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Abstract

Deep Convolutional Networks (ConvNets) are funda-
mental to, besides large-scale visual recognition, a lot of
vision tasks.  As the primary goal of the ConvNets is to
characterize complex boundaries of thousands of classes
in a high-dimensional space, it is critical to learn higher-
order representations for enhancing non-linear modeling
capability. Recently, Global Second-order Pooling (GSoP),
plugged at the end of networks, has attracted increasing at-
tentions, achieving much better performance than classical,
first-order networks in a variety of vision tasks. However,
how to effectively introduce higher-order representation in
earlier layers for improving non-linear capability of Con-
vNets is still an open problem. In this paper, we propose a
novel network model introducing GSoP across from lower
to higher layers for exploiting holistic image information
throughout a network. Given an input 3D tensor outputted
by some previous convolutional layer, we perform GSoP to
obtain a covariance matrix which, after nonlinear transfor-
mation, is used for tensor scaling along channel dimension.
Similarly, we can perform GSoP along spatial dimension
for tensor scaling as well. In this way, we can make full use
of the second-order statistics of the holistic image through-
out a network. The proposed networks are thoroughly eval-
uated on large-scale ImageNet-1K, and experiments have
shown that they outperform non-trivially the counterparts
while achieving state-of-the-art results.

1. Introduction

Deep Convolutional Networks (ConvNets) are funda-
mental to computer vision field, since they are not only
paramount for high accuracy of large-scale object recog-
nition, but also play central roles, through means of pre-
trained models, in advancing substantially many other com-
puter vision tasks, e.g., object detection [29], semantic seg-
mentation [27] and video classification [35]. Given color
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images as inputs, the ConvNets can learn progressively the
low-level, mid-level and high-level features [42], finally
producing global image representations connected to soft-
max layer for classification. To better characterize com-
plex boundaries of thousands of classes in a very high-
dimensional space, one possible solution is to learn higher-
order representations for enhancing nonlinear modeling ca-
pability of ConvNets.

Recently, modeling of higher-order statistics for more
discriminative image representations has attracted great in-
terests in deep ConvNets. The global second-order pooling!
(GSoP), producing covariance matrices as image represen-
tations, has achieved state-of-the-art results in a variety of
vision tasks [22, 3, 33, 36] such as object recognition, fine-
grained visual categorization, object detection and video
classification. The pioneering works, i.e., DeepOsP [18]
and bilinear CNN (B-CNN) [26], performed global second-
order pooling, rather than the commonly used global av-
erage (i.e., first-order) pooling (GAVP) [25], after the last
convolutional layers in an end-to-end manner. However,
most of the variants of GSoP [7, 1] only focused on small-
scale scenarios. In large-scale visual recognition, MPN-
COV [23, 22] has shown matrix power normalized GSoP
can significantly outperform global average pooling.

Though GSoP plugged at the end of network has proven
successful, how to effectively introduce higher-order rep-
resentation in earlier layers for improving non-linear ca-
pability of ConvNets is still an open problem. Several
works [24, 37, 43] have made attempts to enhance non-
linear modeling capability using quadratic transformation
to model feature interactions, instead of only using lin-
ear transformation of convolutions. However, performance
gains of these methods are limited in large-scale visual
recognition. Motivated by Squeeze-and-Excitation (SE)
networks [15], we introduce GSoP across from lower to
higher layers of deep ConvNets, aiming to learn more dis-
criminative representations by exploiting the second-order
statistics of holistic image throughout a deep ConvNet.

At the heart of our global second-order networks is the
GSoP block, which can be conveniently plugged into any

!'To our knowledge the term “second-order pooling” was coined in [2].

3024



location of a deep ConvNet. Given a 3D tensor outputted by
some previous convolutional layer, we first perform GSoP
to model pairwise channel correlations of the holistic ten-
sor. We then accomplish embedding of the resulting co-
variance matrix by convolutions and non-linear activations,
which is finally used for scaling the 3D tensor along chan-
nel dimension. The diagram of our GSoP convolutional
network (GSoP-Net) is presented in Figure la and the pro-
posed second-order block is illustrated in Figure 1b. The
primary differences of the proposed GSoP-Net from exist-
ing networks are compared in Table 1, which will be de-
tailed in next section. Our main contributions are threefold.
(1) Distinct from the existing methods which can only ex-
ploit second-order statistics at network end, we are among
the first who introduce this modeling into intermediate lay-
ers for making use of holistic image information in earlier
stages of deep ConvNets. By modeling the correlations of
the holistic tensor, the proposed blocks can capture long-
range statistical dependency [35], making full use of the
contextual information in the image. (2) We design a sim-
ple yet effective GSoP block, which is highly modular with
low memory and computational complexity. The GSoP
block, which is able to capture global second-order statistics
along channel dimension or position dimension, can be con-
veniently plugged into existing network architectures, fur-
ther improving their performance with small overhead. (3)
On ImageNet benchmark, we perform a thorough ablation
study of the proposed networks, analyzing the characteris-
tics and behaviors of the proposed GSoP block. Extensive
comparison with the counterparts has shown the competi-
tiveness of our networks.

2. Related Works

GAVP (1°'-order) In-between Network. Global aver-
age pooling plugged at the end of network [25], which
summarizes the first-order statistics (i.e., mean vector)
as image representations, has been widely used in most
deep ConvNets such as ResNet [11], Inception [31] and
DenseNet [17]. For the first time, SE-Net [15] introduced
GAVP in-between network for making use of holistic image
context at earlier stages, reporting significant improvement
over its network-end counterparts. The SE-Net consists of
two modules: a squeeze module accomplishing global av-
erage pooling followed by convolution and non-linear ac-
tivations for capturing channel dependency, and an exci-
tation module scaling channel for data recalibration. Be-
sides GAvP along channel dimension, CBAM [38] extends
the idea of SE-Net, combining GAvP along channel dimen-
sion as well as spatial dimension for accomplishing self-
attention. Compared to SE-Net and CBAM which use only
first-order statistics (mean) of the holistic image, our GSoP-
Net exploits second-order statistics (correlations), having

in-between network end of network
global pool method |global pool method
AlexNet [20]
N/A N/A
VGG [30] x / x /
ResNet [11]
Inception [31] X N/A Vv 15—order
DenseNet [17]
SE-Net [15] ot st
CBAM [3] VA 15%—order VA 15t —order
DeepO2P [ 18]
B-CNN [26] d
N/A 2% _ord
MPN-COV [23,22]|  * / v order
G2DeNet [34]
GSoP-Net (ours) 4 27d_order V4 2nd_order

Table 1: Summary of ConvNet models in terms of global
statistical pooling. Different from existing networks, we in-
troduce global second-order pooling into intermediate lay-
ers of deep ConvNets. So we can make full use of second-
order statistics to effectively capture holistic image infor-
mation throughout a network.

stronger modeling capability.

GSoP (2"4-order) at Network Net. The global second-
order pooling, plugged at network end and trainable in an
end-to-end manner, has received great interests, achiev-
ing significant performance improvement [3, 23, 22]. Sev-
eral researchers [7, 3, 1] have shown close connections be-
tween higher-order pooling with kernel machines, based on
which they proposed explicit mapping functions as kernel
approximation for compactness of covariance representa-
tions. Wang et al. [34] proposed a global Gaussian distribu-
tion embedding network (G®DeNet), where one multivari-
ate Gaussian, identified as a symmetric positive definite ma-
trix of covariance matrix and mean vector [21], is plugged
at network end. MoNet [39] proposed a sub-matrix square-
root layer, enabling G?DeNet to have compact representa-
tion. In [4], the first-order information is combined with the
second-order one which achieves consistent improvements
over the standard bilinear networks on texture recognition.
In all the aforementioned works, second-order modeling are
only exploited at the end of deep networks.

Quadratic Transformation Network. The conventional
network depends heavily on linear convolution operations.
Several researchers take a step further to explore higher-
order transformation for enhancing non-linear modeling ca-
pability of deep networks. The second-order Response
Transform (SORT) [37] develops a two-branch network
module to combine responses of two convolutional blocks
and multiplication of the responses. They perform element-
wise square root for normalizing the second-order term.
In [24], a factorized bilinear network (FBN) is proposed to
model the pairwise feature interaction. By constraining the
rank of quadratic transformation matrix, FBN can introduce
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(a) Overview of GSoP-Net. The proposed global second-order pooling (GSoP) block can be conveniently inserted after any convolutional
layer in-between network. We propose to use, at the network end, GSoP block followed by common global average pooling produc-

ing compact image representations (GSoP-Netl), or matrix power normalized covariance [

representations (GSoP-Net2).

] outputting covariance matrices as image

0

row-wise l

: 2nd-order
ql| conv pool conv conv
e = WK AN
K c 4c c
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(b) GSoP block. Given an input tensor, after dimension reduction, the GSoP block starts with covariance matrix computation,
followed by two consecutive operations of a linear convolution and non-linear activation, producing the output tensor which is
scaling (multiplication) of the input one along the channel dimension.

Figure 1: Our global second-order pooling network (GSoP-Net). Figure 1a gives an overview of GSoP-Net and the proposed
GSoP block is presented in Figure 1b. We introduce global second-order pooling into intermediate layers of deep ConvNets,
which goes beyond the existing works where GSoP can only be used at network end. By modeling higher-order statistics of
holistic images at earlier stages, our network can enhance capability of non-linear representation learning of deep networks.

bilinear pooling into intermediate layers. Zoumpourlis et
al. [43] introduce Volterra kernel-based convolutions, which
can model first-, second- or higher-order interactions of
data, serving as approximations of non-linear functionals.
All the works above are concerned with non-linear filters,
applied only to local neighborhood, just like linear convo-
lution. In contrast, our GSoP networks collect the second-
order statistics of the holistic image for enhancing non-
linear capability of deep networks.

3. Global Second-order Pooling Network

We illustrate the proposed GSoP-Net in Figure 1la. Note
that the second-order pooling block we designed can be
conveniently inserted after any convolutional layer. By in-
troducing this block in intermediate layers, we can model
high-order statistics of the holistic image at early stages,
having ability to enhance non-linear modeling capability of
deep ConvNets.

In practice, we build two network architectures. With
GSoP blocks in-between network and at the end of network,
we can use GSoP block as well which is followed by the
common global average pooling, producing the mean vec-
tor as compact image representation, which we call GSoP-
Netl. Alternatively, at the end of network, we can adopt ma-
trix power normalized covariance matrices as image repre-
sentations [23], called GSoP-Net2, which is more discrimi-

native yet is high-dimensional.

3.1. GSoP Block

Figure 1b shows the diagram of the key module of our
network, i.e., GSoP block. Similar to [15], the block con-
sists of two modules, i.e., squeeze module and excitation
module. The squeeze module aims to model the second-
order statistics along the channel dimension of the input
tensor. We are given a 3D tensor of i/ x w’ x ¢’ as an
input, where h’ and w’ are spatial height and width and ¢/
is the number of channels. First, we use 1 X 1 convolu-
tion reducing the number of channels from ¢’ to ¢ (¢ < /)
to decrease the computational cost of the following opera-
tions. For the i’/ X w’ X ¢ tensor of reduced dimensionality,
we compute pairwise channel correlations, obtaining one
¢ X c covariance matrix. The resulting covariance matrix
has clear physical meaning, i.e., its i row indicates sta-
tistical dependency of channel ¢ with all channels. As the
quadratic operations involved change the order of data, we
perform row-wise normalization for the covariance matrix,
respecting the inherent structural information. In contrast,
the SE-Net uses global first-order pooling, which can only
summarize the mean of individual channels, having limited
statistical modeling capability.

In the excitation module, prior to channel scaling, we
perform two consecutive operations of convolution plus

3026



height ’ '

width

channel

Input tensor Output tensor

Figure 2: Classical convolutional operations fail to capture
holistic dependency of 3D tensor due to limited receptive
field size. For example, the data in small blue tensor cannot
interact with that of yellow tensor at distant position due to
limited receptive filed size. Our GSoP-Net addresses this
by modeling pairwise correlations of the holistic tensor.

non-linear activation for covariance matrix embedding. To
maintain the structural information, we perform row-wise
convolution for the covariance matrix by regarding each row
as a group in group convolution [20]. Then we perform the
second convolution and this time we use the sigmoid func-
tion as a nonlinear activation, outputting a ¢ x 1 weight vec-
tor. We finally multiply each channel of input tensor by
the corresponding element in the weight vector. Individual
channels are thus emphasized or suppressed in a soft man-
ner in terms of the weights.

3.2. Extension to Spatial Position

In previous section, we describe global second-order
pooling along channel dimension, which we call channel-
wise GSoP. We can extend it to spatial position, called
position-wise GSoP, capturing pairwise feature correlations
of the holistic tensor for position-wise feature scaling. The
design philosophy of the position-wise GSoP Block is very
similar to that of the channel-wise one. We also use 1x1
convolution for reducing the number of channels. Further-
more, as we are to compute pairwise correlations of features
at all spatial positions, we adopt downsampling, decreasing
the spatial size to fixed h x w. So we obtain a position-wise
covariance matrix of hw X hw. Row ¢ of the covariance
matrix, where ¢ = 1,..., hw enumerate all spatial posi-
tions, indicates statistical correlation of the i*® feature with
all features. The position-wise covariance matrix is also fed
to two consecutive operations, i.e., row-wise convolution
and convolution followed by sigmoid. After appropriate re-
shaping, we can obtain an A X w weight matrix which en-
codes nonlinear pair-wise dependency among features at all
positions. At last, the weight matrix is upsampled to 2’ x w’
and then multiplied position-wise with spatial features.

3.3. Mechanism of GSoP Block

In classical deep ConvNets, restricted by limited recep-
tive field size, the convolution operations can only process

a local neighborhood of 3D tensor. The data at distant posi-
tion cannot interact, e.g., the small blue tensor and the small
yellow one as shown in Figure 2. The long-range dependen-
cies can only be captured by larger receptive fields produced
by deep stacking of convolutional operations. This leads to
several downsides such as optimization difficulty and mod-
eling difficulty of multi-hop dependency [35].

By computing all pairwise feature correlations (or inner
product), the non-local operation can capture dependency
of features at distant positions. As a result, the non-local
operation can excite significant features, which is consistent
with self-attention machinery [32]. Our position-wise GSoP
multiplies each feature with one weight, which encodes
nonlinear correlations of this feature with features at all po-
sitions. As such, our position-wise GSoP can also model
long-range dependency of features, functioning as a kind of
spatial self-attention. Beyond that, our channel-wise GSoP
can capture long-range dependency along channel dimen-
sion, steering self-attention to significant channels. Note
that SE-Net can capture long-range channel dependency as
well, which, however, can model only the first-order statis-
tical dependency, having limited representation capability.

3.4. Block Implementation

Our blocks can be conveniently inserted into ResNet
architecture. The ResNet contains 4 residual stages, i.e.,
conv2 X, ..., conv5_x, each containing stacks of bottleneck
blocks. The exception is the first stage (i.e., convl) which
only contains one single convolutional layer, without bot-
tleneck structure. To simplify block design and to tradeoff
between computational complexity and classification accu-
racy, we adopt fixed size covariance matrices for all resid-
ual stages. In practice, we reduce the number of channel to
128 for both channel-wise and position-wise GSoP; in addi-
tion, we set the size of spatial covariance matrix to 64 (i.e.,
h=w=8). We note that the value of covariance matrix size is
evaluated in Section 4.1.

After the 1x1 convolution for dimensionality reduction
of channels, we perform downsampling for position-wise
GSoP to obtain feature maps of fixed size (i.e., 8 X 8). By re-
shaped to a 3D tensor with first dimension being singleton,
the dxd covariance matrix can be seen as 1xd feature map
with d channels, and so row-wise BN and row-wise group
convolutions [20] can be easily accomplished. The channel
number after the row convolution is raised to 4d and 4hw
for channel-wise pooling and position-wise pooling, respec-
tively. The size of weight vector for channel-wise pooling
or weight matrix for position-wise pooling, should match
the input tensor size. We mention that after the proposed
blocks, we also use a shortcut connection, adding the in-
put tensor to the scaled, output one. In Table 2, we present
implementation of GSoP block for conv4 _x.
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channel-wise GSoP position-wise GSoP
layers 3D filter output tensor |3D filter output tensor
conv + BN 1x1x1024 1x1x1024
+ReLU Gel 14x14x128 Gel 14x14x128
down sampling - - - 8x8x 128
128 x128— 64 x 64—
COV pool+BN 1x128x128 1x64x64
. 1x128x1 1x64x1
~Wis Ix1x512 Ix1x2
row-wise conv | - 5q X1x5 Gt4 X 1x256
. S Ix1x512 1x1x256 |1x1x64—
conv + sigmoid Gel 1x1x1024 Gel 381
up sampling - - - 14x14x1
scaling - 14x14x1024 - 14x14x1024
parameters (M) 0.72 0.16
MFLOPs 28.1 26.2

Table 2: GSoP blocks for conv4_x. ‘G’ indicates #group
convolutions [20], in which G=1 indicates common con-
volution (no group); gray text indicates reshape operation.
Shortcut connections are added after GSoP blocks.

4. Experiments

In this section, we first conduct ablation analysis of
the proposed GSoP-Nets. We then make comparison with
the competing methods as well as state-of-the-arts on Ima-
geNet. We finally evaluate generalization capability of our
network to small-scale classification. All of our program
are implemented under the PyTorch framework, and runs
on four workstations each of which is equipped with 2 GTX
1080Ti GPUs and an Intel i7-4790K @4GHz CPU.

Datasets.  Our experiments are mainly conducted on
ImageNet-1K [5] benchmark. The ImageNet-1K contains
1.28M training images and 50K validation images from
1,000 classes. In Section 4.1, for the purpose of faster abla-
tion study, we build a small subset of ImageNet-1K by ran-
domly selecting 250 classes, including 320K /12.5K images
for training/validation, which we call ImageNet-%K. For
comparison with state-of-the-art networks, we adopt stan-
dard ImageNet-1K in Section 4.2. To evaluate the general-
ization capability of our network, we also make experiments
on CIFAR-100 benchmark [19], which contains 60K color
images of 32x32 pixels from 100 categories, with 50K im-
ages for training and 10K images for testing.

Experimental Setting. During training from scratch with
ResNet architecture on ImageNet, we follow [1 1] for data
augmentation involving scale, color and flip jittering. The
weights are initialized as in [10]. We randomly crop
224 x 224 images from the rescaled images with per-
channel mean subtraction. The networks are optimized us-
ing stochastic gradient descent (SGD) with a weight decay
of le-4, a momentum of 0.9 and a mini-batch of 160. The
initial learning rate is set to 0.1, divided by 10 every 30
epochs until 100 epochs, unless specified otherwise. During

output layer
convl [112x112 conv, 7x7, 64, Stride=2

LOH max pool, 3x3, Stride=2
5656 [conv,1x 1,647
conv2_x conv,1 x 1,64 | X2

Lconv, 1 x 1,256 |
GSoP Block

[conv,1 x 1,128]

conv,1 x 1,128 x2

lconv,1 X 1,512 ]
GSoP Block

[ conv,1 x 1,256 ]
conv,1 x 1,256 | x2
lconv, 1 x 1,1024 ]
GSoP Block

[conv,1 x 1,512
conv,1 x 1,512 | X2
lconv, 1 x 1,2048 ]

GSoP block+GAVP, 2K

conv3_x| 28x28

convd x| 14x14

convS_x| 14x14

1x1 or
iSQRT-COV [22], 32K
1x1 FC + softmax

Table 3: GSoP-Net with ResNet-26 architecture.

testing stage, we evaluate the error on the single 224 x 224
center crop from an image whose shorter size is 256.

For training from scratch on CIFAR-100, following [12],
we use standard data augmentation of horizontal flip and
random translation. The networks are trained within 110
epochs with the initial learning rate of 0.25, which is re-
duced to 0.025 and 0.0025 at the 80'" and 95" epoch, re-
spectively. The weight decay and momentum are same with
those on ImageNet while the mini-batch size is 128.

4.1. Ablation Analysis on GSoP-Nets

We develop a lightweight residual network of 26 lay-
ers (i.e., ResNet-26) as our baseline architecture, where
every residual stage contains two bottlenecks. For
conv2_x~conv4_x, we insert one GSoP block per residual
stage. For GSoP-Netl we insert one GSoP block after the
last residual stage, followed by global average pooling, out-
putting a 2K-dimensional image representation fully con-
nected to softmax layer; for GSoP-Net2, instead, we use
matrix power normalized covariance pooling, producing
32K-dimensional image representation. As in [23, 22], we
do not perform downsampling at the last residual stage to
alleviate the problem of small sample size. Table 3 presents
the architecture of our GSoP-Nets.

Impact of Covariance Size. The covariance matrices, pro-
duced by the second-order pooling blocks, encode the sta-
tistical correlation of the holistic tensors, playing a central
role in our networks. So we first evaluate impact of co-
variance matrix size on the proposed networks. Table 4a
summarizes the results, in which the top and middle panel
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top-1 err/top-5 err

GSoP-Netl GSoP-Net2

‘ 64x64 | 18.00/4.99 | 16.84/4.58

channel-wise | 15¢. 128 | 17.42/4.53 | 16.68/4.36

COV s1ze ¢

256%256 | 17.61/4.64 | 16.67/4.18

- 36x36 | 19.21/546 | 17.34/4.80

POSIION-WISE | ¢/ 61 | 18.37/5.05 | 17.18/4.80
cov size hw

144x144 | 1841/5.08 | 17.51/4.63

vanilla network 19.18/5.62

(a) Impact of covariance matrix size.

top-1 err/top-5 err
GSoP-Netl GSoP-Net2
channel-wise pool 17.42/4.53 16.68/4.36
position-wise pool 18.37/5.05 17.18/4.80
average 17.90/4.73 16.77/4.36
fusion| maximum 17.48/4.52 16.80/4.39
concatenation | 17.58/4.61 16.49/4.35

(b) Comparison of fusion schemes.

[S2, 53, 54, S5] top-1 err top-5 err
-, — — —] 19.18 5.62
c, —, - —] 18.45 522
-, C, —, —] 18.72 5.33
-, —, C, —] 18.85 524
[—, —, —, C] 18.33 512
[C, C, C, C] 17.42 4.53
= — — ] 17.43 471
C, C, C, /] 16.68 436

(c) Single block performance.

2 blocks error |3 blocks error |[#blocks:4—1  error

[C,C, —,—]18.05/5.22|[C, C, C, —] 17.54/4.67||[C, C, C, C] 17.42/4.53
[-,C,C,—]18.29/4.86{—, C, C, C] 17.54/4.79||[—, C, C, C] 17.54/4.79
[—, —, C,C]18.09/4.81|[C, —, C, C] 17.64/4.89||[—, —, C, C] 18.09/4.81
[C,—,—,C]18.01/4.99[C, C, —, C]17.90/4.97||[—, —, —, C] 18.33/5.12

(d) Top-1/top-5 errors (%) of varying number of blocks.

Table 4: Ablation results of our GSoP-Nets with ResNet-26
architecture on ImageNet- i K.

shows the impacts using channel-wise (cov size: ¢ x ¢) and
position-wise pooling (cov size: hw X hw), respectively.
We first observe that, whatever the second-order pooling,
the proposed networks improve over vanilla ResNet-26,
demonstrating that our holistic modeling methods in earlier
stages are beneficial in enhancing the network’s discrimi-
native capability. For channel-wise second-order pooling,
relative to varying values of ¢, GSoP-Netl achieves the best
results with ¢ = 128. The errors of GSoP-Net2 consistently
decline as c gets larger and the lowest error is obtained with
¢ = 256. For position-wise second-order pooling, GSoP-
Netl with hw = 64 produces the lowest errors. Notably, for

either channel-wise or position-wise pooling, it is clear that
GSoP-Net2 performs much better than GSoP-Netl, which
suggests that image representation of covariance matrix is
superior to that of mean vector by average pooling.

Fusion of Channel- and Position-wise Pooling. The
channel-wise and position-wise second-order pooling cap-
ture statistical correlations from different dimensions of 3D
tensor. They can be combined for holistic image modeling.
Given an input tensor, we independently perform second-
order pooling along the channel dimension and spatial di-
mension, producing two output tensors. We can fuse the
two output tensors by the commonly used operations of
average/maximum and concatenation. As concatenation
operation increases tensor size, we use one convolutional
layer for maintaining the original tensor size.

The results of fusion methods are presented in Table 4b.
For GSoP-Netl, the average scheme performs worse than
the other two, while the maximum scheme is slightly better
than the concatenation one. For GSoP-Net2, the concate-
nation scheme is a little superior to the other two schemes.
However, compared to separate channel-wise pooling, with
any fusion scheme, combination of position-wise pooling
brings little improvement. These results suggest that the
two kinds of second-order pooling methods are not com-
plementary, though the two proposed networks individually
have obvious improvement over the vanilla network.

Performance of Single Second-order Block. In this part,
we analyze the performance of single channel-wise block
separately added to different residual stage. We make no
analysis on position-wise pooling as it is inferior to the
channel-wise one. Table 4d presents the results, where St
denotes residual stage 7, ¢ = 2,...,5; —, C and de-
note no second-order block, one second-order block and
iSQRT-COV meta layer [23] inserted at the correspond-
ing residual stage, respectively. It can be seen that inser-
tion of single block into any residual stage brings com-
parable improvement over the vanilla network, suggesting
that the second-order block at different stage makes sim-
ilar contribution to the overall GSoP-Netl. The iSQRT-
COV, which inserts a matrix normalized covariance ma-
trix at residual stage 5 as the final image representation,
is a strong baseline, even achieving comparable result with
GSoP-Netl. The GSoP-Net2, which essentially amounts
to insertion of global second-order pooling at intermedi-
ate stages of iSQRT-COV network, leading to further, non-
trivial improvement. This suggests the benefit of introduc-
ing second-order statistics in earlier layers of networks.

Results of Varying Number of Second-order Blocks. Ta-
ble 4d shows the results of varying number of channel-wise
second-order blocks inserted at different residual stages. It
can be seen that overall the networks with identical num-
ber of second-order blocks produce comparable results.
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train: iSQRT-COV/
train: GSoP-Net2
——val: iSQRT-COV
——val: GSoP-Net2

train: He et al.

train: GSoP-Net1
——val: Heetal
——val: GSoP-Net1

top-1 error (%)
top-1 error (%)

epodhs 60 70 80 90 10 20 ef)(;Chs 40 50 60
Figure 3: Convergence curves of our GSoP-Nets under
ResNet-50 architecture. Left: GSoP-Netl vs vanilla net-
work [ 1]; right: GSoP-Net2 vs iSQRT-COV [22].

The performance consistently improves as the number of
second-order blocks increase. With initial 4 second-order
blocks, gradual block removal from higher stage to lower
stage results in consistent performance decline; similar phe-
nomenon can be observed for block removal from opposite
direction and the corresponding results are not presented
due to page limit.

4.2. Results on ImageNet-1K

In this subsection, we further evaluate our proposed
GSoP-Nets on standard ImageNet-1K under ResNet-50 ar-
chitecture. We insert a GSoP block for residual stage 2, 3
and 4, respectively. For GSoP-Netl, we insert one GSoP
block for residual stage 5, followed by the commonly used
global average pooling; for GSoP-Net2, instead of the GSoP
block, the meta-layer of iISQRT-COV [22] is inserted.

4.2.1 Convergence and Network Complexity

Convergence. Figure 3 illustrates the convergence curves
of our GSoP-Net. For GSoP-Netl, though second-order sta-
tistical modeling is exploited, it is for tensor (convolutional
features) scaling while the image representation is first or-
der, just like the original ResNet-50. As shown in the left
figure, the convergence behavior of GSoP-Netl is similar to
that of ResNet-50, but consistently has lower validation er-
ror throughout the training process. Different from iISQRT-
COV, for GSoP-Net2 we introduce second-order blocks for
residual stages 1,2 and 3. From the right figure, we can
see that GSoP-Net2 inherits fast convergence property of
iSQRT-COV, while steadily performs better. We attribute
the improvement of our networks over their counterparts to
the holistic modeling of second-order statistics introduced
in earlier stages.

Network Complexity. Table 5 shows comparison of pa-
rameter and computation. The number of parameters of
GSoP-Netl is comparable to that of the vanilla ResNet-50,
while GSoP-Net2 has nearly doubled the number of param-
eters. The increased parameters in GSoP-Net2 are mainly
due to FC layer, in which dimensionality of image repre-
sentation is 32K, accounting for most increase of the total

description top-1 | top-5 | params/GFLOPs

Heetal. [11] Baseline network | 23.85 | 7.13 25.5M/3.86
FBN [24] Quadratic 240 | 7.1 -

SORT [37] transformations 2382 | 6.72 _

MPN-COV [23] | GSoP at network | 22.74 | 6.54 2.2x/1.6x
iSQRT-COV [22] |end 22.14 | 6.22 2.2x/1.6x
SE-Net [15] 2329 | 6.62 1.1x/1.0%
GENet [13] OAVPacross 12188 | 580 | 13x/10x
CBAM [38] 22.66 | 6.31 1.1x/1.0x
GSoP-Netl (ours) | GSoP across net- | 22.02 | 5.88 1.1x/1.6%x
GSoP-Net2 (ours) | work 21.19 | 5.64 2.3x/1.7x
ResNeXt [40] Modified 22.11 | 5.90 1.0x/1.0x
DropBlock [§] architectures 21.87 | 598 1.0x/1.0x
DRN-A-50 [41] | upon ResNet 2294 | 657 | 1.0x/49x

Table 5: Comparison (%) of different methods with ResNet-
50 architecture on ImageNet-1K.

parameters, just like MPN-COV [23] and iSQRT-COV [22].
Note that advances on model compression, e.g., [0, 28, 9],
has potential to significantly reduce the number of param-
eters, particularly in FC layer, while maintaining the per-
formance. In practice, we can exploit such techniques to re-
duce parameters. Analogous to [23, 22], the GFLOPs of our
networks are 1.58x of the number of vanilla ResNet. The
computations increased are attributed to removal of down-
sampling in the last residual stage, so that feature map size
doubles. This operation is helpful for robust covariance es-
timation by alleviating the problem of small sample and
high dimensionality [23]. This somewhat slowdowns the
training, however, while making little difference for infer-
ence. With a single GTX 1080Ti GPU with CUDA 9.0 and
CuDNN 7.1, the inference time (ms) per image are 2.52 vs
2.68/2.84 (vanilla ResNet-50 vs GSoP-Netl /GSoP-Net2).

4.2.2 Comparison with Competing Networks.

Table 5 compares classification errors between our GSoP-
Nets and the competing networks on ImageNet-1K.

Comparison with FBN and SORT. The two works [24,

] are among the first which introduce quadratic transfor-
mation, instead of just linear convolutions, throughout a net-
work. However, compared to the vanilla network, their per-
formance gains are not significant. In contrast, our networks
are much better, achieving over 2.8% and 2.6% higher accu-
racies than FBN and SORT. This comparison demonstrates
that, by making favorable use of higher-order information,
we can greatly improve the network performance.

Comparison with Global Cov Pool at Network End.
Here we compare our GSoP-Net2 with several methods
where global second-order pooling is inserted only at the
end of network. All of them estimate covariance matri-
ces of the last convolutional features as image representa-

3030



tions. DeepO2P computes matrix logarithm for covariance
matrix while B-CNN performs element-wise power normal-
ization plus {5 normalization. As DeepO,P and B-CNN
are not competitive for large-scale visual recognition [23],
here we do not compare with them. MPN-COV uses struc-
tured normalization by matrix square root, and iSQRT-COV
is a faster version of MPN-COV, in which matrix square
root is based on iterative algorithm, rather than GPU un-
friendly SVD. Our GSoP-Net2 outperforms MPN-COV by
1.55% in top-1 error (0.90% in top-5 error). Compared to
iSQRT-COV, the GSoP-Net2 achieves 0.95%/0.58% lower
top-1/top-5 error rates, while resulting in negligible over-
head. We note that the iISQRT-COV is a strong baseline
and our improvement is nontrivial. The comparison be-
tween our GSoP-Net2 and MPN-COV /iSQRT-COV indi-
cates that introducing higher-order statistics in earlier stages
can enhance representational learning capability of deep
ConvNets.

Comparison with Global Avg Pool across Network.
From Table 5, we can see that our GSoP-Netl performs
1.3%/0.7% better than SE-Net in top-1/top-5 errors. As an
extension of SE-Net, CBAM combines global average and
max pooling along both channel dimensional and spatial di-
mension. Nevertheless, the error rates of GSoP-Netl are
lower than CBAM. Building upon SE-Net, GENet [13] pro-
poses gather and excitation operations for exploiting con-
text information. Our GSoP-Net2 outperforms GENet by
a non-trivial margin. These comparisons between our net-
works and SE-Net and its variants show that higher-order
modeling is able to capture richer statistics than the first-
order modeling, leading to more discriminative representa-
tion. Notably, we do not insert GSoP block after each bot-
tleneck structure; instead, we only insert the GSoP block
per residual stage. As a result, we only add no more than 4
GSoP blocks, and more GSoP blocks may further improve
the performance of our network.

Comparison with State-of-the-arts. Finally, we com-
pare with several state-of-the-art networks which mod-
ify upon ResNet-50 architecture. Compared to ResNet,
ResNeXt [40] considerably increases network width,
which, however, keeps parameters and computation al-
most unchanged through an extensive use of group con-
volutions [20]. DRN-A-50 [41] removes downsampling in
residual stage 3 and 4, and meanwhile uses dilated convolu-
tion to maintain the receptive size. DropBlock [8] extends
dropout technique to convolution; by drop blocks of fea-
ture map randomly, it maintains the context integrity dur-
ing training. As shown in Table 5, these modified networks
performs much better than ResNet-50. Nevertheless, our
GSoP-Net2 outperforms all of them by a non-trivial mar-
gin. It is noteworthy to mention that, if built upon the mod-
ified networks above, the performance of our network may
improve further.

model top-1 err (%) | params | GFLOPs
Heetal [12] 24.33 1.7M 0.25
SE-Net [14] 21.31 1.9M 0.29
CMPE [16] 22.35 2.0M N/A
iSQRT-COV [22] 19.95 2.5M 0.52
GSoP-Netl (ours) 20.86 2.9M 0.55
GSoP-Net2 (ours) 18.58 3.6M 0.58

Table 6: Comparison (%) of our networks with the counter-
parts on CIFAR-100.

4.3. Results on CIFAR-100

This section conducts experiments on CIFAR-100 [19]
to evaluate the generalization capability of the proposed
GSoP-Net. The backbone network is pre-activation ResNet-
164 [12], containing 3 residual stages each of which con-
tains 18 bottlenecks. In GSoP-Netl, we insert 18 GSoP
blocks into the backbone network uniformly, and in GSoP-
Net2 the last GSoP block is replaced by a meta-layer of
iSQRT-COV. Downsampling is not performed in the last
residual stage. The final dimension of image representation
in GSoP-Net2 is 8K and a dropout layer (dropout rate=0.5)
is used for FC layer. The covariance size is 64 x 64 in both
GSoP-Netl and GSoP-Net?2.

The experimental results on CIFAR-100 are presented
in Table 6. Compared with the vanilla network, GSoP-
Netl and GSoP-Net2 obtain gains of 3.47% and 5.75%,
respectively, improving the performance by a large mar-
gin. CMPE [16] implements channel-wise excitation op-
eration by establishing the correlation of the channel-wise
representation between two nearby bottlenecks, which can
be considered as a cross-block version of SE-Net. GSoP-
Netl performs better than SE-Net and CMPE by 0.45% and
1.49% respectively. iISQRT-COV is very competitive, out-
performing SE-Net by ~1.36%. By introducing second-
order statistics in earlier stages, our GSoP-Net2 makes fur-
ther improvement (1 1.37%) over iSQRT-COV.

5. Conclusion

We presented a simple yet effective method for captur-
ing holistic statistical correlations throughout a deep convo-
lutional neural network. By exploiting global second-order
statistics at earlier stages, the proposed method can learn
more discriminative representations. As far as we know, our
work is among the first which introduce higher-order pool-
ing into intermediate layers of deep networks. Our proposed
networks performs better than SE-Net [15], i.e., the first-
order counterpart, while non-trivially improves state-of-the-
art iSQRT-COV [22] which plugged global covariance pool-
ing as image representation only at network end. The pro-
posed GSoP blocks can be conveniently plugged into other
deep architectures, e.g., Inception [3 1] and DenseNet [17],
which will be our future work.
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