
Dynamic Scene Deblurring with Parameter Selective Sharing and

Nested Skip Connections

Hongyun Gao1,2 Xin Tao2 Xiaoyong Shen2 Jiaya Jia1,2

1 The Chinese University of Hong Kong 2 Youtu Lab, Tencent

{hygao,leojia}@cse.cuhk.edu.hk {xintao,dylanshen}@tencent.com

Abstract

Dynamic Scene deblurring is a challenging low-level vi-

sion task where spatially variant blur is caused by many

factors, e.g., camera shake and object motion. Recent s-

tudy has made significant progress. Compared with the

parameter independence scheme [19] and parameter shar-

ing scheme [33], we develop the general principle for con-

straining the deblurring network structure by proposing the

generic and effective selective sharing scheme. Inside the

subnetwork of each scale, we propose a nested skip connec-

tion structure for the nonlinear transformation modules to

replace stacked convolution layers or residual blocks. Be-

sides, we build a new large dataset of blurred/sharp image

pairs towards better restoration quality. Comprehensive ex-

perimental results show that our parameter selective shar-

ing scheme, nested skip connection structure, and the new

dataset are all significant to set a new state-of-the-art in

dynamic scene deblurring.

1. Introduction

Image blur, caused by camera shake, object motion or

out-of-focus, is one of the most common visual artifacts

when taking photos. Image deblurring, i.e., restoring the

sharp image from the blurred one, has been an important

research area since decades ago. Due to the ill-posed na-

ture, particular assumptions are required to model different

types of uniform, non-uniform, and depth-aware blur. Many

natural image priors [1, 27, 2, 35, 36, 21, 22] were proposed

to regularize the solution space and advance the deblurring

research.

Compared with the blur caused by only camera trans-

lation or rotation, dynamic blur is more realistic and also

very challenging since spatially variant blur is the com-

bined effect of multiple factors. Previous dynamic scene

deblurring methods [12, 13, 20] usually rely on an accurate

image segmentation mask to estimate different blur kernels

for corresponding image regions, and employ complex op-

timization methods to restore the latent image. Recently,

learning-based methods were proposed to facilitate the de-

blurring process by either replacing some steps in the tra-

ditional framework [31, 26, 5] or learning the end-to-end

mapping from blurred to latent images [19, 33, 37].

Parameter Selective Sharing Nah et al. [19] first pro-

posed the “coarse-to-fine” deblurring neural network by

progressively restoring the sharp image in a coarse-to-fine

manner. This approach built a deep neural network with

independent parameters for each scale. It does not con-

sider the parameter relation across scales. Tao et al. [33]

advanced a scale-recurrent network to perform deblurring

in different scales by shared parameters. Albeit concise

and compact, this parameter sharing scheme neglects scale-

variant property of features, which are crucial for respective

restoration in each scale.

We believe scale-recurrent structure belongs to a broader

set of parameter selective sharing strategies. The rationale

behind it is that image blur is highly dependent on scale –

large blur in a fine scale could be invisible when the image

is downsampled to coarse scales. Particular modules perfor-

m scale-variant operations and thus cannot be shared, while

others perform similar scale-invariant transform that bene-

fit from shared parameters. We delve deep into this selec-

tive sharing strategy, and elaborate on why specific modules

can or cannot be shared. We also discuss various sharing s-

trategies across and within scales. These findings lead to

the general principle of selective parameter sharing that can

benefit deblurring system design in future.

Nested Skip Connections Skip connection was widely

used in recent CNNs. In ResNet [7] and ResBlocks [19, 17],

the short-term skip connection that adds the input to the out-

put after two or more convolution layers, is the key factor

to produce superior results in object detection, deblurring

and super resolution. With this short-term skip connec-

tion, the gradient-vanishing issue can be largely overcome;

very deep networks can thus be built and optimized eas-

ily. The long-term skip connection, common in encoder-

decoder networks, links feature maps from bottom layers to
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Figure 1. Our encoder-decoder subnetwork includes 3 encoder stages and 3 decoder stages. It has 3 kinds of modules, i.e., feature extraction,

nonlinear transformation and feature reconstruction.

top ones. This scheme allows the information to be back-

propagated more flexibly and pass image details from bot-

tom layers to top ones for better detail reconstruction.

However, we note that both short- and long-term skip

connections do not have intersecting paths since they only

consider the first-order residual learning according to our

analysis in the following subsection. We instead propose a

nested skip connection structure that corresponds to higher-

order residual learning for the transformation modules in

our deblurring network.

Dataset For training deep deblurring networks, sufficien-

t paired blurred/sharp images are essential. Although the

GoPro dataset [19] provides 3,214 pairs, there exist flaws

in a portion of images that may adversely affect network

training. We thus build a larger and higher-quality dataset

towards training better deblurring networks by overcoming

the flaws. It has 5,290 blurred/sharp image pairs follow-

ing the procedures of [19]. We compare the same network

trained with only GoPro dataset and that trained with GoPro

and our dataset together. Experimental results demonstrate

that our dataset is favorably helpful both quantitatively and

qualitatively.

The main contributions of our work are as follows.

• We analyze the parameter strategies for the deblurring

networks and propose a generic principled parameter

selective sharing scheme with both independent and

shared modules for the subnetworks in each scale.

• We propose a nested skip connection structure for the

feature transformation modules in the network, which

corresponds to higher-order residual learning in indi-

vidual transformation modules.

• We establish a larger and higher-quality dataset with

5,290 blurred/sharp image pairs to help network train-

ing. It is publicly available to advance general image

deblurring research.

2. Related Work

In this section, we briefly review dynamic scene deblur-

ring methods, CNN parameter sharing schemes and skip

connection used in network structures.

Dynamic Scene Deblurring After the work of Kim et al.

[12], dynamic scene blurring became a tractable topic for

scenes that are not static and the blur is caused by cam-

era shake and complex object motion. However, the per-

formance of this method highly relies on the accuracy of

motion segmentation. Later, Kim and Lee [13] assumed

that motion is locally linearly varying, and hence proposed

a segmentation-free approach to handle this problem. In

[20], a segmentation confidence map was used to reduce

segmentation ambiguity between different motion regions.

Recently, several methods [31, 5, 19, 33, 37] used deep

learning to better solve the task in terms of restoration qual-

ity and adaptiveness to different situations. Sun et al. [31]

employed a classification CNN to predict blur direction and

strength of a local patch. A dense motion field is obtained

via Markov Random Fields (MRF) from the sparse blur k-

ernel. The final latent image is generated by the non-blind

deblurring method [39]. Gong et al. [5] utilized a fully con-

volutional network to estimate the dense heterogeneous mo-

tion flow from the blurred image and still used the method

of [39] to recover the latent image. Motivated by the tradi-

tional “coarse-to-fine” optimization framework, Nah et al.

[19] proposed a multi-scale deblurring CNN to progressive-

ly restore sharp images in multiple scales in an end-to-end

manner. Tao et al. [33] improved the pipeline to model the

scale-recurrent structure with shared parameters. Zhang et

al. [37] proposed a RNN to model the spatially varying blur

where the pixel-wise weights of the RNN are learned from

a CNN.

CNN Parameter Sharing Despite widely adopted in

temporal and sequential data processing, parameter sharing
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is still a new try for image algorithms. In fact, CNN parame-

ter sharing incorporates large context information but at the

same time maintains the model size. It is effective in tasks

of e.g., object classification [28], scene parsing [23], object

recognition [16], image super resolution [11] and dynam-

ic scene deblurring [33]. Specifically, Socher et al. [28]

used a CNN to first learn translational invariance features

and applied the same network recursively to learn hierarchi-

cal feature representations in a tree structure. Pinheiro and

Collobert [23] proposed a recurrent structure composed of

two or three identical CNNs with shared parameters. Liang

and Hu [16] incorporated recurrent connections into each

convolutional layer to integrate different levels of context

information. Kim et al. [11] utilized a deep recursive layer

in the image super-resolution network to increase receptive

fields. Tao et al. [33] progressively restored the latent image

from coarse to fine scales using a scale-recurrent network.

Skip Connections As the neural networks become deep-

er, the gradient-vanishing issue severely hampers effective

training. Many architectures were proposed to address this

issue. Highway network [29] was among the first to train

very deep networks using bypassing paths. ResNet [7] used

identity mapping to skip one or more layers and enabled

training substantially deeper networks. DenseNet[8] further

connected each layer to every other within a dense module

to propagate all preceding information for succeeding pro-

cessing.

Despite the success in high-level vision tasks, skip con-

nections were also widely used in image processing. In-

put images are often added to the reconstructed ones in

image/video restoration [10, 30, 32, 9], since learning the

residual image through a CNN is much easier than recon-

structing decent output. Further, skip connections were also

used between the internal layers [34, 6, 38] to fully utilize

different levels of features. After the seminal work of U-net

[25], skip connections between the corresponding encoder

and decoder stages were widely used as an effective archi-

tecture for pixel-wise regression in optical flow estimation

[3], image restoration [18] and raindrop removal [24].

3. Proposed Method

As illustrated in Fig. 1, our network is composed of

several stacked encoder-decoder subnetworks, from which

sharp images at different scales are produced and are fed

into the subnetwork in the next scale as input. Different

from stacked ResBlocks in [33], our network consists of 3

kinds of modules to perform different functions, i.e., feature

extraction, nonlinear transformation and feature reconstruc-

tion. Compared with [33], we make better use of parame-

ters and design a new nested skip connection structure for

the nonlinear transformation modules.

Image Pyramid Blurred Patches Sharp Patches

Figure 2. An example of scale-variant and scale-invariant features.

3.1. Parameter Selective Sharing

Although both methods of [19, 33] progressively restore

the sharp images in a coarse-to-fine manner, they utilize dif-

ferent parameter strategies to achieve the objective. The pa-

rameter independence scheme in [19] assigns independent

parameters for each scale. It, however, lacks constraints to

handle different scales. The parameter sharing scheme in

[33] constrains the solution space using shared parameters

in different scales. We consider two aspects regarding the

parameter issue. The first is on what kind of parameters

can be shared across scales. The second issue is whether

the parameters of different modules within one scale can be

shared or not.

Parameter Independence Fig. 2 shows a typical blurred

image in dynamic scenes. The background building is

roughly clear but the foreground people are blurred. When

we employ the “coarse-to-fine” framework to perform de-

blurring, different features should be handled. Here, we an-

alyze two typical regions in the image pyramid by cropping

11× 11 patches at the same location. One is a sharp region

in the background building, and the other is a blurred region

in the foreground people.

The features in the sharp region are similar, since the

downsampled sharp edges are still sharp. However, the fea-

tures in the blurred region are different, since a blurred edge

becomes sharp after scaling down. If the feature extraction

module is shared across scales, it cannot simultaneously ex-

tract sharp and blurred features. When learned from sharp

features in the coarse scale, the shared feature extraction

module cannot extract blurred features in the fine scale.

With this observation, we relax the parameter sharing

scheme [33] and assign independent parameters for the fea-

ture extraction module in each stage of the subnetwork,

such that the network can automatically extract the most

discriminative features in each scale. As shown in Fig. 3,

with independent feature extraction modules, our parame-
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Figure 3. Parameter sharing strategies in the encoder stage of

our subnetwork. The blocks in three rows indicate “coarse-to-

fine” strategy from coarse to fine scales. “FE” is the feature ex-

traction module. “T” is the nonlinear transformation module. The

modules in the same color share the same parameters. (a) Scale-

recurrent structure with the same parameters across scales. (b)

Modified scale-recurrent structure with independent feature ex-

traction modules. (c) Modified version of (b) with shared non-

linear transformation parameters within a stage and also across

scales.

ter scheme (b) is different from scale-recurrent modules in

(a). After the features are extracted and transformed in the

encoder part, the feature reconstruction modules gradual-

ly reconstruct the features back to the sharp image. Since

scale-variant features are extracted using independent pa-

rameters, the corresponding feature reconstruction modules

are also with independent parameters to process the scale-

variant features.

Parameter Sharing After extracting scale-variant fea-

tures, we transform them to the corresponding sharp fea-

tures. The nonlinear transformation modules across differ-

ent scales perform the same blur-to-sharp transformation.

Thus parameters can be shared across scales, which is con-

firmed in the scale-recurrent strucuture [33]. This inter-

scale parameter sharing scheme is shown in Fig. 3(b).

Motivated by the traditional iterative image deblurring,

which uses the same solver iteratively, we hypothesize there

also exists intra-scale parameter sharing between the non-

linear modules in each stage of the subnetwork. Under this

strategy, the transformation modules in each stage share the

same parameters like applying a fixed solver iteratively for

the blurred features. As shown in Fig. 3(c), the structure

within one encoder stage of the subnetwork evolves from

(b) to (c), in which the same module is used iteratively for

nonlinear transformation. Formally, the function in each

subnetwork is defined as

Ii = Neti(Bi, Ii−1↑; θi, η), (1)

where Neti is the subnetwork in the i-th scale with scale-

independent parameters θi and scale-shared parameters η.

In the i-th scale, the current blurred image Bi and the up-

sampled restored sharp image at the (i − 1)-th scale Ii−1↑

are taken as input. The sharp image Ii at this scale is pro-

Fn

Xn-1 Xn

Fn-1

Xn-2 Xn-1

Fn

Xn

Fn-2Xn-3 Xn-2

Fn-1

Xn-1

Fn

Xn

(a) First Order (b) Second Order

(c) Third Order

Figure 4. Higher-order residual functions result in nested skip con-

nections.

duced. It is fed into the (i + 1)-th scale as the input for

progressive restoration at next scale.

3.2. Nested Skip Connections

He et al. [7] validated that fitting the residual mapping

rather than the desired mapping is much easier to optimize.

Nah et al. [19] and Tao et al. [33] both chose ResBlocks

as the internal building blocks for the blur-to-sharp feature

transformation. Specifically, a ResBlock [19] is defined as

xn = xn−1 + Fn(xn−1), (2)

where xn−1, xn and Fn are the input, output and the resid-

ual function of the n-th residual unit. We refer this as the

first-order residual as shown in Fig. 4(a). If we assume the

input xn−1 is also produced by another first-order residu-

al function, we can put it into Eq. (2). Empirically, fitting

the residual of residuals is easier than the original residual

mapping. The second-order residual function is formulated

as

xn = xn−2 + Fn−1(xn−2) + Fn(xn−2 + Fn−1(xn−2)).
(3)

As shown in Fig. 4(b), there are 3 skip paths with one in-

tersection in contrast to 2 short-term skip connections in s-

tacked 2 ResBlocks. We further expand the second-order

residual function to the third-order one as

xn = xn−3 + Fn−2(xn−3) + Fn−1(xn−3 + Fn−2(xn−3))

+ Fn(xn−3 + Fn−2(xn−3) + Fn−1(xn−3 + Fn−2(xn−3)).

(4)

Fig. 4(c) shows the third-order residual function. The recur-

sion can be carried on to derive even higher-order residual

functions. As shown in Fig. 4, these functions turn out to be

a nested connected structure visually similar to DenseNet

[8]. However, the difference is in two aspects. First, the

skip connection here indicates feature summation instead of
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channel concatenation. Second, the number of direct con-

nections here is
(L+1)(L+2)

2 , with (L+ 1) more links at the

end of the last convolution layer compared with DenseNet.

Higher-order residual functions can be grouped into a

nested module, to improve flow of information and bet-

ter tackle gradient-vanishing issues throughout the network.

Although the stacked ResBlocks in [19, 33] have many

short-term skip connections, it simply stacks the first-order

residual functions. Differently, our nested module models

higher-order residual functions, which are capable of com-

plex representation ability and easier to optimize. We use

this nested module to replace the stacked ResBlocks for

nonlinear transformation in different stages of our encoder-

decoder subnetwork.

3.3. Network Architecture

Following [19] and [33], we utilize 3 scales in pursing

the “coarse-to-fine” strategy. Thus, three encoder-decoder

subnetworks are stacked with independent feature extrac-

tion and reconstruction, and shared nonlinear transforma-

tion modules. Different from using kernel size 5 × 5
[19, 33], we use kernel size 3× 3 to control the model size

since 2 layers with 3 × 3 kernel can cover the same recep-

tive fields as one layer with 5× 5 kernel and it saves around

25% of the parameters.

By default, each nonlinear transformation module con-

sists of 4 processing units, each composed of 2 convolution

layers. The feature extraction and reconstruction modules

are implemented as one convolution or transposed convolu-

tion layer respectively. This default setting aims at covering

similar receptive fields to that of [33]. In each stage of the

encoder-decoder subnetwork, our model has 17 convolution

layers with kernel size 3× 3.

Given N training pairs of blurred and sharp images in

S scales {Bk
i

,Lk
i
}, we minimize the Mean Squared Error

(MSE) between the restored images and ground truth at

each scale over the entire training set as

L(θ, η) =
1

2N

N∑

k=1

S∑

i=1

1

Ti

‖Fi(B
k

i ; θi, η)− Lk

i ‖
2
2, (5)

where Bk
i

and Lk
i

are the blurred and ground truth images in

the i-th scale respectively. θi denotes the scale-independent

parameters, and η is the scale-shared parameter. The loss at

each scale is normalized by the number of pixels Ti.

4. Experiments

Datasets Unlike generating blurred images by convolving

blur kernels with sharp images, Nah et al. [19] synthesized

realistic blurred images by averaging consecutive frames in

a high-speed video. The released GoPro dataset contains

2,103 pairs for training and 1,111 pairs for evaluation. As

shown in Fig. 5, there exist flaws in some of the ground

(a) Noisy (b) Smooth (c) Blurred

Figure 5. Several flaws exist in the ground truth sharp images in

the GoPro training dataset.

truth sharp images in the GoPro training set, including se-

vere noise, large smooth region, and significant image blur.

To improve the training performance, we establish a new

dataset following the procedures of [19] using GoPro Hero6

and iPhone7 at 240 fps.

We stick to 3 guidelines in collecting the videos to over-

come the flaws. First, the camera is steady and we avoid

recording high-speed vehicles or objects to ensure no cam-

era motion or object motion exists in sharp frames. Second,

we record outdoor videos in the daytime to guarantee a low

noise level. Third, we only sample the scenes with enough

details, and avoid large smooth regions such as sky or con-

stant background. Under these guidance, we collect 5,290

blurred/sharp image pairs. This new dataset complements

the GoPro dataset [19] to help dynamic scene deblurring re-

search. Unless otherwise stated, the quantitative results in

the following are based on the GoPro training dataset [19]

for fair comparison.

Implementation We implement our algorithm by Tensor-

Flow on a PC with Intel Xeon E5 CPU and an NVIDIA

P40 GPU. During training, a 256 × 256 region from the

blurred and ground truth images at the same location are

randomly cropped as the training input. The batch size is

set to 16 during training. All weights are initialized using

Xavier method [4]; biases are initialized to 0. The network

is optimized using Adam method [14] with default setting

β1 = 0.9, β2 = 0.999 and ǫ = 10−8. The learning rate

is initially set to 0.0001, exponentially decayed to 0 using

power 0.3. According to our experiments, 4,000 epochs are

sufficient for all the networks to converge.

4.1. Effectiveness of Parameter Selective Sharing

To demonstrate the effectiveness of the proposed param-

eter selective sharing scheme, we compare the proposed

model (Model SE Sharing) with the parameter indepen-

dence scheme and parameter sharing scheme. The param-

eter sharing scheme (Model Sharing) is implemented fol-

lowing [33]. The parameter independence scheme (Model

Indep.) has the same network structure with Model Shar-
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ing, but with independent parameters in each scale. For

the selective sharing scheme, we use independent feature

extraction and reconstruction modules, and shared nonlin-

ear transformation module across different scales. Model

SE Sharing employs intra-scale parameter sharing, with

shared nonlinear transformation modules in each stage of

the encoder-decoder subnetwork. We also test the strategy

without intra-scale parameter sharing (Model SE Sharing

w/o IS), where the 2 nonlinear transformation modules have

different parameters.

Model Indep. Sharing SE Sharing w/o IS SE Sharing

Param 14.72M 4.91M 5.42M 2.84M

PSNR 30.65 30.79 30.97 30.92

SSIM 0.9369 0.9389 0.9426 0.9421

Table 1. Quantitative results for different parameter strategies.

The quantitative results are shown in Table 1, from which

we obtain important observations. First, the parameter shar-

ing scheme (Model Sharing) is indeed better than parame-

ter independence scheme (Model Indep.) with higher per-

formance and fewer parameters. Second, independent fea-

ture extraction and reconstruction modules can help fur-

ther enhance the system compared with parameter sharing

scheme. Third, the intra-scale parameter sharing (Model

SE Sharing) yields comparable performance with the one

without intra-scale parameter sharing (Model SE Sharing

w/o IS). Note it is only with around half of the parameters.

4.2. Effectiveness of Nested Skip Connections

To demonstrate the effectiveness of the nested skip con-

nections, we compare this structure with several baseline

structures. For fair comparison, all the models have 8 con-

volutions in each stage of the encoder-decoder subnetwork.

Model Plain simply stacks 8 convolution layers. Model

ResBlock uses 4 ResBlocks in each module. Model Dense-

Block stacks 2 DenseBlocks following DenseNet [8]. Mod-

el Nested represents the proposed nested skip connection

structure.

Model Plain ResBlock DenseBlock Nested

PSNR 29.84 30.76 28.85 30.92

SSIM 0.9248 0.9383 0.9109 0.9421

Table 2. Quantitative results for different module structures.

As shown in Table 2, model ResBlock performs bet-

ter than model Plain. They both work better than model

DenseBlock since the growth rate is set to a small value to

make the output channels of the DenseBlock same as oth-

er structures. The table indicates that the proposed nested

skip connection structure achieves better performance than

others.

Model Gong Nah Tao Zhang Ours Ours+

PSNR 26.06 29.08 30.26 29.19 30.92 31.58

SSIM 0.8632 0.9135 0.9342 0.9306 0.9421 0.9478

Time 20min 3.1s 1.3s 1.4s 1.6s 1.6s

Table 3. Quantitative results on GoPro evaluation dataset.

4.3. Comparison with Other Deblurring Methods

We compare our method with recent state-of-the-art dy-

namic scene deblurring and non-uniform deblurring meth-

ods on the GoPro evaluation dataset quantitatively, as well

as on more blurred images qualitatively. Sun et al. [31]

and Gong et al. [5] both estimated the blur fields and use

non-blind deconvolution method to recover the sharp im-

age. Since the method of [5] can handle general motion

rather than local linear motion [31], we only compare ours

with the solution of [5]. Nah et al. [19] and Tao et al.

[33] employed parameter independence and parameter shar-

ing schemes respectively in building their deep networks.

Zhang et al. [37] proposed an spatially variant RNN for

dymamic scene deblurring. The quantitative results on Go-

Pro evaluation dataset are listed in Table 3. As shown in

the last column of Table 3, we also list the results trained

on mixed GoPro and our dataset. The statistics demonstrate

the advantages of adding our dataset for training.

Visual comparison on GoPro evaluation dataset is shown

in Fig. 6. These results are generated by the model trained

only on the default GoPro training dataset. To test the gener-

alization ability of our model, we apply our best-performing

model to more images. We collect synthetic blurred im-

ages from [15], download blurry images from Internet, and

sample real blurred images. As shown in Fig. 7, our mod-

el generally produces better results than those of [19] and

[33]. Our model handles non-uniform and highly dynam-

ic scenes quite well compared with others, as shown in the

close-ups from the first and second images in Fig. 7. On the

third and fourth images in Fig. 7, our method successfully

restores more recognizable text details than others.

5. Conclusion

In this work, we have analyzed the general principle of

using parameters wisely in deblurring CNNs and proposed a

parameter selective sharing scheme in contrast to parameter

independence and sharing schemes. We have also proposed

a new nested skip connection structure for the nonlinear

transformation modules in the network. Besides, we have

built a large blurred/sharp paired dataset towards training

better models. By adopting the parameter selective shar-

ing scheme, nested skip connection structure and our new

training dataset, we have presented a new state-of-the-art in

dynamic scene deblurring.
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Figure 6. Visual comparison on GoPro evaluation dataset. From the top to bottom, we show input, results of Gong et al. [5], Nah et al.

[19], Tao et al. [33] and ours (best view on screen).

3854



Figure 7. Visual comparison on more blurred images. The first image is from the synthetic dataset [15]. The second image is from the

Internet. The third and fourth images are captured by our iPhone 7. The first column is the input image. The second column is generated

by [19]. The third column is produced by [33]. The fourth column is our results trained on mixed datasets. Best viewed on screen.
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