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Abstract

Given a training dataset composed of images and cor-

responding category labels, deep convolutional neural net-

works show a strong ability in mining discriminative parts

for image classification. However, deep convolutional neu-

ral networks trained with image level labels only tend to fo-

cus on the most discriminative parts while missing other ob-

ject parts, which could provide complementary information.

In this paper, we approach this problem from a different per-

spective. We build complementary parts models in a weak-

ly supervised manner to retrieve information suppressed by

dominant object parts detected by convolutional neural net-

works. Given image level labels only, we first extract rough

object instances by performing weakly supervised objec-

t detection and instance segmentation using Mask R-CNN

and CRF-based segmentation. Then we estimate and search

for the best parts model for each object instance under the

principle of preserving as much diversity as possible. In the

last stage, we build a bi-directional long short-term memory

(LSTM) network to fuze and encode the partial information

of these complementary parts into a comprehensive feature

for image classification. Experimental results indicate that

the proposed method not only achieves significant improve-

ment over our baseline models, but also outperforms state-

of-the-art algorithms by a large margin (6.7%, 2.8%, 5.2%

respectively) on Stanford Dogs 120, Caltech-UCSD Birds

2011-200 and Caltech 256.

1. Introduction

Deep neural networks have demonstrated its ability to

learn representative features for image classification [34,

25, 37, 17]. Given training data, image classification [9, 25]

often builds a feature extractor that accepts an input image

and a subsequent classifier that generates prediction prob-

ability for the image. This is a common pipeline in many

high-level vision tasks, such as object detection [14, 16],

∗These authors have equal contribution.
†Corresponding author is Yizhou Yu.

tracking [42, 33, 38], and scene understanding [8, 31].

Although a model trained with the aforementioned

pipeline can achieve competitive results on many image

classification benchmarks, its performance gain primarily

comes from the model’s capacity to discover the most dis-

criminative parts in the input image. To better understand a

trained deep neural network and obtain insights about this

phenomenon, many techniques [1, 54, 2] have been pro-

posed to visualize the intermediate results of deep networks.

In Fig 1, it can be found that deep convolutional neural net-

works trained with image labels only tend to focus on the

most discriminative parts while missing other object parts.

However, focusing on the most discriminative parts alone

can have limitations. Some image classification tasks need

to grasp object descriptions that are as complete as possi-

ble. A complete object description does not have to come in

one piece, but could be assembled together using multiple

partial descriptions. To remove redundancies, such partial

descriptions should be complementary to each other. Image

classification tasks, that could benefit from such complete

descriptions, include fine-grained classification tasks on S-

tanford Dogs 120 [21] and CUB 2011-200 [47], where ap-

pearances of different object parts collectively contribute to

the final classification performance.

According to the above analysis, we approach image

classification from a different perspective and propose a

new pipeline that aims to mine complementary parts instead

of the aforementioned most discriminative parts, and fuse

the mined complementary parts before making final classi-

fication decisions.

Object Detection Phase. Object detection [10, 14, 16] is

able to localize objects by performing a huge number of

classifications at a large number of locations. In Fig 1, the

red bounding boxes are the ground truth, the green ones

are positive object proposals, and the blue ones are nega-

tive proposals. The differences between the positive and

negative proposals are whether they contain sufficient infor-

mation (overlap ratio with the ground truth bounding box)

to describe objects. If we look at the activation map in

Fig 1, it is obvious that the positive bounding boxes spread

much wider than the core regions. As a result, we hypoth-
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esize that the positive object proposals that lay around the

core regions can be helpful for image classification since

they contain partial information of the objects in the image.

However, the challenges in improving image classification

(a) Input (b) CAM (c) Detections
Figure 1. Visualization of class activation map (CAM [54]) and

weakly supervised object detections.

by detection are two-fold. First, how can we perform objec-

t detection without groundtruth bounding box annotations?

Second, how can we exploit object detection results to boost

the performance of image classification? In this paper, we

attempt to tackle these two challenges in a weakly super-

vised manner.

To avoid missing any important object parts, we pro-

pose a weakly supervised object detection pipeline regular-

ized by iterative object instance segmentation. We start by

training a deep classification neural network that produces a

class activation map (CAM) as in [54]. Then the activations

in CAM are taken as the pixelwise probabilities of the corre-

sponding class. A conditional random field (CRF) [40] then

incorporates low level pairwise appearance information to

perform unsupervised object instance segmentation. To re-

fine object locations and pixel labels, a Mask R-CNN [16]

is trained using the object instance masks from the CRF.

Results from the Mask R-CNN are used as a pixel probabil-

ity map to replace the CAM in the CRF. We alternate Mask

R-CNN and CRF regularization a few times to generate the

final object instance masks.

Image Classification Phase. Directly reporting classifica-

tion results in the object detection phase gives rise to infe-

rior performance because object detection algorithms make

much effort to determine location in addition to class labels.

In order to mine representative object parts with the help of

object detection, we utilize the proposals generated in the

previous object detection phase and build a complementary

parts model, which consists of a subset of the proposals that

cover as much complementary object information as possi-

ble. At the end, we exploit a bi-directional long short-term

memory network to encode the deep features of the object

parts for final image classification.

In summary, this paper has the following contributions:

∙ We introduce a new representation for image classifica-

tion, called weakly supervised complementary parts model,

that attempts to grasp complete object descriptions using a

selected subset of object proposals. It is an important step

forward in exploiting weakly supervised detection to boost

image classification performance.

∙ We develop a novel pipeline for weakly supervised ob-

ject detection and instance segmentation. Specifically, we

iterate the following two steps, object detection and seg-

mentation using Mask R-CNN, and instance segmentation

enhancement using CRF. In this way, we get strong object

detection results and build accurate object part model.

∙ To encode complementary information in different object

parts, we exploit a bi-directional long short-term memory

network to make the final classification decision. Experi-

mental results demonstrate that we achieve state-of-the-art

performance on multiple image classification tasks, includ-

ing fine-grained classification on Stanford Dogs 120 [21]

and Caltech-UCSD Birds 200-2011 [47], and generic clas-

sification on Caltech 256 [15].

2. Related Work

Weakly Supervised Object Detection and Segmentation.

Weakly supervised object detection and segmentation re-

spectively locates and segments objects with image label

only [5]. In [7, 6], the object detection is solved as a clas-

sification problem by specific pooling layers in CNNs. The

method in [44] proposed an iterative bottom-up and top-

down framework to expand object regions and optimize seg-

mentation network iteratively. Ge et al. in [12] progres-

sively mine the object locations and pixel labels with the

filtering and fusion of multiple evidences.

While here we perform the weakly supervised object in-

stance detection and segmentation by feeding a coarse seg-

mentation mask and proposal for Mask R-CNN [16] using

CAM [54] and rectifying the object locations and masks

with CRF [40] iteratively. In this way, we avoid losing im-

portant object parts for subsequent object parts modeling.

Part Based Fine-grained Image Classification. Learn-

ing a diverse collection of discriminative parts in a

supervised[51, 50] or unsupervised manner [35, 52, 26] is

very popular in fine-grained image classification. Many

works [51, 50] have been done to build object part models

with part bounding box annotations. The method in [51]

builds two deformable part models [10] to localize objects

and discriminative parts. Zhang et al. in [50] treats objects

and semantic parts equally by assigning them in differen-

t object classes with R-CNN [14]. Another line of work-

s [35, 52, 26, 44] estimate the part location in a unsuper-

vised setting. In [35], parts are discovered based the neural

activation, and then are optimized using a EM similar algo-

rithm. The work in [35] extracts the highlight responses in

CNN as the part prior to initialize convolutional filters, and

then learn discriminative patch detectors end-to-end.
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In this paper, we do not aim to build strong part detectors

to provide local appearance information for the final clas-

sification decision. The goal of our complementary parts

model is to efficiently utilize the rich information hidden

in the object proposals produced during object detection

phase.

Context Encoding with LSTM. LSTM network shows its

powerfulness in encoding the context information for im-

age classification. In [26], Lam et al. address fine-grained

image classification by mining informative image parts us-

ing a heuristic network, a successor network and a single

layer LSTM. The heuristic network is responsible for ex-

tracting features from proposals and the successor network

is responsible for predicting the new proposal offset. A sin-

gle layer LSTM is used to fuse the information both for final

object class prediction and also for the offset prediction. At-

tentional regions is discovered recurrently by incorporating

a LSTM sub-network for multi-label image classification in

[46]. The LSTM sub-network sequentially predict seman-

tic labeling scores on the located regions and captures the

spatial dependencies at the same time.

LSTM is used in our complementary part model to in-

tegrate the rich information hidden in different object pro-

posals detected. Different from the single direction LSTM

in [26, 46], we exploit a bi-directional LSTM to learn deep

hierachical representation of all image patches. Experimen-

tal results show this strategy improve the performance sub-

stantially compared to the single layer LSTM.

3. Weakly Supervised Complementary Parts

Model

3.1. Overview

Given an image 𝑰 and its corresponding image label 𝒄,

the method proposed in this paper aims to mine discrim-

inative parts ℳ of an object that capture complementary

information via object detection and then fuse the mined

complementary parts for image classification. This is a re-

versal of a current trend [16, 32, 29], which fine-tunes image

classification models for object detection. Since we do not

have labeled part locations but image level labels only, we

formulate our problem in a weakly supervised manner. We

adopt an iterative refinement pipeline to improve the estima-

tion of object parts. Then we build a classifier utilizing the

rich context representation focusing on object parts to boost

classification performance. We decompose our pipeline into

three stages, as shown in Fig 2, namely, weakly supervised

object detection and instance segmentation, complementary

part model mining and image classification with context en-

coding.

3.2. Weakly Supervised Object Detection and In-
stance Segmentation

Coarse Object Mask Initialization. Given an image 𝑰 and

its image label 𝒄, the feature map of the last convolutional

layer of a classification network is denoted as 𝜙 (𝑰, 𝜃) ∈
ℝ

𝐾×ℎ×𝑤, where 𝜃 represents the parameters of network 𝜙,

𝐾 is the number of channels, ℎ and 𝑤 are the height and

width of the feature map respectively. Next, global average

pooling is performed on 𝜙 to obtain the pooled feature 𝐹𝑘 =∑
𝑥,𝑦 𝜙𝑘(𝑥, 𝑦). The classification layer is added at the end

and thus, the class activation map (CAM) for class 𝑐 is given

as follows,

𝑴 𝑐(𝑥, 𝑦) =
∑

𝑘

𝑤𝑐
𝑘𝜙𝑘(𝑥, 𝑦), (1)

where 𝑤𝑐
𝑘 is the weight corresponding to class 𝑐 for the 𝑘-th

channel in the global average pooling layer. The obtained

class activation map 𝑴 𝑐 is upsampled to the original image

size ℝ
𝐻×𝑊 through bilinear interpolation. Since an image

could have multiple object instances, multiple locally max-

imum responses could be observed on the class activation

map 𝑴 𝑐. We apply multi-region level set segmentation [3]

to this map to segment candidate object instances. Next,

for each instance, we normalize the class activation to the

range, [0, 1]. Suppose we have 𝑛 object instances in CAM,

we set up an object probability map 𝑭 ∈ ℝ
(𝑛+1)×𝐻×𝑊 ac-

cording to the normalized CAM. The first 𝑛 object probabil-

ity maps denote the probability of a certain object existing

in the image and the (𝑛 + 1)-th probability map represents

the probability of the background. The background proba-

bility map is calculated as

𝑭 𝑛+1
𝑖∈ℝ𝐻×𝑊 = max(1−

𝑛∑

𝜄=1

𝑭 𝜄
𝑖∈ℝ𝐻×𝑊 , 0). (2)

Then a conditional random field (CRF) [40] is used to

extract higher-quality object instances. In order to apply

CRFs, a label map 𝑳 is generated according to the following

formula,

𝑳𝑖∈ℝ𝐻×𝑊 =

{
𝜆, argmax𝜆 𝑭

𝜆
𝑖∈ℝ𝐻×𝑊 > 𝜎𝑐

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3)

where 𝜎𝑐 is always set to 0.8, a fixed threshold used to de-

termine how certain a pixel belongs to an object or back-

ground. The label map 𝑳 is then fed into a CRF to gen-

erate object instance segments, that are treated as pseudo

groundtruth annotations for Mask-RCNN training. The pa-

rameters in the CRF are the same as in [23]. Fig 2 stage 1

shows the whole process of object instance segmentation.

Jointly Detect and Segment Object Instances. Given a set

of segmented object instances, 𝒮 = [𝒮1,𝒮2, ...𝒮𝑛] of 𝑰 , and

their corresponding class labels, generated in the previous
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Figure 2. The proposed image classification pipeline based on weakly supervised complementary parts model. From top to bottom: (a)

Weakly Supervised Object Detection and Instance Segmentation: The first step initializes the segmentation probability map by CAM [54],

and obtaining coarse instance segmentation maps by CRF [40]. Then the segments and bounding boxes are used as groundtruth annotations

for training Mask R-CNN [16] in an iterative manner. (b) Complementary Parts Model: Search for complementary object proposals to

form the object parts model. (c) Image Classification with Context Encoding: Two LSTMs [18] are stacked together to fuse and encode

the partial information provided by different object parts.

stage, we obtain the minimum bounding box of each seg-

ment to form a set of proposals, 𝒫 = [𝒫1,𝒫2, ...𝒫𝑛]. The

proposals 𝒫 , segments 𝒮 and their corresponding class la-

bels are used for training Mask R-CNN for further proposal

and mask refinement. In this way, we turn object detec-

tion and instance segmentation into fully supervised learn-

ing. We train Mask R-CNN with the same setting as in [16].

CRF-Based Segmentation. Suppose there are 𝑚 object

proposals, 𝒫★ = [𝒫★
1 ,𝒫

★
2 , ...,𝒫

★
𝑚], and their corresponding

segments, 𝒮★ = [𝒮★
1 ,𝒮

★
2 , ...,𝒮

★
𝑚] for image class 𝑐, whose

classification score is above 𝜎0, a threshold used to remove

outlier proposals. Then, a non-maximum suppression (N-

MS) procedure is applied to 𝑚 proposals with overlapping

threshold 𝜏 . Suppose 𝑛 object proposals remain afterwards,

𝒪 = [𝒪1,𝒪2, ...,𝒪𝑛], where 𝑛 ≪ 𝑚.

Most existing research utilizes NMS to suppress a large

number of proposals sharing the same class label in order to

obtain a small number of distinct object proposals. Howev-

er, in our weakly supervised setting, proposals suppressed

in the NMS process actually contain rich object parts in-

formation as shown in Fig 2. Specifically, each proposal

𝒫★
𝑖 ∈ 𝒫★ suppressed by object proposal 𝒪𝑗 can be consid-

ered as a complementary part of 𝒪𝑗 . Therefore, the sup-

pressed proposals, 𝒫★
𝑖 , can be used to further refine 𝒪𝑗 . We

implement this idea by initializing a class probability map

𝑭 ★ ∈ ℝ
(𝑛+1)×𝐻×𝑊 . For each proposal 𝒫★

𝑖 suppressed by

𝒪𝑗 , we add the probability map of its proposal segmentation

mask 𝒮★
𝑖 to the corresponding locations on 𝑭 ★

𝑗 by bilinear

interpolation. The class probability map is then normalized

to [0, 1]. For the (𝑛 + 1)-th probability map for the back-

ground, it is defined as

𝑭
★,𝑛+1
𝑖∈ℝ𝐻×𝑊 = max(1−

𝑛∑

𝜄=1

𝑭
★,𝜄

𝑖∈ℝ𝐻×𝑊 , 0). (4)
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Given the class probability maps 𝑭 ★, CRF is applied a-

gain to refine and rectify instance segmentation results as

described in the previous stage.

Iterative Instance Refinement. We alternate CRF-based

segmentation and Mask R-CNN based detection and in-

stance segmentation several times to gradually refine the

localization and segmentation of object instances. Fig 2

shows the iterative instance refinement process.

3.3. Complementary Parts Model

Model Definition. According to the analysis in the pre-

vious stage, given a detected object 𝒪𝑖, its corresponding

suppressed proposals, 𝒫★,𝑖 =
[
𝒫★,𝑖
1 ,𝒫★,𝑖

2 , ...,𝒫★,𝑖
𝑘

]
, may

contain useful object information and can localize correct

object position. Then, it is necessary to identify the most

informative proposals for the following classification task.

In this section, we propose a complementary parts model 𝒜
for image classification. This model is defined by a root part

covering the entire object as well as its context, a center part

covering the core region of the object and a fixed number of

surrounding proposals that cover different object parts but

still keep enough discriminative information.

A complementary parts model for an object with 𝑛 part-

s is defined as a (𝑛 + 1)-tuple 𝒜 = [𝑨1, ...,𝑨𝑛,𝑨𝑛+1],
where 𝑨1 is the object center part, 𝑨𝑛+1 is the root part,

and 𝑨𝑖 is the 𝑖-th part. Each part model is defined by a

tuple 𝑨𝑖 = [𝜙𝑖,𝒖𝑖], where 𝜙𝑖 is the feature of the 𝑖-th

part, 𝒖𝑖 is a ℝ
4 dimensional tuple that describes the geo-

metric information of a part, namely part center and part

size (𝑥𝑖, 𝑦𝑖, 𝑤𝑖, ℎ𝑖). A potential parts model without any

missing parts is called an object hypothesis. To make object

parts complementary to each other, the differences in their

appearance features or locations should be as large as possi-

ble while the combination of parts scores should also be as

large as possible. Such criteria serve as constraints during

the search for discriminative parts that are complementary

to each other. The score 𝒮 (𝒜) of an object hypothesis is

given by the summed score of all object parts minus ap-

pearance similarities and spatial overlap between different

parts.

𝒮 (𝒜) =
𝑛+1∑

𝜄=1

𝑓 (𝜙𝜄)

− 𝜆0

𝑛∑

𝑝=1

𝑛+1∑

𝑞=𝑝+1

[𝑑𝑠(𝜙𝑝, 𝜙𝑞) + 𝛽0𝐼𝑜𝑈(𝒖𝑝,𝒖𝑞)] ,

(5)

where 𝑓 (𝜙𝑘) is the score of the 𝑘-th part in the classification

branch of Mask R-CNN, 𝑑𝑠(𝜙𝑝, 𝜙𝑞) = ∥𝜙𝑝 − 𝜙𝑞∥
2

is the

semantic similarity and 𝐼𝑜𝑈(𝒖𝑝,𝒖𝑞) is the spatial overlap

between parts 𝑝 and 𝑞, and there are two constant parame-

ters 𝜆0 = 0.01 and 𝛽0 = 0.1. Given a set of object hypothe-

ses, we can choose a hypothesis that achieves the maximum

score as the final object part model. Searching for the op-

timal subset of proposals maximizing the above score is a

combinatorial optimization problem, which is computation-

ally expensive. In the following, we seek an approximate

solution using a fast heuristic algorithm.

Part Location Initialization. To initialize a parts mod-

el, we simplify part estimation by designing a grid-based

object parts template that follows two basic rules. First,

every part should contain enough discriminative informa-

tion; Second, the differences between part pairs should be

as large as possible. As shown in Fig 2, deep convolutional

neural networks have demonstrated its ability in localizing

the most discriminative parts of an object. Thus, we set the

root part 𝑨𝑛+1 to be the object proposal 𝒪𝑖 that represents

the entire object. Then, a 𝑠× 𝑠(= 𝑛) grid centered at 𝑨𝑛+1

is created. The size of each grid cell is
𝑤𝑛+1

𝑠
× ℎ𝑛+1

𝑠
, where

𝑤𝑛+1 and ℎ𝑛+1 are the width and height of the root part

𝑨𝑛+1. The center grid cell is assigned to the object center

part. The rest of the grid cells are assigned to part 𝑨𝑖, where

𝑖 ∈ [2, 3, ..., 𝑛]. Then, we initialize each part 𝑨𝑖 ∈ 𝑨 to be

the proposal 𝒫★
𝑗 ∈ 𝒫★ closest to the assigned grid cell.

Parts Model Search. For a model with 𝑛 object parts (we

exclude the (𝑛+ 1)-th part as it is a root part) and 𝑘 candi-

date suppressed proposals, the objective function is defined

as

𝒜 = argmax
𝒜∈𝒮𝒜

𝒮 (𝒜) , (6)

where 𝐾 = 𝐶𝑛
𝑘 , 𝑘 ≫ 𝑛 is the total number of object hy-

pothesises, 𝒮𝒜 =
[
𝒜1,𝒜1, ...,𝒜𝐾

]
is the set of object hy-

potheses. As mentioned earlier, directly searching for an

optimal parts model can be intractable. Thus, we adopt a

greedy search strategy to search for 𝒜. Specifically, we se-

quentially go through every 𝑨𝑖 in 𝑨 and find the optimal

object part for 𝑨𝑖 in 𝒫★ that minimizes 𝒜. The overall time

complexity is reduced from exponential to linear (𝑂(𝑛𝑘)).
In Fig 2, we can see that the object hypotheses generated

during the search process cover different parts of the object

and do not focus on the core region only.

3.4. Image Classification with Context Encoding

CNN Feature Extractor Fine-tuning. Given an input

image 𝑰 and the parts model 𝒜 = [𝑨1, ...,𝑨𝑛,𝑨𝑛+1]
constructed in the previous stage, the image patches

corresponding to the parts are denoted as 𝑰 (𝒜) =
[𝑰 (𝑨1) , 𝑰 (𝑨2) , ..., 𝑰 (𝑨𝑛) , 𝑰 (𝑨𝑛+1)]. During image

classification, random crops of images are often used to

train the model. Thus, apart from the (𝑛+1) patches, we ap-

pend a random crop of the original image as the (𝑛+ 2)-nd

image patch. The motivation for adding a randomly cropped

patch is to include more context information during training

since those patches corresponding to object parts primarily

focus on the object itself. Every patch shares the same la-

bel with the original image it is cropped from. All patches
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Figure 3. Context encoded image classification based on LSTMs.

Two standard LSTMs [18] are stacked together. They have oppo-

site scanning orders.

from all the original training images form a new training set,

which is used to fine-tune a CNN model pretrained on Ima-

geNet. This fine-tuned model serves as the feature extractor

for all image patches.

Stacked LSTM for Feature Fusion. Here we pro-

pose a stacked LSTM module 𝜙𝑙 (⋅; 𝜃𝑙) for feature fu-

sion and performance boosting, which is shown in

Fig 3. First, the (𝑛 + 2) patches from a comple-

mentary parts model are fed through the CNN fea-

ture extractor 𝜙𝑐 (⋅; 𝜃𝑐) trained in the previous step.

The output from this step is denoted as Ψ(𝑰) =
[𝜙𝑐 (𝑰; 𝜃𝑐) , 𝜙𝑐 (𝑰 (𝑨1) ; 𝜃𝑐) , ..., 𝜙𝑐 (𝑰 (𝑨𝑛+2) ; 𝜃𝑐)]. Next,

we build a two-layer stacked LSTM to fuse the extracted

features Ψ(𝑰). The hidden state of the first LSTM is fed

into the second LSTM layer, but the second LSTM fol-

lows the reversed order of the first one. Let 𝐷(= 256)
be the dimension of the hidden state. We use softmax

to generate the class probability vector for each part 𝑨𝑖,

𝑓 (𝜙𝑙 (𝑰 (𝑨𝑖) ; 𝜃𝑙)) ∈ ℝ
𝒞×1. The loss function for final im-

age classification is defined as follows,

ℒ(𝑰,𝒚𝐼) =−
𝒞∑

𝑘=1

𝑦𝑘 log 𝑓𝑘 (𝜙𝑙 (𝑰; 𝜃𝑙))

−
𝑛+2∑

𝑖=1

𝒞∑

𝑘=1

𝛾𝑖𝑦
𝑘 log 𝑓𝑘 (𝜙𝑙 (𝑰 (𝑨𝑖) ; 𝜃𝑙)) ,

(7)

where 𝑓𝑘 (𝜙𝑙 (𝑰; 𝜃𝑙)) is the probability that image 𝑰 belongs

to the 𝑘-th class, 𝑓𝑘 (𝜙𝑙 (𝑰 (𝑨𝑖) ; 𝜃𝑙)) is the probability that

image patch 𝑰 (𝑨𝑖) belongs to the 𝑘-th class, and 𝛾𝑖 is a

constant weight for the 𝑖-th patch. Here we have two set-

tings: first, the single loss sets 𝛾𝑖 = 0 (𝑖 = 2, ..., 𝑛+ 2),
and keeps only one loss at the start of the sequence; second,

the multiple losses sets 𝛾𝑖 = 1 (𝑖 = 2, ..., 𝑛+ 2). Experi-

mental results indicate that, in comparison to a single loss

for the last output from the second LSTM, multiple losses

used here improve classification accuracy by a significant

margin.

4. Experimental Results

4.1. Implementation Details

All experiments have been conducted on NVIDIA

TITAN X(Maxwell) GPUs with 12GB memory using

Caffe [20]. No annotated parts are used. 𝑛 is set to 9 for

all experiments.

In the mask initialization stage, we fine-tune from Ima-

geNet pre-trained GoogleNet with batch normalization [19]

on target datasets. The initial learning rate is 0.001 and is

divided by 10 after every 40000 iterations with the standard

SGD optimizer. Training converges after 70000 iterations.

In the Mask R-CNN refinement process, we adopt ResNet-

50 with Feature Pyramid Network (FPN) as the backbone

and pre-train the network on the COCO dataset following

the same setting described in [16]. We then fine-tune the

model on our target datasets. During training, image-centric

training is used and the input images are resized such that

their shorter side is 800 pixels. Each mini-batch contains

1 image per GPU and each image has 512 sampled ROIs.

The model is trained on 4 GPUs for 150k iterations with an

initial learning rate 0.001, which is divided by 10 at 120k it-

erations. We use the standard SGD optimizer and a weight

decay of 0.0001. The momentum is set to 0.9. Unless speci-

fied, the settings we use for different algorithms follow their

original settings respectively [54, 41, 3, 23, 16]. Example

intermediate results of Mask R-CNN training are shown in

Fig 4.

Figure 4. Example intermediate results for training Mask R-CNN.

First row: pseudo object mask and object bounding box are gener-

ated with CAM and CRF refinement. Second row: With previous

pseudo groundtruth generated, object mask and object bounding

box are further refined with Mask R-CNN.

For the last stage, we adopt GoogleNet with batch nor-

malization [19] as the backbone network for Stanford Dogs

120 and Caltech-UCSD Birds 2011-200 datasets and the
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Caltech256 dataset. First, we fine-tune the pretrained net-

work on the target dataset with the generated object parts.

The parameters are the same as those used in the first stage.

Next, we build a Stacked LSTM module and treat the fea-

tures of the 𝑛+ 2 image patches as training sequences. We

train the model with 4 GPUs and set the learning rate to

0.001, which is decreased by a factor of 10 for every 8000

iterations. We adopt the standard SGD optimizer, momen-

tum is set to 0.9, and the weight decay is 0.0002. Training

converges at 16000 iterations.

4.2. Fine-grained Image Classification

Stanford Dogs 120. Stanford Dogs 120 contains 120 cat-

egories of dogs. There are 12000 images for training, and

8580 images for testing. The training procedure follows the

steps described in Section 4.1.

To perform fair comparisons with existing state-of-the-

art algorithms, we divide our experiments into two group-

s. The first group consists of algorithms that use the orig-

inal training data only and the second group is composed

of methods that use extra training data. In each group, we

set our baseline accordingly. In the first group, we directly

fine-tune the GoogleNet pretrained on ImageNet with the

input image size set to 448 x 448, which is adopted by other

algorithms [11, 30, 39] in the comparison and the classifica-

tion accuracy achieved is 85.2%. This serves as our baseline

model and we then add the proposed stacked LSTM over a

complementary parts model. Our stacked LSTM is trained

with both single loss and multiple losses, which achieves

a classification accuracy of 92.4% and 93.9% respectively.

Both of our proposed variants outerperform existing state-

of-the-art by a clear margin. In the second group, we perfor-

m selective joint fine-tuning (SJFT) with images retrieved

from ImageNet, and the input image size is set to 224 x 224

to obtain our baseline network. The classification accuracy

of our baseline is 92.1%, 1.8% higher than the SJFT with

ResNet-152 counterpart. With our stacked LSTM plugged

in and trained with both single loss and multiple losses,

the performance is further boosted to 96.3% and 97.1% re-

spectively, surpassing the current state of the art by 6% and

6.8%. These experimental results suggest that our proposed

pipeline is superior than all existing algorithms. It is worth

noting that the method in [24] is not directly comparable to

ours because it uses a large amount of extra training data

from the Internet in addition to ImageNet.

Caltech-UCSD Birds 2011-200. Caltech-UCSD Birds

2011-200 (CUB200) consists of 200 bird categories. 5994

images are used for training, and 5794 images for testing.

Our experiments here are split into two groups. In the

first group, no extra training data is used. Our baseline

model in this group is a directly fine-tuned GoogleNet mod-

el that achieves a classification accuracy of 82.6%. We

then add the Stacked LSTM module and train the model

Method Accuracy(%)

MAMC [39] 85.2

Inception-v3 [24] 85.9

RA-CNN [11] 87.3

FCAN [30] 88.9

GoogleNet (our baseline) 85.2

baseline + Feature Concatenation 88.1

baseline + Multiple Average 85.2

baseline + Stacked LSTM + Single Loss 92.4

baseline + Stacked LSTM + Multi-Loss (default) 93.9

Web Data + Original Data [24] 85.9

SJFT with ResNet-152 [13] 90.3

SJFT with GoogleNet (our baseline) 92.1

baseline + Feature Concatenation 93.2

baseline + Multiple Average 92.2

baseline + Stacked LSTM + Single Loss 96.3

baseline + Stacked LSTM + Multi-Loss (default) 97.1

Table 1. Classification results on Stanford Dogs 120. Two sec-

tions are divided by the horizontal separators, namely (from top to

bottom) Experiments without SJFT and Experiments with SJFT.

with both single loss and multiple losses, which achieves

a classification accuracy of 87.6% and 90.3% respective-

ly, outperforming all other algorithms in this compari-

son [53, 48, 45, 27]. Compared to HSNet, our model does

not use any parts annotations in the training stage while

HSNet is trained with groundtruth parts annotations. In

the second group, our baseline model still uses GoogleNet

as the backbone and performs SJFT with images retrieved

from ImageNet. It achieves a classification accuracy of

82.8%. By adding the Stacked LSTM module, the accu-

racy of the model trained with single loss is 87.7% and the

model trained with multiple losses is 90.4%. When the top

performing result in the first group is compared to that of

the second group, it can be concluded that SJFT contributes

little to the performance gain (0.1% gains) and our proposed

method is effective and solid, contributing much to the final

performance (7.7% higher than the baseline). It is worth

noting that, in [4], a subset of ImageNet and iNaturalist [43]

most similar to CUB200 are used for training, and in [24], a

large amount of web data are also used in the training phase.

4.3. Generic Object Recognition

Caltech 256. There are 256 object categories and 1 back-

ground cluster class in Caltech 256. A minimum number of

80 images per category are provided for training, validation

and testing. As a convention, results are reported with the

number of training samples per category falling between 5

and 60. We follow the same convention and report the result

with the number of training sample per category set to 60.

In this experiment, GoogleNet is adopted as our backbone

network and the input image size is 224 x 224. We train our
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Method Accuracy(%)

MACNN [53] 86.5

HBP [48] 87.2

DFB [45] 87.4

HSNet [27] 87.5

GoogleNet (our baseline) 82.6

baseline + Stacked LSTM + Single Loss 87.6

baseline + Stacked LSTM + Multi-Loss 90.3

ImageNet + iNat Finetuning [4] 89.6

SJFT with GoogleNet (our baseline) 82.8

baseline + Stacked LSTM + Single Loss 87.7

baseline + Stacked LSTM + Multi-Loss 90.4

Table 2. Classification results on CUB200. Two sections are di-

vided by the horizontal separators, namely (from top to bottom)

Experiments without SJFT and Experiments with SJFT.

Method Accuracy(%)

ZF Net [49] 74.2±0.3

VGG-19 + VGG-16 [36] 86.2±0.3

VGG-19 + GoogleNet +AlexNet [22] 86.1

𝐿
2-SP [28] 87.9±0.2

GoogleNet (our baseline) 84.1±0.2

baseline + Stacked LSTM + Single Loss 90.1±0.2

baseline + Stacked LSTM + Multi-Loss 93.5±0.2

SJFT with ResNet-152 [13] 89.1±0.2

SJFT with GoogleNet (our baseline) 86.3±0.2

baseline + Stacked LSTM + Single Loss 90.1±0.2

baseline + Stacked LSTM + Multi-Loss 94.3±0.2

Table 3. Classification results on Caltech 256. Two sections are

divided by the horizontal separators, namely (from top to bottom)

Experiments without SJFT and Experiments with SJFT.

model with mini-batch size set to 8 on each GPU.

In Table 3, as described previously, we conduct our ex-

periments under two settings. For the first setting, no extra

training data is used. We fine-tune the pretrained GoogleNet

on the target dataset and treat the fine-tuned model as our

baseline model, which achieves a classification accuracy of

84.1%. By adding our proposed Stacked LSTM module, the

accuracy is increased by a large margin to 90.1% for Single

Loss and to 93.5% for multiple losses respectively, outer-

performing all methods listed in the table. Also, it is 4.1%
higher than its ResNet-152 counterpart. For the second set-

ting, we adopt SJFT [13] with GoogleNet as our baseline

model, which achieves a classification accuracy of 86.3%.

Then we add our proposed Stacked LSTM module and the

final performance is increased by 3.8% for single loss and

8.0% for multiple losses. Our method with GoogleNet as

backbone network outerperfoms current state-of-the-art by

5.2%, demonstrating that our proposed algorithm is solid

and effective.

4.4. Ablation Study

Ablation Study on Complementary Parts Mining.

The ablation study is performed on the CUB200 dataset

with GoogleNet as the backbone network. The classifica-

tion accuracy of our reference model with 𝑛 = 9 parts on

this dataset is 90.3%. First, when the number of parts 𝑛 is

set to 2, 4, 6, 9, 12, 16, and 20 in our model, the correspond-

ing classification accuracy is respectively 85.3%, 87.9%,

89.1%, 90.3%, 87.6%, 86.8% and 85.9%. Obviously the

best result is achieved when 𝑛 = 9. Second, if we use ob-

ject features only in our reference model, the classification

accuracy drops to 90.0%. Third, if we use image features

only, the performance drops to 82.8%. Fourth, if we simply

use the uniform grid cells as the object parts without fur-

ther optimization, the performance drops to 78.3%, which

indicates our search for the best parts model plays an im-

portant role in escalating the performance. Fifth, instead of

a grid-based object parts initialization, we randomly sam-

ple 𝑛 = 9 suppressed object proposals around the bounding

box of the surviving proposal, and the performance drops

to 86.9%. Lastly, we discover that the part order in LSTM

does not matter. We randomly shuffle the part order during

training and testing, and the classification accuracy remains

the same.

4.5. Inference Time Complexity.

The inference time of our implementation is summarised

as follows: in the complementary parts model search phase,

the time for processing an image with its shorter edge set to

800 pixels is around 277𝑚𝑠; in the context encoding phase,

the running time on an image of size 448 × 448 is about

63𝑚𝑠, and on an image of size 224× 224 is about 27𝑚𝑠.

5. Conclusions

In this paper, we have presented a new pipeline for fine-
grained image classification, which is based on a comple-
mentary part model. Different from previous work which
focuses on learning the most discriminative parts for image
classification, our scheme mines complementary parts that
contain partial object descriptions in a weakly supervised
manner. After getting object parts that contain rich informa-
tion, we fuse all the mined partial object descriptions with
bi-directional stacked LSTM to encode these complemen-
tary information for classification. Experimental results in-
dicate that the proposed method is effective and outperform-
s existing state-of-the-art by a large margin. Nevertheless,
how to build the complementary part model in a more effi-
cient and accurate way remains an open problem for further
investigation.
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