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Abstract

Visual explanation enables humans to understand the de-

cision making of deep convolutional neural network (CNN),

but it is insufficient to contribute to improving CNN perfor-

mance. In this paper, we focus on the attention map for vi-

sual explanation, which represents a high response value as

the attention location in image recognition. This attention

region significantly improves the performance of CNN by

introducing an attention mechanism that focuses on a spe-

cific region in an image. In this work, we propose Attention

Branch Network (ABN), which extends a response-based vi-

sual explanation model by introducing a branch structure

with an attention mechanism. ABN can be applicable to

several image recognition tasks by introducing a branch for

the attention mechanism and is trainable for visual expla-

nation and image recognition in an end-to-end manner. We

evaluate ABN on several image recognition tasks such as

image classification, fine-grained recognition, and multiple

facial attribute recognition. Experimental results indicate

that ABN outperforms the baseline models on these image

recognition tasks while generating an attention map for vi-

sual explanation. Our code is available 1.

1. Introduction

Deep convolutional neural network (CNN) [1, 17] mod-

els have been achieved the great performance on various

image recognition tasks [25, 9, 7, 34, 8, 12, 18]. How-

ever, despite CNN models performing well on such tasks,

it is difficult to interpret the decision making of CNN in

the inference process. To understand the decision mak-

ing of CNN, methods of interpreting CNN have been pro-

posed [39, 41, 26, 4, 24, 3, 22].

“Visual explanation” has been used to interpret the de-

cision making of CNN by highlighting the attention loca-

1https://github.com/machine-perception-robotics

-group/attention_branch_network
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Figure 1. Network structures of class activation mapping and pro-

posed attention branch network.

tion in a top-down manner during the inference process.

Visual explanation can be categorized into gradient-based

or response-based. Gradient-based visual explanation typ-

ically use gradients with auxiliary data, such as noise [4]

and class index [24, 3]. Although these methods can inter-

pret the decision making of CNN without re-training and

modifying the architecture, they require the backpropaga-

tion process to obtain gradients. In contrast, response-

based visual explanation can interpret the decision mak-

ing of CNN during the inference process. Class activation

mapping (CAM) [41], which is a representative response-

based visual explanation, can obtain an attention map in

each category using the response of the convolution layer.

CAM replaces the convolution and global average pool-

ing (GAP) [20] and obtains an attention map that include

high response value positions representing the class, as

shown in Fig. 1(a). However, CAM requires replacing the

fully-connected layer with a convolution layer and GAP,

thus, decreasing the performance of CNN.

To avoid this problem, gradient-based methods are of-
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ten used for interpreting the CNN. The highlight location

in an attention map for visual explanation is considered an

attention location in image recognition. To use response-

based visual explanation that can visualize an attention map

during a forward pass, we extended a response-based visual

explanation model to an attention mechanism. By using the

attention map for visual explanation as an attention mech-

anism, our network is trained while focusing on the impor-

tant location in image recognition. The attention mecha-

nism with a response-based visual explanation model can

simultaneously interpret the decision making of CNN and

improve their performance.

Inspired by response-based visual explanation and at-

tention mechanisms, we propose Attention Branch

Network (ABN), which extends a response-based visual

explanation model by introducing a branch structure with an

attention mechanism, as shown in Fig 1(b). ABN consists of

three components: feature extractor, attention branch, and

perception branch. The feature extractor contains multiple

convolution layers for extracting feature maps. The atten-

tion branch is designed to apply an attention mechanism

by introducing a response-based visual explanation model.

This component is important in ABN because it generates

an attention map for the attention mechanism and visual ex-

planation. The perception branch outputs the probabilities

of class by using the feature and attention maps to the con-

volution layers. ABN has a simple structure and is train-

able in an end-to-end manner using training losses at both

branches. Moreover, by introducing the attention branch to

various baseline model such as ResNet [9], ResNeXt [34],

and multi-task learning [27], ABN can be applied to several

networks and image recognition tasks.

Our contributions are as follows:

• ABN is designed to extend a response-based visual ex-

planation model by introducing a branch structure with

an attention mechanism. ABN is the first attempt to

improve the performance of CNN by including a vi-

sual explanation.

• ABN is applicable to various baseline models such as

VGGNet [14], ResNet [9], and multi-task learning [27]

by dividing a baseline model and introducing an atten-

tion branch for generalizing an attention map.

• By extending the attention map for visual explana-

tion to attention mechanism, ABN simultaneously im-

proves the performance of CNN and visualizes an at-

tention map during forward propagation.

2. Related work

2.1. Interpreting CNN

Several visual explanation, which highlight the attention

location in the inference process, have been proposed [30,

39, 41, 26, 13, 4, 24, 3, 22]. There two types of visual expla-

nation: gradient-based visual explanation, which uses a gra-

dient and feed forward response to obtain an attention map,

and response-based visual explanation, which only uses the

response of a feed forward propagation. With gradient-

based visual explanation, SmoothGrad [24] obtains sensi-

tivity maps by adding noise to the input image iteratively

and takes the average of these sensitivity maps. Guided

backpropagation [13] and gradient-weighted class activa-

tion mapping (Grad-CAM) [4, 3], which are gradient-based

visual explanation, have been proposed. Guided backpropa-

gation and Grad-CAM visualize an attention map using pos-

itive gradients at a specific class in backpropagation. Grad-

CAM and guided backpropagation have been widely used

because they can interpret various pre-trained models using

the attention map of a specific class.

Response-based visual explanation visualizes an atten-

tion map using the feed forward response value from a

convolution or deconvolution layer. While such models

require re-training and modifying a network model, they

can directly visualize an attention map during forward pass.

CAM [41] can visualize an attention maps for each class us-

ing the response of a convolution layer and the weight at the

last fully-connected layer. CAM performs well on weakly

supervised object localization but not as well in image clas-

sification due to replacing fully-connected layers with con-

volution layers and passing through GAP.

We constract ABN by extending the CAM, which can vi-

sualize an attention map for visual explanation in feed for-

ward propagation, to an attention mechanism. CAM is eas-

ily compatibles with an attention mechanism that directly

weights the feature map. In contrast, gradient-based visual

explanation is not compatible with ABN because it requires

the back propagation process to obtain the gradients. There-

fore, we use CAM as the attention mechanism for ABN.

2.2. Attention mechanism

Attention mechanisms have been used in computer vi-

sion and natural language processing [19, 15, 32, 12]. They

have been widely used in sequential models [15, 36, 37,

2, 31] with recurrent neural networks and long short term

memory (LSTM) [10]. A typical attention model on se-

quential data has been proposed by Xu et al. [15]. The

attention mechanism of their model is based on two types

of attention mechanisms: soft and hard. The soft attention

mechanism of Xu et al. model is used as the gate of LSTM,

and image captioning and visual question answering have

been used [36, 37]. Additionally, the non-local neural net-

work [33], which uses the self-attention approach, and the

recurrent attention model [21], which controls the attention

location by reinforcement learning, have been proposed.

The recent attention mechanism is also applied to single

image recognition tasks [32, 12, 6]. Typical attention mod-
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Figure 2. Detailed structure of Attention Branch Network.

els on a single image are residual attention network [32] and

squeeze-and-excitation network (SENet) [12]. The resid-

ual attention network includes two attention components,

i.e., a stacked network structure that consists of multiple

attention components, and attention residual learning that

applies residual learning [9] to an attention mechanism.

SENet includes a squeeze-and-excitation block that con-

tains a channel-wise attention mechanism introduced for

each residual block.

ABN is designed to focus on the attention map for vi-

sual explanation that represents the important region in im-

age recognition. Previous attention models extract a weight

for an attention mechanism using only the response value

of the convolution layers during feed forward propagation

in an unsupervised learning manner. However, ABN eas-

ily extracts the effective weight for an attention mechanism

in image recognition by generating the attention map for

visual explanation on the basis of response-based visual ex-

planation in a supervised learning manner.

3. Attention Branch Network

As mentioned above, ABN consists of three modules:

feature extractor, attention branch, and perception branch,

as shown in Fig. 1. The feature extractor contains multiple

convolution layers and extracts feature maps from an input

image. The attention branch outputs the attention location

based on CAM to an attention map by using an attention

mechanism. The perception branch outputs the probability

of each class by receiving the feature map from the feature

extractor and attention map.

ABN is based on a baseline model such as VGGNet [14]

and ResNet [9]. The feature extractor and perception branch

are constructed by dividing a baseline model between a spe-

cific layer. The attention branch is constructed after feature

extractor on the basis of the CAM. ABN can be applied to

several image recognition tasks by introducing the attention

branch. We provide ABN for the several image recognition

tasks such as image classification, fine-grained recognition,

and multi-task learning.

3.1. Attention branch

CAM has a K × 3 × 3 convolution layer, GAP, and,

fully-connected layer as last the three layers, as shown

in Fig. 1(a). Here, K is the number of categories, and

“K×3×3 convolution layer” means a 3×3 kernel with K

channels at the convolution layer. The K×3×3 convolution
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layer outputs a K × h × w feature map, which represents

the attention location for each class. The K × h × w fea-

ture map is down-sampled to a 1 × 1 feature map by GAP

and outputs the probability of each class by passing through

the fully-connected layer with the softmax function. When

CAM visualizes the attention map of each class, an atten-

tion map is generated by multiplying the weighted sum of

the K × h × w feature map by the weight at the last fully-

connected layer.

CAM replaces fully-connected layers with 3 × 3 con-

volution layers. This restriction is also introduced into the

attention branch. The fully-connected layer that connects a

unit with all units at the next layer negates the ability to lo-

calize the attention area in the convolution layer. Therefore,

if a baseline model contains a fully-connected layer, such as

VGGNet, the attention branch replaces that fully-connected

layer with a 3 × 3 convolution layer, similar with CAM, as

shown at the top of Fig. 2(b) . ResNet models with ABN are

constructed from the residual block at the attention branch,

as shown at the bottom of Fig. 2(b). We set the stride of the

first convolution layer at the residual block as 1 to maintain

the resolution of the feature map.

To generate an attention map, the attention branch builds

a top layer based on CAM, which consists of a convolution

layer and GAP. However, CAM cannot generate an atten-

tion map in the training process because the attention map

is generated using the feature map and weight at a fully-

connected layer after training. To address this issue, we

replace the fully-connected layer with a K × 1 × 1 con-

volution layer, as with CAM. This K × 1 × 1 convolution

layer is imitated at the last fully-connected layer of CAM in

a feed forward processing. After the K× 1× 1 convolution

layer, the attention branch outputs the class probability by

using the response of GAP with the softmax function. Fi-

nally, the attention branch generates an attention map from

the K × h× w feature map. Then, to aggregate the K fea-

ture maps, these feature maps are convoluted by a 1× 1× 1
convolution layer. By convoluting with a 1 × 1 × 1 kernel,

1× h× w feature map is generated. We use the 1× h× w

feature map normalized by the sigmoid function as the at-

tention map for the attention mechanism.

3.2. Perception branch

The perception branch outputs the final probability of

each class by receiving the attention and feature maps from

the feature extractor. The structure of the perception branch

is the same for conventional top layers from image clas-

sification models such as VGGNet and ResNet, as shown

in Fig. 2(c). First, the attention map is applied to the fea-

ture map by the attention mechanism. We use one of two

types of attention mechanisms, i.e., Eq. 1 and Eq. 2. Here,

gc(xi) is the feature map at the feature extractor, M(xi) is

an attention map, and g′c(xi) is the output of the attention
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Figure 3. ABN for multi-task learning.

mechanism, as shown in Fig. 2(a). Note that {c|1, . . . , C}
is the index of the channel.

g′c(xi) = M(xi) · gc(xi) (1)

g′c(xi) = (1 +M(xi)) · gc(xi) (2)

Equation 1 is simply a dot-product between the attention

and feature maps at a specific channel c. In contrast, Eq. 2

can highlight the feature map at the peak of the attention

map while preventing the lower value region of the attention

map from degrading to zero.

3.3. Training

ABN can be trainable in an end-to-end manner using

losses at both branches. Our training loss function L(xi)
is a simple sum of losses at both branches, as expressed by

Eq. 3.

L(xi) = Latt(xi) + Lper(xi) (3)

Here, Latt(xi) denotes training loss at the attention branch

with an input sample xi, and Lper(xi) denotes training loss

at the perception branch. Training loss for each branch is

calculated by the combination of the softmax function and

cross-entropy in image classification task. The feature ex-

tractor is optimized by passing through the gradients of the

attention and perception branches during back propagation.

If ABN is applied to other image recognition tasks, our

training loss can adaptively change depending on the base-

line model.

3.4. ABN for multi­task learning

ABN with a classification model outputs the atten-

tion map and final class probability by dividing the two

branches. This network design can be applicable to other

image recognition tasks, such as multi-task learning. In this

section, we explain ABN for multi-task learning.
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Conventional multi-task learning has units outputting the

recognition scores corresponding to each task [27]. In train-

ing, the loss function defines multiple tasks using a single

network. However, there is a problem with ABN for multi-

task learning. In image classification, the relation between

the numbers of inputs and recognition tasks is one-to-one.

In contrast, the relation between the numbers of inputs and

recognition tasks of multi-task learning is one-to-many. The

one-to-one relation can be focused on the specific target lo-

cation using a single attention map, but the one-to-many re-

lation cannot be focused on multiple target locations using

a single attention map. To address this issue, we generate

multiple attention maps for each task by introducing multi-

task learning to the attention and perception branches. Note

that we use ResNet with multi-task learning as the baseline

model.

To output multiple attention maps, we design the atten-

tion branch with multi-task learning, as shown in Fig. 3.

First, a feature map at residual block 4 is convoluted by

the T×1×1 convolution layer, and the T×14×14 feature

map is output. The probability score during a specific task

{t|1, . . . , T} is output by applying the 14×14 feature map

at specific task t to GAP and the sigmoid function. In train-

ing, we calculated the training loss by combining the sig-

moid function and binary cross-entropy loss function. We

apply the 14×14 feature maps to the attention maps.

We introduce the perception branch to multi-task learn-

ing. Converting feature map g′tc (x) is first generated using

attention map M t(x) at specific task t and feature map g(x)
at the feature extractor, as shown in Eq. 4 in Sec. 3.2. After

generating feature map g′tc (x), the probability score at spe-

cific task t is calculated on perception branch pper(·), which

outputs the probability for each task by inputting feature

map g′t(x).

g′tc (xi) = M t(xi) · gc(xi) (4)

O(g′tc (xi)) = pper(g
′t
c (xi) ; θ) (5)

This probability matrix of each task O(g′tc (xi)) on the

perception branch consists of T × 2 components defined

two categories classification for each task. The probabil-

ity O
t(g′tc (xi)) at specific task t is used when the percep-

tion branch receives the feature map g′tc (x) that applies the

attention map at specific task t, as shown in Fig. 3. These

processes are repeated for each task.

4. Experiments

4.1. Experimental details on image classification

First, we evaluate ABN for an image classification task

using the CIFAR10, CIFAR100, Street View Home Num-

ber (SVHN) [23], and ImageNet [5] datasets. The input

image size of the CIFAR10, CIFAR100, SVHN datasets is

32×32 pixels, and that of ImageNet is 224×224 pixels. The

Table 1. Comparison of the top-1 errors on CIFAR100 with atten-

tion mechanism.
g(x) g(x) ·M(x) g(x) · (1 +M(x))

ResNet20 31.47 30.61 30.46

ResNet32 30.13 28.34 27.91

ResNet44 25.90 24.83 25.59

ResNet56 25.61 24.22 24.07

ResNet110 24.14 23.28 22.82

number of categories for each dataset is as follows: CI-

FAR10 and SVHN consist of 10 classes, CIFAR100 con-

sists of 100 classes, and ImageNet consists of 1,000 classes.

During training, we applied the standard data augmenta-

tion. For CIFAR10, CIFAR100, and SVHN, the images are

first zero-padded with 4 pixels for each side then randomly

cropped to again produce 32×32 pixels images, and the im-

ages are then horizontally mirrored at random. For Ima-

geNet, the images are resized to 256×256 pixels then ran-

domly cropped to again produce 224×224 pixels images,

and the images are then horizontally mirrored at random.

The numbers of training, validation, and testing images of

each dataset are as follows: CIFAR10 and CIFAR100 con-

sist of 60,000 training images and 10,000 testing images,

SVHN consists of 604,388 training images (train:73,257,

extra:531,131) and 26,032 testing images, and ImageNet

consists of 1,281,167 training images and 50,000 validation

images.

We optimize the networks by stochastic gradient de-

scent (SGD) with momentum. On CIFAR10 and CI-

FAR100, the total number of iterations to update the pa-

rameters is 300 epochs, and the batch size is 256. The to-

tal numbers of iterations to update the networks is as fol-

lows: CIFAR10 and CIFAR100 are 300 epochs, SVHN is

40 epochs, and ImageNet is 90 epochs. The initial learning

rate is set to 0.1, and is divided by 10 at 50 % and 75 % of

the total number of training epochs.

4.2. Image classification

Analysis on attention mechanism We compare the ac-

curacies of attention mechanisms Eq. 1 and Eq. 2. We use

ResNet {20, 33, 44, 56, 110} models on CIFAR100.

Table 1 shows the top-1 errors of attention mechanisms

Eq. 1 and Eq. 2. The g(x) is conventional ResNet. First,

we compare ABN with g(x) · M(x) attention mechanism

at Eq. 1 and conventional ResNet g(x). Attention mech-

anism g(x) · M(x) has suppressed the top-1 errors than

conventional ResNet. We also compare the accuracy of

both g(x) ·M(x) and g(x) · (1 +M(x)) attention mecha-

nisms. Attention mechanism g(x) · (1 +M(x)) is slightly

more accurate than attention mechanism g(x) · M(x). In

residual attention network, which includes the same atten-

tion mechanisms, accuracy decreased with attention mech-

anism g(x) · M(x) [32]. Therefore, our attention map re-
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Table 2. Comparison of top-1 errors on CIFAR10, CIFAR100, SVHN, and ImageNet dataset.

Dataset CIFAR10 CIFAR100 SVHN [23] ImageNet [5]

VGGNet [14] – – – 31.2

VGGNet+BN – – – 26.24∗

ResNet [9] 6.43 24.14∗ 2.18∗ 22.19∗

VGGNet+CAM [41] – – – 33.4

VGGNet+BN+CAM – – – 27.42∗(+1.18)

ResNet+CAM – – – 22.11∗(−0.08)

WideResNet [38] 4.00 19.25 2.42∗ 21.9

DenseNet [11] 4.51 22.27 2.07∗ 22.2

ResNeXt [34] 3.84∗ 18.32∗ 2.16∗ 22.4

Attention [32] 3.90 20.45 – 21.76

AttentionNeXt [32] – – – 21.20

SENet [12] – – – 21.57

VGGNet+BN+ABN – – – 25.55 (−0.69)

ResNet+ABN 4.91 (−1.52) 22.82 (−1.32) 1.86 (−0.32) 21.37 (−0.82)

WideResNet+ABN 3.78 (−0.22) 18.12 (−1.13) 2.24 (−0.18) –

DenseNet+ABN 4.17 (−0.34) 21.63 (−0.64) 2.01 (−0.06) –

ResNeXt+ABN 3.80 (−0.04) 17.70 (−0.62) 2.01 (−0.15) –

SENet+ABN – – – 20.77 (−0.80)

∗ indicates results of re-implementation accuracy

sponds to the effective region in image classification. We

use attention mechanism g(x) · (1 +M(x)) at Eq. 2 as de-

fault manner.

Accuracy on CIFAR and SVHN Table 2 shows the

top-1 errors on CIFAR10/100, SVHN, and ImageNet. We

evaluate these top-1 errors using various baseline models,

CAM, and ABN regarding image classification. These er-

rors are an original top-1 error at referring paper [14, 9,

41, 38, 11, 34, 32, 32, 12] or top-1 errors of our model,

and the ’∗’ indicates the results of re-implementation ac-

curacy. The numbers in brackets denote the difference

in the top-1 errors from the conventional models at re-

implementation. On CIFAR and SVHN, we evaluate the

top-1 errors by using the following ResNet models as fol-

lows: ResNet (depth=110), DenseNet (depth=100, growth

rate=12), Wide ResNet (depth=28, widen factor=4, drop

ratio=0.3), ResNeXt (depth=28, cardinality=8, widen fac-

tor=4). Note that ABN is constructed by dividing a ResNet

model at residual block 3.

Accuracies of ResNet, Wide ResNet, DenseNet and

ResNeXt are improved by introducing ABN. On CIFAR10,

ResNet and DenseNet with ABNs decrease the top-1 errors

from 6.43 % to 4.91 % and 4.51 % to 4.17 %, respectively.

Additionally, all ResNet models are decrease the top-1 er-

rors by more 0.6 % on CIFAR100.

Accuracy on ImageNet We evaluate the image clas-

sification accuracy on ImageNet as shown in Table 2

in the same manner as for CIFAR10/100 and SVHN.

On ImageNet, we evaluate the top-1 errors by us-

ing the VGGNet (depth=16), ResNet (depth=152), and

SENet (ResNet152 model). First, we compare the top-

1 errors of CAM. The performance of CAM slightly

decreased with a specific baseline model because of

the removal of the fully-connected layers and adding

a GAP [41]. Similarly, the performance on VG-

GNet+BatchNormalization (BN) [29] with CAM decreases

even in re-implementation. In contrast, the performance of

ResNet with CAM is almost the same as that of baseline

ResNet. The structure of the ResNet model that contains

GAP and a fully-connected layer as the last layer resembles

that in CAM. ResNet with CAM can be easily constructed

by stacking on the K × 1 × 1 convolution layer at the last

residual block, which sets the stride to 1 at the first convo-

lution layer. Therefore, it is difficult to decrease the perfor-

mance of ResNet with CAM due to removal of the fully-

connected layer and adding GAP. On the other hand, ABN

outperforms conventional VGGNet and CAM and performs

better than conventional ResNet and CAM.

We compare the accuracy of a conventional attention

models. By introducing the SE modules to ResNet152,

SENet reduces the top-1 errors from 22.19% to 21.90%.

However, ABN reduces the top-1 errors from 22.19 %
to 21.37%, indicating that ABN is more accurate than

SENet. Moreover, ABN can introduce the SENet in paral-

lel. SENet with ABN reduces the top-1 errors from 22.19 %
to 20.77 % compared to the ResNet152. Residual attention

network results in the same amount of top-1 errors from

the size of the input image, which is 224 × 224, as fol-
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GT : ‘Violin’

GT : ‘Cliff’

‘Violin’ : 0.93

‘Cliff’ : 0.98

‘Violin’ : 0.93

‘Cliff’ : 0.99

Original image Grad-CAM CAM ABN

‘Violin’ : 0.97

‘Cliff’ : 0.97

GT : ‘Australian_terrier’ ‘Seat_belt’ : 0.66 ‘Seat_belt’ : 0.58 ‘Australian_terrier’ : 0.99

1.0

0.0

High

Low

Figure 4. Visualizing high attention area with CAM, Grad-CAM,

and our ABN. CAM and Grad-CAM are visualized attention maps

at top-1 result.

Table 3. Comparison of car model and maker accuracy on Comp-

Cars dataset

task model [%] maker [%]

VGG16 85.9 90.4

ResNet101 90.2 90.1

VGG16+ABN 90.7 92.9

ResNet101+ABN 97.1 98.1

lows: ResNet is 21.76%, and ResNeXt is 21.20%. There-

fore, ResNet152+SENet with ABN indicates more accurate

than these residual attention network models.

Visualizing attention maps We compare the attention

maps visualized using Grad-CAM, CAM, and ABN. Grad-

CAM generates an attention map by using ResNet152 as

a baseline model. CAM and ABN are constructed using

ResNet152 as a baseline model. Figure. 4 shows the atten-

tion maps for each model on ImageNet dataset.

This Fig. 4 shows that Grad-CAM, CAM and ABN high-

lights a similar region. For example in the first column in

Fig. 4, these models classify the “Violin”, and highlight the

“Violin” region on the original image. Similarly, they clas-

sify “Cliff” in the second column and highlight the “Cliff”

region. For the third column, this original image is a typ-

ical example because multiple objects, such as “Seat belt”

and “Australian terrier”, are included. In this case, Grad-

CAM (conventional ResNet152) and CAM failes, but ABN

performs well. When visualizing the attention maps in the

third column, the attention map of ABN highlights each ob-

ject. Therefore, this attention map can focus on a specific

region when multiple objects are in an image.

Original image

Nissan Nissan GT-R

GallardoLamborghini

Maker recognition Model recognition

Benz C Class estateBenz

Figure 5. Visualizing attention map on fine-grained recognition.

Original ResNet101 Before applying attention map After applying attention mapConventional ResNet101 Before applying attention map After applying attention map

Figure 6. Comparison of distribution maps at residual block 4 by

t-SNE. Left : distribution of baseline ResNet101 model. Center

and Right : distribution of ABN. Center did not apply the atten-

tion map.

4.3. Fine­grained recognition

We evaluate the performance of ABN for the fine-

grained recognition on the comprehensive cars (CompCars)

dataset [35], which has 36,451 training images and 15,626

testing images with 432 car models and 75 makers. We use

VGG16 and ResNet101 as baseline model and optimized

these models by SGD with momentum. The total number

of update iterations is 50 epochs, and the mini-batch size

is 32. The learning rate starts from 0.01 and is multiplied

by 0.1 at 25 and 35 epochs. The input image is resized to

323×224 pixels. The image size is calculated by taking the

average of the bounding box aspect ration from the training

data. This resizing process prevents the collapse of the car

shape.

Table 3 shows the car model and maker recognition ac-

curacy on the CompCars dataset. The car model recognition

accuracy of ABN improves by 4.9 and 6.2 % with VGG16

and ResNet101, respectively. Moreover, maker recognition

accuracy improves by 2.0 and 7.5 %, respectively. These

results indicate that ABN is also effective for fine-grained

recognition. We visualize the attention maps for car model

or maker recognition, as shown in Fig. 5. From these visu-

alizing results, training and testing images are the same for
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Eyeglasses SideburnsWearing_Hat Wavy_hair Male SmilingOriginal image

Original image

Pale_skin

Smiling Wearing_necklace Wealing_Lipstick Young High_cheakbones Blond_HairWearing_necktie

0.99 0.990.99 0.99 0.99 0.27Score

Score

0.00

0.99 0.84 0.99 0.99 0.99 0.000.00

Figure 7. Visualizing attention maps on multiple facial attributes recognition. These scores are final recognition scores at the perception

branch.

Table 4. Comparison of multiple facial attribute recognition accu-

racy on CelebA dataset

Method Average of accuracy [%] Odds

FaceTracer [16] 81.13 40/40

PANDA-l [40] 85.43 39/40

LNet+ANet [42] 87.30 37/40

MOON [28] 90.93 29/40

ResNet101 90.69 27/40

ABN 91.07 –

car model and maker recognition, however, our attention

maps differ depending on the recognition task.

We compare the feature representations of the

ResNet101 and ResNet101 with ABN. We visualize

distributions by t-distributed stochastic neighbor embed-

ding (t-SNE) [30] and analyze the distributions. We use

the comparison feature maps at the final layer on residual

block 4. Figure 6 shows the distribution maps of t-SNE.

We use 5,000 testing images on the CompCars dataset.

The feature maps of ResNet101 and the feature extractor

in the attention branch network are clustered by car pose.

However, the feature map applying the attention map is

split distribution by car pose and detail car form.

4.4. Multi­task Learning

For multi-task learning, we evaluate for multiple fa-

cial attributes recognition using the CelebA dataset [42],

which consists of 202,599 images (182,637 training im-

ages and 19,962 testing images) with 40 facial attribute la-

bels. The total number of iterations to update the parame-

ters is 10 epochs, and the learning rate is set to 0.01. We

evaluate the accuracy rate using FaceTracer [16], PANDA-

l [40], LNet+ANet [42], mixed objective optimization net-

work (MOON) [28], and ResNet101.

Table 4 shows that ABN outperforms all conventional

methods regarding the average recognition rate and number

of facial attribute tasks. Note that the numbers in the third

column in Table 4 are the numbers of winning tasks when

we compare the conventional models with ABN for each fa-

cial attribute. The accuracy of a specific facial attribute task

is described in the appendix. When we compare ResNet101

and ABN, ABN is 0.38% more accurate. Moreover, the ac-

curacy of 27 facial tasks is improved. ABN also performs

better than conventional facial attribute recognition models,

i.e., FaceTracer, PANDA-l, LNet+ANet, MOON. ABN out-

performs these models for difficult tasks such as “arched

eyebrows”, “pointy nose”, “wearing earring”, and “wearing

necklace”. Figure 7 shows the attention map of ABN on

CelebA dataset. These attention maps highlights the spe-

cific locations such as mouth, eyes, beard, and hair. These

highlight locations correspond to the specific facial task, as

shown in Fig. 7. It is conceivable that these highlight loca-

tions contributed to performance improvement of ABN.

5. Conclusion

We propose an Attention Branch Network, which ex-

tends a response-based visual explanation model by intro-

ducing a branch structure with an attention mechanism.

ABN can be simultaneously trainable for visual explanation

and improving the performance of image recognition with

an attention mechanism in an end-to-end manner. It is also

applicable to several CNN models and image recognition

tasks. We evaluated the accuracy of ABN for image clas-

sification, fine-grained recognition, and multi-task learning,

and it outperforms conventional models for these tasks. We

plan to apply ABN to reinforcement learning that does not

include labels in the training process.
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