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Figure 1: The proposed deep fitting approach can reconstruct high quality texture and geometry from a single image with

precise identity recovery. The reconstructions in the figure and the rest of the paper are represented by a vector of size 700

floating points and rendered without any special effects. We would like to highlight that the depicted texture is reconstructed

by our model and none of the features taken directly from the image.

Abstract

In the past few years, a lot of work has been done to-

wards reconstructing the 3D facial structure from single

images by capitalizing on the power of Deep Convolutional

Neural Networks (DCNNs). In the most recent works, differ-

entiable renderers were employed in order to learn the rela-

tionship between the facial identity features and the param-

eters of a 3D morphable model for shape and texture. The

texture features either correspond to components of a lin-

ear texture space or are learned by auto-encoders directly

from in-the-wild images. In all cases, the quality of the fa-

cial texture reconstruction of the state-of-the-art methods is

still not capable of modeling textures in high fidelity. In this

paper, we take a radically different approach and harness

the power of Generative Adversarial Networks (GANs) and

DCNNs in order to reconstruct the facial texture and shape

from single images. That is, we utilize GANs to train a very

powerful generator of facial texture in UV space. Then, we

revisit the original 3D Morphable Models (3DMMs) fitting

approaches making use of non-linear optimization to find

the optimal latent parameters that best reconstruct the test

image but under a new perspective. We optimize the param-

eters with the supervision of pretrained deep identity fea-

tures through our end-to-end differentiable framework. We

demonstrate excellent results in photorealistic and identity

preserving 3D face reconstructions and achieve for the first

time, to the best of our knowledge, facial texture reconstruc-

tion with high-frequency details.1

1. Introduction

Estimation of the 3D facial surface and other intrinsic

components of the face from single images (e.g., albedo,

etc.) is a very important problem at the intersection of

computer vision and machine learning with countless ap-

plications (e.g., face recognition, face editing, virtual real-

ity). It is now twenty years from the seminal work of Blanz

and Vetter [4] which showed that it is possible to recon-

struct shape and albedo by solving a non-linear optimiza-

1Project page: https://github.com/barisgecer/ganfit
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tion problem that is constrained by linear statistical models

of facial texture and shape. This statistical model of tex-

ture and shape is called a 3D Morphable Model (3DMM).

Arguably the most popular publicly available 3DMM is the

Basel model built from 200 people [20]. Recently, large

scale statistical models of face and head shape have been

made publicly available [7, 10].

For many years 3DMMs and its variants were the meth-

ods of choice for 3D face reconstruction [31, 42, 21].

Furthermore, with appropriate statistical texture models

on image features such as Scale Invariant Feature Trans-

form (SIFT) and Histogram Of Gradients (HOG), 3DMM-

based methodologies can still achieve state-of-the-art per-

formance in 3D shape estimation on images captured un-

der unconstrained conditions [6]. Nevertheless, those meth-

ods [6] can reconstruct only the shape and not the facial tex-

ture. Another line of research in [41, 32] decouples texture

and shape reconstruction. A standard linear 3DMM fitting

strategy [38] is used for face reconstruction followed by a

number of steps for texture completion and refinement. In

these papers [32, 41], the texture looks excellent when ren-

dered under professional renderers (e.g., Arnold), neverthe-

less when the texture is overlaid on the images the quality

significantly drops 2.

In the past two years, a lot of work has been con-

ducted on how to harness Deep Convolutional Neural Net-

works (DCNNs) for 3D shape and texture reconstruction.

The first such methods either trained regression DCNNs

from image to the parameters of a 3DMM [39] or used

a 3DMM to synthesize images [28, 18] and formulate an

image-to-image translation problem using DCNNs to es-

timate the depth3 [34]. The more recent unsupervised

DCNN-based methods are trained to regress 3DMM param-

eters from identity features by making use of differentiable

image formation architectures [9] and differentiable render-

ers [16, 37, 29].

The most recent methods such as [36, 40, 14] use both

the 3DMM model, as well as additional network structures

(called correctives) in order to extend the shape and texture

representation. Even though the paper [36] shows that the

reconstructed facial texture has indeed more details than a

texture estimated from a 3DMM [39, 37], it is still unable to

capture high-frequency details in texture and subsequently

many identity characteristics (please see the Fig. 4). Fur-

thermore, because the method permits the reconstructions

to be outside the 3DMM space, it is susceptible to outliers

(e.g., glasses etc.) which are baked in shape and texture. Al-

though rendering networks (i.e. trained by VAE [25]) gen-

erates outstanding quality textures, each network is capable

of storing up to few individuals whom should be placed in a

2Please see the supplementary materials for a comparison with [32, 41].
3The depth was afterwards refined by fitting a 3DMM and then chang-

ing the normals by using image features.

controlled environment to collect ∼20 millions of images.

In this paper, we still propose to build upon the success

of DCNNs but take a radically different approach for 3D

shape and texture reconstruction from a single in-the-wild

image. That is, instead of formulating regression method-

ologies or auto-encoder structures that make use of self-

supervision [36, 16, 40], we revisit the optimization-based

3DMM fitting approach by the supervision of deep iden-

tity features and by using Generative Adversarial Networks

(GANs) as our statistical parametric representation of the

facial texture.

In particular, the novelties that this paper brings are:

• We show for the first time, to the best of our knowl-

edge, that a large-scale high-resolution statistical re-

construction of the complete facial surface on an un-

wrapped UV space can be successfully used for recon-

struction of arbitrary facial textures even captured in

unconstrained recording conditions4.

• We formulate a novel 3DMM fitting strategy which is

based on GANs and a differentiable renderer.

• We devise a novel cost function which combines vari-

ous content losses on deep identity features from a face

recognition network.

• We demonstrate excellent facial shape and texture re-

constructions in arbitrary recording conditions that are

shown to be both photorealistic and identity preserving

in qualitative and quantitative experiments.

2. History of 3DMM Fitting

Our methodology naturally extends and generalizes the

ideas of texture and shape 3DMM using modern methods

for representing texture using GANs, as well as defines loss

functions using differentiable renderers and very powerful

publicly available face recognition networks [12]. Before

we define our cost function, we will briefly outline the his-

tory of 3DMM representation and fitting.

2.1. 3DMM representation

The first step is to establish dense correspondences be-

tween the training 3D facial meshes and a chosen template

with fixed topology in terms of vertices and triangulation.

2.1.1 Texture

Traditionally 3DMMs use a UV map for representing tex-

ture. UV maps help us to assign 3D texture data into 2D

4In the very recent works, it was shown that it is feasible to reconstruct

the non-visible parts a UV space for facial texture completion[11] and that

GANs can be used to generate novel high-resolution faces[35]. Neverthe-

less, our work is the first one that demonstrates that a GAN can be used

as powerful statistical texture prior and reconstruct the complete texture of

arbitrary facial images.
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Figure 2: Detailed overview of the proposed approach. A 3D face reconstruction is rendered by a differentiable renderer

(shown in purple). Cost functions are mainly formulated by means of identity features on a pretrained face recognition

network (shown in gray) and they are optimized by flowing the error all the way back to the latent parameters (ps, pe, pt, c, i,

shown in green) with gradient descent optimization. End-to-end differentiable architecture enables us to use computationally

cheap and reliable first order derivatives for optimization thus making it possible to employ deep networks as a generator

(i.e,. statistical model) or as a cost function.

planes with universal per-pixel alignment for all textures. A

commonly used UV map is built by cylindrical unwrapping

the mean shape into a 2D flat space formulation, which we

use to create an RGB image IUV . Each vertex in the 3D

space has a texture coordinate tcoord in the UV image plane

in which the texture information is stored. A universal func-

tion exists, where for each vertex we can sample the texture

information from the UV space as T = P(IUV , tcoord).
In order to define a statistical texture representation, all

the training texture UV maps are vectorized and Principal

Component Analysis (PCA) is applied. Under this model

any test texture T0 is approximated as a linear combination

of the mean texture mt and a set of bases Ut as follows:

T(pt) ≈ mt +Utpt (1)

where pt is the texture parameters for the text sample T0.

In the early 3DMM studies, the statistical model of the tex-

ture was built with few faces captured in strictly controlled

conditions and was used to reconstruct the test albedo of

the face. Since, such texture models can hardly represent

faces captured in uncontrolled recording conditions (in-the-

wild). Recently it was proposed to use statistical models

of hand-crafted features such as SIFT or HoG [6] directly

from in-the-wild faces. The interested reader is referred to

[5, 30] for more details on texture models used in 3DMM

fitting algorithms.

The recent 3D face fitting methods [36, 40, 14] still make

use of similar statistical models for the texture. Hence, they

can naturally represent only the low-frequency components

of the facial texture (please see Fig. 4).

2.1.2 Shape

The method of choice for building statistical models of fa-

cial or head 3D shapes is still PCA [22]. Assuming that the

3D shapes in correspondence comprise of N vertexes, i.e.

s =
[

xT

1
, . . . ,xT

N

]T

= [x1, y1, z1, . . . , xN , yN , zN ]
T

. In

order to represent both variations in terms of identity and

expression, generally two linear models are used. The first

is learned from facial scans displaying the neutral expres-

sion (i.e., representing identity variations) and the second

is learned from displacement vectors (i.e., representing ex-

pression variations). Then a test facial shape S(ps,e) can be

written as

S(ps,e) ≈ ms,e +Us,eps,e (2)

where ms,e in the mean shape vector, Us,e ∈ R
3N×ns,e

is Us,e = [Us,Ue] where the Us are the bases that cor-

respond to identity variations, and Ue the bases that cor-

respond to expression. Finally, ps,e are the ns,e shape pa-

rameters which can be split accordingly to the identity and

expression bases: ps,e = [ps, pe].
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2.2. Fitting

3D face and texture reconstruction by fitting a 3DMM

is performed by solving a non-linear energy based cost op-

timization problem that recovers a set of parameters p =
[ps,e,pt,pc,pl] where pc are the parameters related to a

camera model and pl are the parameters related to an illu-

mination model. The optimization can be formulated as:

min
p

E(p) = ||I0(p)−W(p)||2
2
+Reg({ps,e,pt}) (3)

where I0 is the test image to be fitted and W is a vector

produced by a physical image formation process (i.e., ren-

dering) controlled by p. Finally, Reg is the regularization

term that is mainly related to texture and shape parameters.

Various methods have been proposed for numerical op-

timization of the above cost functions [19, 2]. A notable

recent approach is [6] which uses handcrafted features (i.e.,

H) for texture representation simplified the cost function as:

min
pr

E(pr)= ||H(I0(pr))−H(W(pr))||2A+Reg(ps,e) (4)

where ||a||2A = aTAa, A is the orthogonal space to the

statistical model of the texture and pr is the set of reduced

parameters pr = {ps,e,pc}. The optimization problem in

Eq. 4 is solved by Gauss-Newton method. The main draw-

back of this method is that the facial texture in not recon-

structed.

In this paper, we generalize the 3DMM fittings and in-

troduce the following novelties:

• We use a GAN on high-resolution UV maps as our sta-

tistical representation of the facial texture. That way

we can reconstruct textures with high-frequency de-

tails.

• Instead of other cost functions used in the literature

such as low-level ℓ1 or ℓ2 loss (e.g., RGB values [27],

edges [31]) or hand-crafted features (e.g., SIFT [6]),

we propose a novel cost function that is based on fea-

ture loss from the various layers of publicly available

face recognition embedding network [12]. Unlike oth-

ers, deep identity features are very powerful at preserv-

ing identity characteristics of the input image.

• We replace physical image formation stage with a dif-

ferentiable renderer to make use of first order deriva-

tives (i.e., gradient descent). Unlike its alternatives,

gradient descent provides computationally cheaper and

more reliable derivatives through such deep architec-

tures (i.e., above-mentioned texture GAN and identity

DCNN).

3. Approach

We propose an optimization-based 3D face reconstruc-

tion approach from a single image that employs a high fi-

delity texture generation network as statistical prior as il-

lustrated in Fig. 2. To this end, the reconstruction mesh

is formed by 3D morphable shape model; textured by the

generator network’s output UV map; and projected into 2D

image by a differentiable renderer. The distance between

the rendered image and the input image is minimized in

terms of a number of cost functions by updating the latent

parameters of 3DMM and the texture network with gradi-

ent descent. We mainly formulate these functions based on

rich features of face recognition network [12, 33, 26] for

smoother convergence and landmark detection network [13]

for alignment and rough shape estimation.

The following sections introduce firstly our novel texture

model that employs a generator network trained by progres-

sive growing GAN framework. After describing the proce-

dure for image formation with differentiable renderer, we

formulate our cost functions and the procedure for fitting

our shape and texture models onto a test image.

3.1. GAN Texture Model

Although conventional PCA is powerful enough to build

a decent shape and texture model, it is often unable to cap-

ture high frequency details and ends up having blurry tex-

tures due to its Gaussian nature. This becomes more appar-

ent in texture modelling which is a key component in 3D

reconstruction to preserve identity as well as photo-realism.

GANs are shown to be very effective at capturing such

details. However, they suffer from preserving 3D co-

herency [17] of the target distribution when the training im-

ages are semi-aligned. We found that a GAN trained with

UV representation of real textures with per pixel alignment

avoids this problem and is able to generate realistic and co-

herent UVs from 99.9% of its latent space while at the same

time generalizing well to unseen data.

In order to take advantage of this perfect harmony, we

train a progressive growing GAN [23] to model distribu-

tion of UV representations of 10,000 high resolution tex-

tures and use the trained generator network

G(pt) : R
512 → R

H×W×C (5)

as texture model that replaces 3DMM texture model in

Eq. 1.

While fitting with linear models, i.e. 3DMM, is as sim-

ple as linear transformation, fitting with a generator net-

work can be formulated as an optimization that minimizes

per-pixel Manhattan distance between target texture in UV

space Iuv and the network output G(pt) with respect to the

latent parameter pt, i.e. minpt
|G(pt)− Iuv|.
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3.2. Differentiable Renderer

Following [16], we employ a differentiable renderer to

project 3D reconstruction into a 2D image plane based on

deferred shading model with given camera and illumination

parameters. Since color and normal attributes at each vertex

are interpolated at the corresponding pixels with barycen-

tric coordinates, gradients can be easily backpropagated

through the renderer to the latent parameters.

A 3D textured mesh at the center of Cartesian origin

[0, 0, 0] is projected onto 2D image plane by a pinhole cam-

era model with the camera standing at [xc, yc, zc], directed

towards [x′
c, y

′
c, z

′
c] and with the focal length fc. The il-

lumination is modelled by phong shading given 1) direct

light source at 3D coordinates [xl, yl, zl] with color values

[rl, gl, bl], and 2) color of ambient lighting [ra, ga, ba].
Finally, we denote the rendered image given

geometry (ps,e), texture (pt), camera (pc =
[xc, yc, zc, x

′
c, y

′
c, z

′
c, fc]) and lighting parameters

(pl = [xl, yl, zl, rl, gl, bl, ra, ga, ba] by the following:

IR = R(S(ps,pe),P(G(pt)),pc,pl) (6)

where we construct shape mesh by 3DMM as given in Eq. 2

and texture by GAN generator network as in Eq. 5. Since

our differentiable renderer supports only color vectors, we

sample from our generated UV map to get vectorized color

representation as explained in Sec. 2.1.1.

Additionally, we render a secondary image with random

expression, pose and illumination in order to generalize

identity related parameters well with those variations. We

sample expression parameters from a normal distribution as

p̂e ∼ N (µ = 0, σ = 0.5) and sample camera and illumina-

tion parameters from the Gaussian distribution of 300W-3D

dataset as p̂c ∼ N (µ̂c, σ̂c) and p̂l ∼ N (µ̂l, σ̂l). This ren-

dered image of the same identity as IR (i.e., with same ps

and pt parameters) is expressed by the following:

ÎR = R(S(ps, p̂e),P(G(pt)), p̂c, p̂l) (7)

3.3. Cost Functions

Given an input image I0, we optimize all of the afore-

mentioned parameters simultaneously with gradient descent

updates. In each iteration, we simply calculate the forth-

coming cost terms for the current state of the 3D recon-

struction, and take the derivative of the weighted error with

respect to the parameters using backpropagation.

3.3.1 Identity Loss

With the availability of large scale datasets, CNNs have

shown incredible performance on many face recognition

benchmarks. Their strong identity features are robust to

many variations including pose, expression, illumination,

age etc. These features are shown to be quite effective at

many other tasks including novel identity synthesizing [15],

face normalization [9] and 3D face reconstruction [16]. In

our approach, we take advantage of an off-the-shelf state-

of-the-art face recognition network [12]5 in order to capture

identity related features of an input face image and optimize

the latent parameters accordingly. More specifically, given a

pretrained face recognition network Fn(I) : RH×W×C →
R

512 consisting of n convolutional filters, we calculate the

cosine distance between the identity features (i.e., embed-

dings) of the real target image and our rendered images as

following:

Lid = 1−
Fn(I0).Fn(IR)

||Fn(I0)||2||Fn(IR)||2
(8)

We formulate an additional identity loss on the rendered im-

age ÎR that is rendered with random pose, expression and

lighting. This loss ensures that our reconstruction resembles

the target identity under different conditions. We formulate

it by replacing IR by ÎR in Eq. 8 and it is denoted as L̂id.

3.3.2 Content Loss

Face recognition networks are trained to remove all kinds

of attributes (e.g. expression, illumination, age, pose) other

than abstract identity information throughout the convolu-

tional layers. Despite their strength, the activations in the

very last layer discard some of the mid-level features that

are useful for 3D reconstruction, e.g. variations that depend

on age. Therefore we found it effective to accompany iden-

tity loss by leveraging intermediate representations in the

face recognition network that are still robust to pixel-level

deformations and not too abstract to miss some details. To

this end, normalized euclidean distance of intermediate ac-

tivations, namely content loss, is minimized between input

and rendered image with the following loss term:

Lcon =

n
∑

j

||Fj(I0)−F j(IR)||2
HFj ×WFj × CFj

(9)

3.3.3 Pixel Loss

While identity and content loss terms optimize albedo of

the visible texture, lighting conditions are optimized based

on pixel value difference directly. While this cost function

is relatively primitive, it is sufficient to optimize lighting

parameters such as ambient colors, direction, distance and

color of a light source. We found that optimizing illumina-

tion parameters jointly with others helped to improve albedo

of the recovered texture. Furthermore, pixel loss support

identity and content loss with fine-grained texture as it sup-

ports highest available resolution while images needs to be

5We empirically deduced that other face recognition networks work

almost equally well and this choice is orthogonal to the proposed approach.
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Figure 3: Example fits of our approach for the images from various datasets. Please note that our fitting approach is robust

to occlusion (e.g., glasses), low resolution and black-white in the photos and generalizes well with ethnicity, gender and

age. The reconstructed textures are very well at capturing high frequency details of the identities; likewise, the reconstructed

geometries from 3DMM are surprisingly good at identity preservation thanks to the identity features used, e.g. crooked nose

at bottom-left, dull eyes at bottom-right and chin dimple at top-left

downscaled to 112 × 112 before identity and content loss.

The pixel loss is defined by pixel level ℓ1 loss function as:

Lpix = ||I0 − IR||1 (10)

3.3.4 Landmark Loss

The face recognition network F is pre-trained by the im-

ages that are aligned by similarity transformation to a fixed

landmark template. To be compatible with the network, we

align the input and rendered images under the same settings.

However, this process disregards the aspect ratio and scale

of the reconstruction. Therefore, we employ a deep face

alignment network [13] M(I) : R
H×W×C → R

68×2 to

detect landmark locations of the input image and align the

rendered geometry onto it by updating the shape, expression

and camera parameters. That is, camera parameters are op-

timized to align with the pose of image I and geometry pa-

rameters are optimized for the rough shape estimation. As

a natural consequence, this alignment drastically improves

the effectiveness of the pixel and content loss, which are

sensitive to misalignment between the two images.

The alignment error is achieved by point-to-point eu-

clidean distances between detected landmark locations of

the input image and 2D projection of the 3D reconstruc-

tion landmark locations that is available as meta-data of the

shape model. Since landmark locations of the reconstruc-

tion heavily depend on camera parameters, this loss is great

a source of information the alignment of the reconstruction

onto input image and is formulated as following:

Llan = ||M(I0)−M(IR)||2 (11)

3.4. Model Fitting

We first roughly align our reconstruction to the input im-

age by optimizing shape, expression and camera parame-

ters by: minpr E(pr) = λlanLlan. We then simultaneously

optimize all of our parameters with gradient descent and

backpropagation so as to minimize weighted combination

of above loss terms in the following:

min
p

E(p) = λidLid+ λ̂idL̂id+ λconLcon +λpixLpix

+λlanLlan + λregReg({ps,e,pl})
(12)

where we weight each of our loss terms with λ parame-

ters. In order to prevent our shape and expression mod-

els and lighting parameters from exaggeration to arbitrar-

ily bias our loss terms, we regularize those parameters by

Reg({ps,e,pl}).

Fitting with Multiple Images (i.e. Video): While the

proposed approach can fit a 3D reconstruction from a single

image, one can take advantage of more images effectively

when available, e.g. from a video recording. This often

helps to improve reconstruction quality under challenging

conditions, e.g. outdoor, low resolution. While state-of-

the-art methods follow naive approaches by averaging ei-

ther the reconstruction [39] or features-to-be-regressed [16]
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Figure 4: Comparison of our qualitative results with other state-of-the-art methods in MoFA-Test dataset. Rows 2-5 show

comparison with textured geometry and rows 6-8 compare only shapes. The Figure is best viewed in colored and under zoom.

before making a reconstruction, we utilize the power of iter-

ative optimization by averaging identity reconstruction pa-

rameters (ps,pt) after every iteration. For an image set

I = {I0, I1, . . . , Ii, . . . , Ini}, we reformulate our param-

eters as p = [ps,p
i
e,pt,p

i
c,p

i
l] in which we average shape

and texture parameters by the following:

ps =
n
∑

i

pi
s,pt =

n
∑

i

pi
t (13)

4. Experiments

This section demonstrates the excellent performance of

the proposed approach for 3D face reconstruction and shape

recovery. We verify this by qualitative results in Fig-

ures 1, 3, qualitative comparisons with the state-of-the-art

in Sec. 4.2 and quantitative shape reconstruction experiment

on a database with ground truth in Sec. 4.3.

4.1. Implementation Details

For all of our experiments, a given face image is aligned

to our fixed template using 68 landmark locations detected

by an hourglass 2D landmark detection [13]. For the iden-

tity features, we employ ArcFace [12] network’s pretrained

models. For the generator network G, we train a progres-

sive growing GAN [23] with around 10,000 UV maps from

[7] at the resolution of 512 × 512. We use the Large Scale

Face Model [7] for 3DMM shape model with ns = 158
and the expression model learned from 4DFAB database [8]

with ne = 29. During fitting process, we optimize pa-

rameters using Adam Solver [24] with 0.01 learning rate.

And we set our balancing factors as the following: λid :
2.0, λ̂id : 2.0, λcon : 50.0, λpix : 1.0, λlan : 0.001, λreg :
{0.05, 0.01}. The Fitting converges in around 30 seconds

on an Nvidia GTX 1080 TI GPU for a single image.
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Cooperative Indoor Outdoor

Method Mean Std. Mean Std. Mean Std.

Tran et al. [39] 1.93 0.27 2.02 0.25 1.86 0.23

Booth et al. [6] 1.82 0.29 1.85 0.22 1.63 0.16

Genova et al. [16] 1.50 0.13 1.50 0.11 1.48 0.11

Ours 0.95 0.107 0.94 0.106 0.94 0.106

Table 1: Accuracy results for the meshes on the MICC

Dataset using point-to-plane distance. The table reports the

mean error (Mean), the standard deviation (Std.).

4.2. Qualitative Comparison to the Stateoftheart

Fig. 4 compares our results with the most recent face

reconstruction studies [37, 36, 16, 39, 40] on a subset of

MoFA test-set. The first four rows after input images show

a comparison of our shape and texture reconstructions to

[16, 39, 36] and the last three rows show our reconstructed

geometries without texture compared to [36, 40]. All in all,

our method outshines all others with its high fidelity pho-

torealistic texture reconstructions. Both of our texture and

shape reconstructions manifest strong identity characteris-

tics of the corresponding input images from the thickness

and shape of the eyebrows to wrinkles around the mouth

and forehead.

4.3. 3D shape recovery on MICC dataset

We evaluate the shape reconstruction performance of our

method on MICC Florence 3D Faces dataset (MICC) [1] in

Table 1. The dataset provides 3D scans of 53 subjects as

well as their short video footages under three difficulty set-

tings: ’cooperative’, ’indoor’ and ’outdoor’. Unlike [16, 39]

which processes all the frames in a video, we uniformly

sample only 5 frames from each video regardless of their

zoom level. And, we run our method with multi-image sup-

port for these 5 frames for each video separately as shown

in Eq. 13. Each test mesh is cropped at a radius of 95mm

around the tip of the nose according to [39] in order to eval-

uate the shape recovery of the inner facial mesh. We per-

form dense alignment between each predicted mesh and its

corresponding ground truth mesh, by implementing an iter-

ative closest point (ICP) method [3]. As evaluation metric,

we follow [16] to measure the error by average symetric

point-to-plane distance.

Table 1 reports the normalized point-to-plain errors in

millimeters. It is evident that we have improved the abso-

lute error compared to the other two state-of-the-art meth-

ods by 36%. Our results are shown to be consistent across

all different settings with minimal standard deviation from

the mean error.

4.4. Ablation Study

Fig. 5 shows an ablation study on our method where the

full model reconstructs the input face better than its variants,

(a) I0 (b) IR (c) IR albedo

(d) IR \ Lid (e) IR \ L̂id (f) IR \ Lcon

(g) IR \ Lpix (h)IR\{Lid,L̂id,Lcon} (i) IR with T(pt)

Figure 5: Contributions of the components or loss terms of

the proposed approach with an leave-one-out ablation study.

something that suggests that each of our components signif-

icantly contributes towards a good reconstruction. Fig. 5(c)

indicates albedo is well disentangled from illumination and

our model capture the light direction accurately.

While Fig. 5(d-f) shows each of the identity terms con-

tributes to preserve identity, Fig. 5(h) demonstrates the sig-

nificance identity features altogether. Still, overall recon-

struction utilizes pixel intensities to capture better albedo

and illumination as shown in Fig. 5(g). Finally, Fig. 5(i)

shows the superiority of our textures over PCA-based ones.

5. Conclusion

In this paper, we revisit optimization-based 3D face re-

construction under a new perspective, that is, we utilize the

power of recent machine learning techniques such as GANs

and face recognition network as statistical texture model

and as energy function respectively.

To the best of our knowledge, this is the first time that

GANs are used for model fitting and they have shown excel-

lent results for high quality texture reconstruction. The pro-

posed approach shows identity preserving high fidelity 3D

reconstructions in qualitative and quantitative experiments.
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