗Xt −Yt‖
2 + η3‖U‖2

2

+ η4‖GU‖2
2
, s.t. U ≥ 0,

(11)

where G is the first derivative matrix to account for smooth-

ness, and Yt is the t-th input RGB image corresponding

learned CSR. The optimal CSR can be obtained from the

learned weight of three 1× 1 convolution kernels U .

4.4. Optimization Details

The CSR optimization layer is appended onto the HSI

super-resolution network to optimize CSR and the parame-

ters for HSI super-resolution are learned together. To select

the best CSR in a candidate dataset, the entire network is

trained by minimizing the loss

L = Lcs(V ) + τ3Lsd(Θ). (12)

The CSR corresponding to the largest value in V is selected

as the optimal CSR.

To optimize CSR via design, the entire network is trained

by minimizing the loss

L = Lco(U) + τ4Lsd(Θ). (13)

The optimal CSR can be obtained from the learned weight

of the 1× 1 convolution kernels U .

These losses are minimized with the adaptive moment

estimation method [26], τ3, τ4, η2, η3 and η4 are set to 1, 1,

0.8, 0.01 and 0.1, respectively. We set the learning rates for

the selection layer, design layer and HSI super-resolution to

be 0.01, 0.001 and 0.001, respectively. To fit the nonneg-

ative constraint for the optimal CSR selection and optimal

CSR design, its convolution layer’s weights are initialized

as 1

J
and 1

B
, where J is the number of CSRs and B is the

number of HSI bands, respectively. All negative weights

for CSR optimization layer are set to zero during the for-

ward and back propagation. The network has been trained

with the deep learning tool Caffe [21] on a NVIDIA Titan

X GPU.

5. Experimental Results

In this section, we first introduce the datasets and settings

in our experiments. Then, we compare our method with

several state-of-the-art methods under a typical CSR. In ad-

dition, the effectiveness of our CSR optimization method is

evaluated. Finally, we implement our HSI super-resolution

method on the real images.

5.1. Dataset and Setup

Our method is evaluated on three public hyperspectral

datasets, including the ICVL dataset [4], the CAVE dataset

[43], and the Harvard dataset [9]. The ICVL dataset consists

of 201 images, which is by far the most comprehensive nat-

ural hyperspectral dataset. The spatial resolution of HSIs is

1300× 1392.

The Harvard dataset consists of 50 outdoor images cap-

tured under daylight illumination, whose spatial resolution

is 1024×1392. The CAVE dataset has 32 HSIs and the spa-

tial resolution is 512× 512. All HSIs in these datasets have

31 bands. To fairly compare with results provided in [35],

we follow it to use the top left 1024 × 1024 image region

in Harvard dataset and the whole image in CAVE dataset to

perform the comparison on these datasets.

We randomly select 151 images in ICVL dataset to train

the optimal CSR and use the rest for testing. To compare
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Table 1. Evaluation results of different unsupervised HSI super-

resolution methods on three HSI datasets.
Methods Metrics ICVL Harvard CAVE

NSSR

RMSE 1.6004 1.8524 2.5288

SSIM 0.9901 0.9814 0.9859

ERGAS 0.1168 0.3045 0.3143

SAM 1.3766 3.2738 5.2171

BSR

RMSE 3.7453 2.5854 5.8107

SSIM 0.9673 0.9775 0.9508

ERGAS 0.3012 0.3390 0.9508

SAM 2.8155 4.0001 12.4576

CSTF

RMSE 1.8455 2.5793 3.0002

SSIM 0.9841 0.9598 0.9669

ERGAS 0.1204 0.3210 0.3830

SAM 1.5182 4.1837 7.5866

UDL
RMSE / 1.78 4.09

SAM / 4.05 6.95

Ours

RMSE 0.9673 1.9347 2.5055

SSIM 0.9932 0.9800 0.9846

ERGAS 0.0505 0.2554 0.3175

SAM 0.8103 3.1582 4.5232

with [13], we follow it to separate the training and testing

sets for CAVE and Harvard datasets.

Two CSR datasets are used to evaluate the optimal CSR

selection. The first dataset [23] contains 28 CSR curves

and the second dataset [25] contains 12 CSR curves. Both

datasets cover different camera types and brands.

The original HSIs in datasets serve as ground truth for

HSI super-resolution. The low-resolution HSI is obtained

by downsampling the original HSI with a scaling factor of

32, which means that we average over 32× 32 spatial patch

to produce a spatial pixel in low resolution HSI. This proce-

dure has been widely used in existing works for HSI super-

resolution with RGB guidance [1, 2, 3, 12, 14, 24, 28, 30,

31, 45]. The RGB image is simulated by integrating the

original HSI along the spectral dimension by the CSR func-

tion.

Four image quality metrics are utilized to evaluate the

performance of all methods, including root-mean-square er-

ror (RMSE), structural similarity (SSIM) [39], relative di-

mensionless global error in synthesis (ERGAS) [38], and

spectral angle mapping (SAM) [27]. Smaller values of

RMSE, ERGAS, and SAM suggest better performance,

while a larger value of SSIM implies better fidelity.

5.2. Evaluation on HSI Super­resolution

Here, we first compare our method with state-of-the-

arts from four categories, including matrix factorization,

Bayesian representation, tensor factorization, and deep

learning. Five typical methods for comparison are selected

from these categories. Non-negative structured sparse rep-

resentation based method (NSSR) [14], Bayesian sparse

representation based method (BSR) [2], and coupled sparse

Table 2. Comparison with supervised HSI super-resolution method

SDL on three HSI datasets.
Methods Metrics ICVL Harvard CAVE

SDL

RMSE 1.2788 2.0426 2.5092

SSIM 0.9929 0.9829 0.9812

ERGAS 0.0647 0.3448 0.2652

SAM 1.0218 4.1778 6.0237

Ours

RMSE 0.9673 2.0058 2.6612

SSIM 0.9932 0.9815 0.9817

ERGAS 0.0505 0.3166 0.2649

SAM 0.8103 3.6369 4.7417

tensor factorization based method (CSTF) [31] belong to

the first three categories, respectively. We also evaluate two

deep learning based methods, including supervised CNN-

based method (SDL) [13] and unsupervised CNN-based

method (UDL) [35]. We use the CSR function of Nikon

D7001, which has been used in [2, 13, 14, 31, 35], to syn-

thesize RGB values.

Table 1 provides the averaged results over all HSIs on

three HSI datasets, to quantitatively compare our method

with NSSR, BSR, CSTF, and UDL. The best results are

highlighted in bold. UDL performs better on the Har-

vard dataset and NSSR shows relatively larger advantage

over the other methods on CAVE. The NSSR shows that

the hand-crafted prior in NSSR is effective for the CAVE

dataset. Since SDL needs training, we individually com-

pared with it on its testing set instead of the full dataset and

provide the results in Table 2.

According to Tables 1 and 2, our method provides better

results in most cases for all error metrics and the improve-

ment on the ICVL dataset is in general more significant.

This reveals the advantages of deeply exploiting the intrin-

sic properties of HSIs and verifies the effectiveness of our

HSI super-resolution network.

To visualize the experimental results, several representa-

tive restored HSIs and the corresponding error images on

three datasets are shown in Figure 4. The ground truth,

error images for NSSR/BSR/CSTF/SDL/our methods, and

RMSE results along spectra for all methods are shown from

top to bottom. The 16-th band for all scenes is shown. The

error images are the average absolution errors between the

ground truth and the recovered results across spectra. The

results of SDL is much close to our method in terms of Table

2, but the accuracy of SDL relies on the similarity between

training and testing set. For example, the book scene in the

Harvard dataset is restored much worse compared with all

other methods, for there is no similar scene in the training

set. The HSI super-resolution results from our method are

consistently more accurate for all scenes, which verifies that

our method can provide higher spatial accuracy. The RMSE

results along spectra for all methods show that the results

1http://www.maxmax.com/spectral response.htm
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Figure 4. Visual quality comparison on six typical scenes in HSI datasets. The ground truth, the error map for NSSR/BSR/CSTF/SDL/our

results, and RMSE results along spectra for all methods are shown from top to bottom.

of our method are much closer to the ground truth in most

cases, which demonstrates that our approach obtains higher

spectral fidelity.

5.3. Evaluation on CSR Optimization

Due to the space limitation, we only show the CSR op-

timization results on the ICVL dataset. To obtain an opti-

mal CSR for improved HSI super-resolution, we first use

a convolutional layer under nonnegative sparsity constraint

to select the optimal CSR in the training set of ICVL. As

(a) [23] (b) [25]

Figure 5. The selected optimal CSR by our methods on three HSI

datasets. The largest value means the optimal CSR in the CSR

dataset which is consistent with the best one determined by ex-

haustive search in Figure 2.
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Figure 6. The best and worst CSRs from both CSR datasets and the designed CSR under ICVL training set.

Table 3. RMSE, SSIM, and SAM results for different CSR on

ICVL dataset.
CSRs RMSE SSIM ERGAS SAM

Best in [23] 0.9267 0.9933 0.0511 0.7801

Worst in [23] 1.1472 0.9918 0.0565 0.8808

Best in [25] 0.9481 0.9933 0.0495 0.7954

Worst in [25] 1.2117 0.9912 0.0578 0.9218

Optimal 0.9212 0.9934 0.0500 0.7802

shown in Figure 5, the largest value means the optimal CSR

in the CSR dataset and our method can effectively select the

optimal CSR, which is consistent with the best one deter-

mined by exhaustive search in Figure 2. The first to fourth

rows of Table 3 are the best and worst results under differ-

ent CSRs in [23, 25], respectively. Besides, we also design

the CSR as three convolutional kernels to optimize the CSR

in the CNN-based architecture. The corresponding results

by training and testing in the ICVL dataset are shown in

the fifth row of Table 3. The corresponding curves of these

CSRs are provided in Figure 6. It can be seen that HSI

super-resolution results with selected best and designed op-

timal CSRs significantly better than that with worst CSRs.

The performance under the designed CSR is better than the

selected best one. Besides, the selected best and designed

optimal CSRs have the similar appearance (e.g. the higher

sensitivity on the longer wavelength compared with worst

one) and are much different from worst ones. It implies the

effectiveness of the CSR optimization and provides a guid-

ance for the CSR design of RGB cameras used for the HSI

super-resolution.

5.4. Real Images

To further evaluate the effectiveness of our method, we

set up a real hybrid camera system to capture the real im-

ages. It has a hyperspectral camera (EBA Japan NH-7) and

a high resolution RGB camera (Nikon D5), as shown in Fig-

ure 7a. A cartoon scene is used for test. The captured RGB

image is shown in Figure 7b, and its CSR is shown in Fig-

ure 7c. Figure 7d shows the low resolution HSI at 600 nm,

and its corresponding restored high resolution result by our

method is shown in Figure 7e. Figure 7f provides the re-

covered spectra for a randomly selected red area in the real

scene. It can approximate the ground truth well. These

convincingly demonstrate the effectiveness of the proposed

method, especially in the real capture system.

High Resolution
RGB Camera

Low Resolution
HSI Camera

Beam Splitter

(a) (b)

400nm 700nm

(c)

(d) (e)

400nm 700nm

Ground truth

Ours

(f)

Figure 7. Results on real data. (a) The coaxial hybrid camera sys-

tem. (b) The captured RGB image. (c) The CSR of the RGB

camera. (d) The captured low resolution HSI at 600 nm. (e) The

corresponding restored high resolution HSI by our method. (f) The

recovered spectra for a randomly selected red area.

6. Conclusion

In this paper, we have proposed an unsupervised CNN-

based end-to-end method for HSI super-resolution with op-

timal RGB guidance. Our network is easier to train, and

does not rely on hand-crafted priors. We have also recog-

nized that the CSR of the RGB camera is critical in max-

imizing the restoration accuracy, and proposed to optimize

the RGB response via automatic optimal selection or design

in an unified CNN framework. Experimental results showed

that our HSI super-resolution method can provide substan-

tial improvements over the current state-of-the-arts, and the

CSR optimization can further boost the HSI restoration fi-

delity.

Our HSI super-resolution method employed a full three-

channel RGB image and did not take into account the mo-

saic effect of a CCD/CMOS sensor. In addition, the de-

signed optimal CSR has not been realized by optical filters.

We will leave them as our future work.
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