
Cross Domain Model Compression by Structurally Weight Sharing

Shangqian Gao1, Cheng Deng2, and Heng Huang∗1,3

1Electrical and Computer Engineering Department, University of Pittsburgh, PA, USA
2School of Electronic Engineering, Xidian University, Xi’an, Shaanxi, China

3JD Digits
shg84@pitt.edu, chdeng.xd@gmail.com, heng.huang@pitt.edu

Abstract

Regular model compression methods focus on RGB in-

put. While cross domain tasks demand more DNN models,

each domain often needs its own model. Consequently, for

such tasks, the storage cost, memory footprint and compu-

tation cost increase dramatically compared to single RGB

input. Moreover, the distinct appearance and special struc-

ture in cross domain tasks make it difficult to directly ap-

ply regular compression methods on it. In this paper, thus,

we propose a new robust cross domain model compression

method. Specifically, the proposed method compress cross

domain models by structurally weight sharing, which is

achieved by regularizing the models with graph embedding

at training time. Due to the channel wise weights sharing,

the proposed method can reduce computation cost without

specially designed algorithm. In the experiments, the pro-

posed method achieves state-of-the-art results on two di-

verse tasks: action recognition and RGB-D scene recogni-

tion.

1. Introduction

In recent years, Convolution Neural Networks (CNNs)

have become very popular in many related fields, for in-

stance, image classification [3, 23] , action recognition [37,

4] , self-driving cars [1], and so on. However, as CNNs go

deeper and deeper [10, 14], the memory footprint and com-

putational cost have increased dramatically, making it im-

practical to deploy on platform with limited resources such

as mobile phone and embedded device. To resolve such

problem, countless efforts have been made [8, 43, 7, 17].

These methods for CNN model compression can be sepa-

rated to four categories: pruning [8], sparsity induced reg-

∗Corresponding Author. S. Gao, H. Huang were partially supported

by U.S. NSF IIS 1836945, IIS 1836938, DBI 1836866, IIS 1845666, IIS

1852606, IIS 1838627, IIS 1837956.

Single domain 
compression

Performance

Compression
rate

Single domain 
compression

Performance

Compression
rate

Cross domain 
weights sharing

Figure 1: A demonstration of difference between our

method and single domain compression method. Upper fig-

ure shows that when it comes to cross domain compression,

simply using regular compression method won’t achieve

satisfactory trade-off between performance and compres-

sion rate. Lower figure shows that sharing weights across

domain can achieve good result.

ularization [43], weight quantization [7], and low rank fac-

torization [17].

Although compression techniques have been widely de-

veloped for RGB input. Cross domain applications are sel-

dom considered for applying compression algorithms. De-

spite little attention is given on cross domain tasks, the

memory cost and computation demand are even higher than

single RGB domain. Popular cross domain applications

like RGB-D scenes recognition [6], action recognition [37],

cross domain retrieval [20, 25] etc, usually use two or more

DNN models to collect domain specific information from

different sources. Thus the storage cost, memory footprint

and computation cost are at least two times higher than sin-

gle RGB task. As a result, it is worthy to explore how to get

compact models for cross domain tasks.

8973



In cross domain tasks, the distinct spatial structure and

appearance among different data sources often prohibit di-

rectly using mainstream compression methods. Indeed,

when applied on cross domain tasks, mainstream compres-

sion methods have many drawbacks. Cross domain models

are extremely sensitive to channel wise pruning. The hyper-

parameter search is more difficult for sparsity induced meth-

ods. Furthermore, mainstream compression methods can’t

utilize underlying cross domain relationships to achieve bet-

ter compression rate.

To tackle above problems, we propose a new cross do-

main compression method which is robust to hyperparame-

ter settings and can utilize cross domain relationships for

better model compression. In the proposed method, the

weights are structurally shared across domains. To achieve

structured weight sharing, cross domain models are trained

with graph embedding regularization. After training com-

plete, the weights are clustered based on intermediate fea-

ture similarity graph. In the end, the cross domain models

are fine-tuned to get final result.

The main contribution of this paper can be summarized

to three aspects:

1. We identified the difficulties of cross domain compres-

sion when using regular sparsity induced methods as

well as pruning algorithms.

2. We proposed a new method specially tailored for cross

domain compression by using graph embedding as a

constraint at training time. Proposed method is robust

to hyperparameter tuning and it can naturally achieve

computation cost reduction.

3. Proposed method can achieve the best results on two

diverse tasks (action recognition and scene recogni-

tion) compared to other methods.

2. Related Works

The related work for this paper can be separated into two

different perspectives, the first part is related to model com-

pression, and the second part is about cross domain tasks.

2.1. Model Compression

Pruning and weight sharing methods are most related to

our method. Thus, we mainly focused on these algorithms.

For weight sharing, there is a group of algorithms [33,

7, 16, 34, 50] studying how to clustering the scalar values

of weights into several clusters. This kind of algorithms is

also known as quantization. One of the earliest works [7]

which combines quantization and hamming coding comes

from this category. With weight quantization, the weights

can be reduced to at most 1 bit binary value [15] from 32-

bits float point numbers. Many works show that quantizing

weights to 8-bits [49] often won’t hurt the performance. A

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) visualization of weights cor-

relation

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) visualization of features cor-

relation

Figure 2: (a) is the weights correlation of cross domain

MNIST experiment. (b) is the feature correlation of cross

domain MNIST experiment. From (a), (b), we can see that

model trained with GrOWL can’t capture the cross domain

information in inputs.

series of less popular approaches is about structured weight

sharing. Unlike quantization, structured weight sharing fo-

cus on finding the structure level similarity across chan-

nels or filters. Learning to share [47] belongs to this cat-

egory, which aims to find similarities across input chan-

nels by using a regularization term called group weighted

order lasso (GrOWL) [31]. WSNet [21] tries to create a

shared filter bank instead of finding similarities. In audio

classification tasks, WSNet can achieve state-of-the-art re-

sult. Our method for cross domain compression is close re-

lated to these methods. Despite the similarity between our

method and structured weight sharing methods, our method

is a fully weight-sharing approach unlike Learning to Share,

and the shared filter banks is learned during training, which

is also different with the pre-designed filter bank in WSNet.

For pruning weights, numerous researches [51, 26, 8, 13,

11] have shown that removing a large portion of connec-

tions or neurons won’t cause significant performance drop.

Pruning algorithms often seek certain ways to introduce a

criterion for evaluating the relative importance of channel,

filter or individual weight. Then, such criterion is used

for pruning, where least important weights can be pruned.

Sparsity induced methods [43, 47, 28] can be regarded as

a similar methods compared to pruning. In [43], group

lasso are used as a regularization at training time. After the

weights are close to zero, it can be safely pruned from the

network. But using sparsity constraints often results in near

zero solutions, some works [44] argue that small weights

are in fact important for preserving performance. Some

data-driven pruning methods [13] can avoid this problem

by designing the criterion based on the intermediate feature

maps. Other than data-driven approaches, certain optimiza-

tion methods [47] for sparsity constraints can alleviate this

problem too. From another perspective, the goal of pruning

algorithm is to reduce the unique weights in the model and

remove the others. Our method have the same goal here,

however, we don’t remove other weights, we make them

8974



share the same channel.

Besides weight pruning and sharing, other popular meth-

ods include matrix factorization [35], knowledge distilla-

tion [12, 45, 22], and variational inference approaches [29,

27].

2.2. Cross Domain Applications

In this paper, we focus on two types of cross domain

tasks, the first one is two-stream action recognition, the sec-

ond is RGB-D scene classification.

One of the most popular methods regarding action recog-

nition is two-stream CNNs. After [37] proposed a method

that uses RGB and stacked optical flow frames as ap-

pearance and motion information respectively, this kind of

methods gets more and more attentions [42, 5]. Our cross

domain compression framework is based on this series of

works, because the architecture of these kind of methods

are close to image classification task, which makes it possi-

ble to apply numerous compression methods on such meth-

ods. Another reason to choose two-stream methods is that

RNN based algorithms [4] for action recognition rely on

the features or outputs from corresponding RGB or flow

CNN models and most memory usage and computation cost

come from CNN part. Other action recognition methods

like C3D [19], 3D-resnet [9] use 3-D convolution kernels to

learn spatial and temporal information together. But exist-

ing compression techniques are harder to be applied on 3D

CNN.

Scene classification is one of the basic problems in com-

puter vision research. With cost affordable depth senor,

Kinect, depth images can be used in scene classification

task. Compared to RGB images, depth images can provide

additional strong illumination and color invariant geometric

cues. RGB and depth images fusion then become a promis-

ing way for scene classification. In this paper, we consider

score level RGB-D fusion [6, 18], leave the intermediate

feature maps untouched. RGB-D models are also suitable

to apply compression techniques.

3. Method

In this section, we first show that previous weight sharing

methods like Learning to Share [47] can’t utilize underlying

cross domain relationships. Then, we will introduce our

method.

3.1. Learning to Share Revisit

In learning to share [47], they formulate the compression

problem as a regularization problem. Group Lasso related

methods have similar formulation, the regularization term

is different. The formulation can be represented as:

min
θ

L(fθ(x)) +R(θ). (1)

Here, in most classification task L is a cross entropy loss

and R is the regularization term, fθ is a neural network pa-

rameterized by θ. For learning to share, the regularization

term is:

R(θ) =
L
∑

l=1

Nl−1
∑

i=1

λl,i‖θl,i‖, (2)

where θl is the weight of lth layer, and θl ∈
Rwl×hl×Nl−1×Nl . w, h,Nl−1, Nl are the width, height,

number of input channels and number of output channels

in lth layer. The group is predefined along channel dimen-

sion. As we mentioned in section 2,
∑Nl−1

i=1
λli‖θli‖ is a

special regularization term called Group Ordered Weighted

Lasso (GrOWL), which can force sparsity and learn under-

lying correlations among inputs at the same time.

A natural way to extend Learning to Share is to add

GrOWL regularization to cross domain models. We only

consider two domains in our experiments. To verify

whether Learning to Share can learn cross domain corre-

lation within the inputs, we designed a simple task. In this

simple task, some modification are done on MNIST and two

datasets MNIST-Rot (rotation by 45 degrees) and MNIST-

Blur (motion blurred) are created as two toy domains. The

weight correlation is calculated by:

S(i, j) =
θTl,iθl,j

‖θl,i‖2‖θl,j‖2
. (3)

The feature correlation is calculated in Eq. 5.

We use LeNet-5 on each domain. GrOWL is applied

except the first layer and the last layer. In Fig. 2, it

clearly shows that after GrOWL regularization the correla-

tion across weights from different domain model is close to

zero, which indicates that GrOWL can’t utilize underlying

cross domain relationships.

Besides such drawback, hyper-parameter tuning is diffi-

cult and each layer has its own λl.

3.2. Cross Domain Task

To better explain our method, a formal definition of cross

domain task is given. We use same network architecture

on two domains except for the first layer, since inputs may

have different number of channels. A typically DNN layer

can be defined as a function parameterized by its weights,

which can be expressed as: yl = fθl(xl). Without loss

of generality, the model in first domain can be defined as

yA,l = fθA,l
(xA,l). The second model can be defined by

replacing A with B. Suppose the dataset D have m sam-

ples: D = {(xA1
, xB1

, y1), . . . , (xAm
, xBm

, ym)}. Then

the objective function has the form:

min
θA,θB

L(fθA(xAi
), fθB (xBi

)) +R(θA, θB), (4)

where L is cross domain task loss, and R is regularization

loss.

8975



Channel wise 
weight sharing

th layer weights of domain A

th layer weights of domain B

th channel for domain B

th channel for domain A

Fully connected layer weight sharing Convolutional layer channel wise weight sharing

… …

Shared weight 
space…

…

…

…

…

…

…

…

th layer

th layer

Neuron wise 
weight sharing

2.2 2.3

1.3 2.0

1.6 0.5

1.3 0.7

Shared weight space

1.6 1.9

1.8 2.4

0.4 0.6

-1 0.3

Weights

Figure 3: Left figure shows weight sharing in fully connected layers. Right figure shows weight sharing in convolution

layers.

3.3. Graph Embedding as a Regularization

In section 3.1, we argue that Learning to Share is not

sufficient for cross domain tasks not only because they

can’t discover cross domain correlation but also the hyper-

parameter tuning is too time-consuming. Similar argument

can be applied to Group Lasso method. When training

model with GrOWL and Group Lasso, all weights in a layer

often become zeros. If this happens, one have to adjust the

hyper-parameter to train it again.

Hence, to solve these two problems, we aim to compress

model by structured weight sharing. During training, the

model is regularized with graph embedding constraint. Af-

ter the model is fully trained, we cluster the weights ac-

cording to transformed features. If we use fully shared ap-

proach, we won’t suffer from the problem of training insta-

bility mentioned above. Fully shared approach won’t turn

all the weights in a layer to zero.

Algorithm 1 Graph Embedding Regularization

1: input: Middle layer output, xA
l or xB

l , l = 1, . . . , L;

Data set D with (xA
i , x

B
i , yi), i = 1, . . . ,m

2: initialization : fA, fB , RSpectral

3: for epoch = 1 to N

4: xA
t,l = Trim(xA

l )

5: xA
t,l = Trim(xA

l )

6: RSpectral = RSpectral(concate(xA
t,l, x

B
t,l), θs)

7: min
θA,θB

L(fθA(xA), fθB (xB)) +RSpectral

8: end for

9: output: fA, fB , RSpectral

Before introducing graph embedding constraint, we first

show how we represent intermediate features. A naive way

to represent similarity between input channels is to calcu-

late the correlation between input features. Given an input

of lth layer xl ∈ RWl×Hl×Cl , Wl is the width of feature

map and Hl is the height of feature map, Cl is the num-

ber of input channels. Suppose the number of data points

in D is m, the inputs cross all samples can be represented

as Xl ∈ RWl×Hl×Cl×m, this Xl can be reshaped to a 2D

representation X2D
l ∈ RCl×mWlHl . We can represent the

similarity between input channels as below:

Sxl
(i, j) =

X2D
l (i, :)TX2D

l (j, :)

‖X2D
l (i, :)‖2‖X2D

l (j, :)‖2
. (5)

In Eq.5, if input channel i and j is similar, then the inner

product between xl from all samples should be large too.

However, the computation cost is expensive if xl is large.

For example, if l is the 13th layer of VGG-16, and we have

5 × 104 samples, then each vector in X2D
l will have 2.45

million dimensions. The computation cost will prohibit us

to update input feature similarity matrix when training.

To make the update of input feature similarity matrix af-

fordable, we apply average pooling to the feature map to re-

duce the size of it. If the feature map has size W ×H ×C,

then the reduced feature map has size w × h × C, where

wh is much less than WH . The size of feature map can

be further reduced by random sample part of it. By doing

so, the computation of similarity matrix is largely decreased

and we call this operation Trim. For each input xl, trimmed

input feature map xt,l is:

xt,l = Trim(xl). (6)

The similarity calculation is same in Eq. 5 with xl replaced

by xt,l. During training, we replace m with the batch size

8976



b for forward and backward calculation. After we have the

similarity matrix between input channels of a layer, we try

to cluster the weights according to the similarity map. Di-

rectly clustering weights on similarity map can result in per-

formance drop. For this reason, graph embedding can be

used as a constraint. Another reason we can use graph em-

bedding [30, 41] is that it’s well known for clustering on

similarity graph which we already have.

Within the scope of graph embedding, similar formula-

tion from SpectralNet [36], a recent proposed deep spec-

tral clustering method, is used. Spectral clustering can be

inserted into R in Eq. 3 and regularize the complexity of

the model. In below, the detail of graph embedding reg-

ularization is given. As above mentioned, we use trun-

cated input feature map to enable affordable intermediate

layer similarity calculation. The intermediate similarity ma-

trix calculation for cross domains uses Eq.5 by replacing

X2D
l (i, :) = concate(XA,2D

t,l (i, :), XB,2D
t,l (i, :)). ‘concate’

is a simple operation to join two vectors into one vector.

Then, the spectral clustering can be applied on interme-

diate similarity graph. Given a specific layer l, the graph

embedding constraint has such form:

RSpectral =

L
∑

l=1

1

4C2
l

∑

i,j=1:2Cl

Sl(i, j)‖zl,i − zl,j‖
2
2, (7)

where Sl ∈ R2Cl×2Cl is the similarity matrix of lth layer

inputs across two domains, Cl is the number of channels

in input xA
l or xB

l . zl ∈ R2Cl×kl is the output of spectral

clustering, kl is the target number of clusters for layer l. For

spectral clustering, there is an additional constraint on zl:

1

2Cl

zTl zl = I. (8)

And it requires to compute eigendecomposition on Sl to get

zl. However, the eigendecomposition is time-consuming

to compute. Similar to SpectralNet, we use a neural net-

work fsl with a orthogonal layer to approximate the eigen-

decomposition. The orthogonal output is achieved by using

Cholesky decomposition, interested readers can refer to Ap-

pendix B in [36]. By inserting fsl:

zl,i = fsl(X
2D
l (i, :)). (9)

As aforementioned, X2D
l (i, :) = concate(XA,2D

t,l (i, :

), XB,2D
t,l (i, :)). Simply use standard spectral clustering

may cause the unbalance of clusters, which will limit the

capacity of the model. Alternatively, we use normalized

spectral clustering to impose balanced clusters.

RSpectral =

L
∑

l=1

1

4C2
l

∑

i,j=1:2Cl

Sl(i, j)‖
zl,i

di
−

zl,j

dj
‖22,

(10)

Input for th layer

Reduce number of 
input channels

Produce the same 
outputs

Reduced input for th layer

weights for th layer

Reduced weights for th layer

Convolution

Convolution

Shared weights 

Figure 4: Illustration of how to reduce computation cost

for our proposed method. It can be understood as reducing

the number of input channels in feature maps and weights.

Original and reduced version can both produce the same

output.

where di =
∑2Cl

i Sl(i, j). The final objective function for

our method can be expressed as:

min
θA,θB

L(θA, θB) +RSpectral, (11)

where RSpectral and L(θA, θB) are defined in Eq.10 and

Eq.4 separately.

3.4. Weight Sharing

After training the model with objective function Eq. 11,

we are ready to cluster the features according to the zl ∈
R2Cl×kl for each layer. As normal spectral clustering pro-

cess, we use K-means to cluster the features based on zl.

Since we have the clusters of features, it can be used to

guide the clustering of weights. If channels i, j from inter-

mediate features are in the same cluster, weights of channels

i, j will also have the same cluster. The detailed sharing

process is depicted in Fig. 3. Once weight clustering fin-

ished, we fine-tune the model according to clustering result.

Suppose the ith group of weights in layer l have nl,i input

channels, the weights in ith group is replaced by the centers

gl,i of this group. The gradient computation of centers is:

∂L

∂gl,i
=

1

nl,i

∑

θl,j∈Gl,i

∂L

∂θl,j
, (12)

where Gl,i is the set containing all instances in this group.

3.5. Improve Inference Speed

In this work, we mainly focus on compressing the model

instead of reduce computation cost, but we still can achieve

8977



(a) RGB and optical flow frames (b) RGB and depth images

Figure 5: Example of dataset images, (a) is the RGB and

optical flow images within UCF-101 dataset, (b) is the RGB

and depth images from SUN RGB-D dataset

moderate improvement concerning computation cost. It can

be shown that we can reduce the number of channels by a

fraction of Cl

kl
. Unlike WSNet, we don’t need a special de-

signed algorithm to reduce computation cost. The weight

channels in the same group can be replaced by one chan-

nel, and corresponding feature maps can be replaced by one

feature map averaging all feature maps in the group. Such

replacement won’t change the outputs. Details are shown in

Fig. 4.

3.6. Benefit of Cross Domain Sharing

As we described above, one of the benefits of weight

sharing is that it provides a natural way to speed up at in-

ference time. Another advantage of cross domain weight

sharing is it allows larger model capacity compared to any

other single domain compression method. For a specific

layer with input size ninput, if we want a 20× compres-

sion rate, for single model compression, we can only keep

5% of the weights for each model, but for cross domain

weight sharing, we can have 0.1ninput clusters, which is

two times more than single domain compression method.

Notice that weight sharing is key to achieve such result.

The relative larger model capacity is especially important

if required compression rate is extreme.

4. Experiment

We assess the proposed method on three different

datasets with two tasks. We compare our method with a

series of pruning and sparsity induced methods. The prun-

ing algorithms including structured weight pruning [13, 26]

and individual weight pruning [51, 8]. The reason why we

only compare pruning and sparsity induced method is that

these methods are the majority of model compression al-

gorithms. Moreover, quantization methods focus on sin-

gle weight value sharing and can be applied on the basis of

pruning algorithms and the proposed method.

4.1. Implementation Details

Our method and related comparison methods are all im-

plemented in pytorch [32], some of the comparison methods

are based on the implementation of [52]. Sparsity induced

methods are only applied on scene classification task, since

in action recognition task, we can’t find suitable hyper-

parameters for GrOWL or Group Lasso, some of layers

always become zero whether we use proximal gradient or

soft-thresholding as optimization method.

For SUN-RGBD dataset, we train model with graph em-

bedding constraint for 100 epochs with batch size of 128.

SGD with momentum is used as optimizer, momentum is

set to 0.9 and start learning rate is 0.03. Learning rate is de-

cayed by a factor of 0.1 for every 30 epochs. After training

completely, weights sharing are performed as described in

section 3.4. In weight sharing stage, the model is fine-tuned

for 60 epochs with the same optimizer and learning rate is

set as 3× 10−3 with the same scheduler.

For action recognition dataset, the models are trained on

each domain separately with the settings in [42] and five-

crops data augmentation. The models are put together and

trained with graph embedding constraints for 80 epochs

with SGD and momentum 0.9, the start learning rate is

1 × 10−4 and batch size is 32. After clustering, models

are fine-tuned with the same learning rate for 60 epochs.

4.2. Datasets

SUN-RGBD Dataset [39] contains 10,355 RGB and

Depth image pairs captured from different cameras. We

follow the experimental settings in [18]. 19 categories are

kept for our experiments with 4,845 images for training and

4,659 images for testing.

UCF-101 Dataset [40] comprises of realistic videos col-

lected from Youtube. It contains 101 action categories, with

13,320 videos in total (9,537 videos for training, the rest for

testing). UCF-101 split-1 is used for training and testing.

HMDB-51 Dataset [24] contains a total of about 7,000

video clips distributed in a large set of 51 action categories.

Each category contains a minimum of 101 video clips. We

use split-1 in official release of HMDB-51 dataset.

4.3. RGBD Scene Classification

For SUN-RGBD dataset. we follow the same experiment

setting in [18]. HHA images are extracted follows [6]. As

we discussed in Section 3, we calculate average score fu-

sion across two domains. Also class weighted cross entropy

is used as a common practice, the weight for each class is

given by w(t) =
Ncmax−Ncmin

Nt−Ncmin
+τ

, where N(t) is the number

of examples in tth class, cmax is the class with most sam-

ples, cmin is the class with least samples. For both domains,

we use AlexNet pre-trained on Placed365 dataset [48].

In Table 1, we list the network settings for Sun RGB-

D dataset. kA and kB are two different settings for our

method. The setting for GrOWL is the result after train-

ing with GrOWL regularization. The number in the list is

the unique input channels for cross domain models.

8978



Table 1: Network settings for AlexNet [23] on SUN RGB-D

dataset.

Layer original kA kB GrOWL

conv1 6 6 6 6

conv2 128 32 16 12

conv3 384 96 48 12

conv4 784 192 96 21

conv5 512 128 64 72

fc1 18432 1024 512 1037

fc2 8192 512 512 423

fc3 8192 8192 8192 8192

Table 2: Results of SUN RGB-D dataset.

Method Performance Rate

Original 47.32% 1

GrOWL [47] 44.28% 17.6

Ours kA 47.21% 14.8

Ours kB 47.01% 22.8

In Table 2, it can be shown that the performance of

GrOWL is lower than our proposed method by near 3%.

Even though the compression rate of GrOWL is similar to

setting kB of our method. This shows that, for cross do-

main models, sparsity induced method usually gives sub-

optimal solutions for cross domain compression. Further-

more, our method can be regarded as GrOWL without spar-

sity. In this experiment, we give two settings kA and kB for

our method. Though, the compression rate is variant, only

little difference is observed for performance, which shows

that our method is robust against hyper-parameter tuning.

On the other hand, GrOWL is sensitive to hyper-parameter,

the result in Table 2 is achieved by more than ten rounds

of experiments given different hyper-parameter settings in

GrOWL.

4.4. Action Recognition Dataset

For action recognition tasks, during training we combine

two popular methods TSN [42] and two-stream [5]. VGG-

16 is used for action recognition task. As in [5], we use

5-crops data augmentation in training. The optical flow im-

ages are extracted based on [46]. Following TSN, we split a

video into three segments, and random samples RGB frame

for each segment. Once we have the index of RGB frame,

we sample the same index and following 10 frames in hori-

zontal and vertical optical optical flow. The horizontal and

vertical flow images are stacked to a 224× 224× 20 cubic

to feed into optical flow DNN model.

For our method, we set hyperparameter kl = 2Cl

r
. r

is set to 2, 4 or 8 for different settings. For a relative fair

comparison we set the pruning rate (p-rate in Table 4) equal

to 0.3, 0.5 or 0.75 separately.

Table 3: Network settings for VGG-16 [38] of action recog-

nition dataset for proposed method

Layer original kA kB kC

conv1 23 23 23 23

conv2,3 128 32 32 16

conv4,5 256 64 64 16

conv6 to 8 512 128 128 64

conv9 to 13 1024 256 128 64

fc1 50176 1024 512 256

fc2 8192 512 512 256

fc3 8192 8192 8192 8192

Table 4: Network settings for VGG-16 [38] on action recog-

nition dataset for comparison methods.

Layer original p-rate 0.3 p-rate 0.5 p-rate 0.75

conv1 3 3 3 3

conv2,3 64 44 32 16

conv4,5 128 90 64 32

conv6 to 8 256 180 128 64

conv9 to 13 512 358 256 128

fc1 25088 17561 12544 6272

fc2 4096 2867 2048 1024

fc3 4096 4096 4096 4096

In Tables 3 and 4 we list the detail of target network

structure of our method and comparison methods. The ma-

jor difference between Table 3 and Table 4 is that in Table

3, all the settings are for both domains, on the contrary,

4 are only for single domain. For example, in conv2 of

kA, we have 32 unique channels for 128 channels in both

RGB and optical flow models. In conv2 of p-rate 0.5, 32 is

also given here, this is only for RGB or optical flow model,

for both models, at p-rate 0.5, there are 64 unique chan-

nels in weight matrix. Table 5 shows the results for UCF-

101 dataset and HMDB-51 dataset. The number follow-

ing comparison methods is the pruning rate (p-rate) for the

method. For example, ‘prune or not prune 0.5’ means prune

or not prune method at pruning rate of 0.5. Clearly, our

method can achieve the best results (trade off between per-

formance and compression rate) compared two all the other

methods. Morever, individual weight pruning algorithms is

significant better than group weight pruning algorithms (al-

most 10% absolute improvement). Group weight sharing

methods like Apoz [13] and Efficient Network [26] often

suffer from large performance drop (6% to 10% compared

to original) even only with a small fraction of pruning-rate

8979



Table 5: Overall results for action recognition dataset

Method Performance Rate

UCF-101 Dataset

Original 88.52% 1

Prune or not prune 0.5 [51] 87.7% 2

Sensitity [8] 0.5 87.9% 2

Efficient convnet[26] 0.5 78.3% 2

Apoz 0.5 [13] 79.6% 2

Prune or not prune 0.75 [51] 83.8% 4

Sensitity 0.75[8] 77.9% 4

Efficient convnet [26] 0.75 58.9% 4

Apoz 0.75 [13] 69.6% 4

Ours kA 88.21% 12

Ours kB 88.9% 23

Ours kC 87.7% 46

Original 5-crops 90.8% 1

Ours kB 5-crops 91% 23

HMDB51 Dataset

Original 57.51% 1

Apoz 0.3 [13] 53.6% 1.42

Efficient convnet 0.3 [26] 51.8% 1.42

Apoz 0.5 [13] 47.7% 2

Efficient convnet 0.5 [26] 20.8% 2

Ours kB 57.4% 23

Ours kC 56.9% 46

Original 5-crops 59.9% 1

Ours kB 5-crops 59.8% 23

(0.3 or 0.5). These observations are inconsistent with single

RGB model pruning results. At least, at pruning rate 0.3 or

0.5, many algorithms can maintain the performance. There

might be many reasons for this phenomena, the model ca-

pacity required for non-RGB domain might be larger than

RGB domain, thus, pruning some channels may hurt the

performance severely. Another possibility is the difficulty

of the dataset, HMDB-51 is believed to be more difficult

than UCF-101. As a result, it’s not easy to keep perfor-

mance on HMDB-51 dataset.

Another interesting phenomena is that our method are

robust to a set of different hyperparameters. The perfor-

mance starts to drop (less than 1% absolute performance

lost) after a relative high compression rate (46 times). For

5 different settings across three datasets, the largest differ-

ence before and after compression is 0.8%. In setting kB of

UCF-101, our method is better than original by 0.4%. Over-

all speaking, our method is much easier for hyperparameter

searching compared to sparsity induced method, and it can

achieve better trade-off compared to pruning algorithms.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

(a) setting A

� � � � � � � � � � � � � � � � � � � �� �
��

������

������

������

������

������

������

(b) simple constraint

Figure 6: Group size of largest 10 groups in layer conv13

of VGG-16. Setting A, in figure (a), can achieve 88.2%.

Simple constraint in figure (b) can achieve 87.5%. Random

group can achieve 87.3%.

4.5. Study of group size

Our method are further compared with random sharing

and simple similarity constraint. Naively, given a similarity

map Siml at layer l, we define:

Rs =

{

1− Sl(i, j), if Sl(i, j) ≤ t,

Sl(i, j) otherwise.
(13)

This indicates that we push the feature maps and weights

closer if their channel similarity is greater than t. t is set as

0.3. Using such constraint will result in highly unbalanced

group in the compressed model. From Fig. 6, it is obvi-

ous that large and unbalanced group hurt the performance

and make the results close to random sharing. This shows

that one key ingredient for our method is to have balanced

groups.

There are some groups with group size 1 in both do-

mains. This can be regarded as domain private parts which

only captures domain specific information. In domain sepa-

ration networks [2], one can find similar arguments. Result-

ing compressed model can be separate into two parts, do-

main common parts and domain separate parts. Following

this argument, our method can be viewed as an approach to

identify domain common part within cross domain models.

Domain common part is essential for cross domain model

compression, since it can be reused across different domain.

5. Conclusion

In this paper, we solve the problem of model compres-

sion in cross domain settings. To achieve such goal, we use

graph embedding as a regularization for cross domain mod-

els. The weights are structurally shared according to the re-

sults of clustered features. Our method can achieve the state

of the art result on compression rate with little performance

loss on two different tasks. Group size within each layer is

identified to be one of the key elements to the success of our

method.

8980






