
3D Guided Fine-Grained Face Manipulation

Zhenglin Geng1,2, Chen Cao2, and Sergey Tulyakov2

1Stanford University, 2Snap Inc.

zhenglin@stanford.edu,{chen.cao,stulyakov}@snapchat.com

Figure 1: Qualitative samples. Given an image, our method can generate multiple realistic expressions of the same subject.

Abstract

We present a method for fine-grained face manipula-

tion. Given a face image with an arbitrary expression, our

method can synthesize another arbitrary expression by the

same person. This is achieved by first fitting a 3D face

model and then disentangling the face into a texture and a

shape. We then learn different networks in these two spaces.

In the texture space, we use a conditional generative net-

work to change the appearance, and carefully design input

formats and loss functions to achieve the best results. In the

shape space, we use a fully connected network to predict the

accurate shapes and use the available depth data for super-

vision. Both networks are conditioned on expression coef-

ficients rather than discrete labels, allowing us to generate

an unlimited amount of expressions. We show the superior-

ity of this disentangling approach through both quantitative

and qualitative studies. In a user study, our method is pre-

ferred in 85% of cases when compared to the most recent

work. When compared to the ground truth, annotators can-

not reliably distinguish between our synthesized images and

real images, preferring our method in 53% of the cases.

1. Introduction

Face manipulation, a problem involving changing the fa-

cial expressions in images enables many creative applica-

tions. Until very recently, this problem was mainly ad-

dressed from a graphical perspective in which a 3D Mor-

phable Model (3DMM) was first fitted to the image and then

re-rendered with a different facial expression. Such tech-

niques jointly model both the shape and the appearance and

are typically trained using spatially aligned 3D scans of peo-

ple [1]. A desired facial expression can then be generated

by combining graphical primitives called blendshapes [16].

The blendshapes often correspond to the Facial Action Cod-

ing System (FACS) [7] which defines a set of anatomically

related muscle activations. Unfortunately, due to the Gaus-

sian assumption, 3DMMs often produce blurry shapes and

appearances, preventing realistic face rendering.

Deep generative techniques offer a different way of solv-

ing the face manipulation problem. In contrast to 3DMMs,

they learn an internal representation that jointly models the

shape and the appearance of the faces. Manipulation is then

performed by conditioning the decoder on expression labels

9821



[6, 14] or latent vectors [17]. This solution is sub-optimal in

several respects. First, neural networks have been recently

shown to have difficulties in generating simple geometric

transformations [18], whereas face manipulation involves

many such transformations, such as mouths opening, eyes

closing and other transformations. Second, their models re-

quire many examples of such transformations along with

their intensities at the training time, which becomes even

more problematic for less common expressions such as sad-

smile or negative-surprise. Third, each model supports only

a small set of manipulation operations, not allowing fine-

grained 3D manipulation.

In this paper we present a novel method that combines

3DMMs and deep generative techniques in a single frame-

work for fine-grained face manipulation. Randomly se-

lected qualitative samples produced by our method are

given in Fig. 1. Given a face image, we first fit a 3D face

model on the image to obtain the texture and the shape. The

shape is further represented as identity and expression coef-

ficients using a bilinear model [5]. This way we disentangle

the shape and the texture spaces and use separate branches

in our pipeline to apply transformations in these spaces.

The texture branch consists of a convolutional neural net-

work and assumes the texture and the desired expression as

inputs, producing a new texture which corresponds to the

desired expression. Due to the difficulties of the convo-

lutional networks in generating geometric transformations,

we propose conditioning the texture branch on the UV maps

that describes target geometry information instead of di-

rectly concatenating the labels as in [6] or coefficients as

in [21]. To better preserve texture-expression consistency

and the identities in the generated images, we design corre-

sponding loss functions for improved results.

The shape branch is implemented using a fully con-

nected neural network taking the identity and the expression

coefficients as inputs and outputting shape deformation nec-

essary to accurately match the desired expression. Notably,

a common problem in fitting a morphable model to the face

is its inability to fully capture the face shape given only a

2D RGB input image sparsely labeled with 2D landmarks.

This is often called face shape hallucination [25]. At train-

ing time, to improve 3D reconstruction, we additionally su-

pervise the shape branch using the available depth data in

the FaceWarehouse dataset [5].

The proposed approach has a number of benefits. First,

we disentangle the texture and shape shapes to make it eas-

ier to learn for each branch. In the texture space, faces tend

to be more similar despite significant variance in the image

space caused by different poses and expressions. There-

fore, the texture branch only focuses on the appearance de-

tails such as wrinkles, shadows and shading. Similarly, the

shape branch focuses on the geometric details only. Second,

since we represent expressions as a combination of Face

Action Unit coefficients [7], rather than discrete labels, our

approach can generate infinite number of target expressions.

Third, we further distinguish identity and expression coef-

ficients, to better preserve subject-specific features by only

changing the expression components in the shape space.

We compare the proposed method to the most recent face

manipulation methods [6, 21] and show that our approach

is superior in all the experiments. In the user studies that

we conducted, the presented method is preferred more than

85% of the time when compared with the existing works.

When compared to the ground truth testing images, our

method is preferred in 53% of cases, supporting that it is

difficult for a human to distinguish real images from those

generated by our method.

2. Related Work

We review relevant geometry based methods and deep

generative methods for face manipulation.

Geometry-based methods. A pioneering work of Blanz

and Vetter [1] presented the first public 3D Morphable

Model (3DMM). They densely captured surface geometry

and color data of 200 identities and created a linear model

to represent the face variations of different subjects using

principal component analysis (PCA). Vlasic et al. [27] pro-

posed a multilinear model of facial expressions for tracking

and re-targeting. Cao et al. [5] proposed FaceWarehouse, an

extensive facial expression database, which contains 47 dif-

ferent facial expressions for each of the 150 subjects. This

dataset later became one of the most adopted datasets for

3D face fitting and animation [4, 33].

In [5], they first fitted a 3D face shape to match the in-

put image, and then changed the expression coefficients to

perform animation by warping the image to a new expres-

sion. Thies et al. [23] presented Face2Face for real-time

video-to-video facial expression re-targeting. They first fit a

3DMM together with lighting parameters and re-render it in

the target video. Although these geometry-based methods

produce convincing results of large-scale motions, they are

unable to model parts not existing in the source image, such

as teeth when the mouth is closed, and resort to rendering

such parts using conventional graphics approaches. There-

fore, these methods often fail to achieve realistic results, as

humans are especially sensitive to non-realistic artifacts in

faces.

Deep generative methods. Face manipulation can be

viewed as the unpaired image-to-image translation prob-

lem [18, 32] . Until very recently, one had to train a sep-

arate model, attribute-by-attribute to perform face manipu-

lation [17]. Lample et al. [14] proposed to additionally con-

trol the intensity of the attribute. Their work can change two

attributes at the same time, but only at the cost of reduced

image quality. Choi et al. [6] used conditional image-to-

image translation to allow multiple attributes to be trained

9822



Figure 2: Overview of our pipeline. We first fit a 3DMM to the input and decouple it into the texture and shape coefficients.

The texture branch assumes the source texture and the spatial representation of the target expression to produce the output

shape. The shape branch uses the 3DDM coefficients to output a shape deformation. Finally, the global branch blends the

two outputs in the image space.

together in an unsupervised fashion. These attributes can in-

clude gender, age, hair color, expression and so on. Despite

the impressive results, their approach is still limited to a

finite number of attributes, preventing fine-grained manipu-

lation. Several video generation methods for face animation

were proposed. Given a face image, such methods perform

video prediction [26] or motion transfer [22, 28] to manip-

ulate faces. Recently, Pumarola et al. [21] presented a work

performing anatomically-aware face animation. Similarly

to us, they animate faces according to Facial Action Units.

The method presented in this paper is different than

geometry-based and deep generative methods in that it com-

bines the benefits of both lines of work in a single end-to-

end trainable framework. As opposed to purely 3DMM-

based methods and similarly to deep generative works, our

framework features high quality face texture synthesis. In

contrast to deep generative works, and similarly to 3DMMs-

based methods, our approach can generate arbitrary number

of facial expressions. A key difference with Pumarola et al.

[21] is that we learn to explicitly disentangle shape and ap-

pearance into different branches. This enables learning a

rich face prior from our shape branch, and allows the tex-

ture branch to focus on synthesizing realistic images.

3. Method

Our pipeline is shown in Fig. 2. The approach requires

a face image and the desired expression encoded by coef-

ficients. We first fit the 3D face shape and camera projec-

tion matrix from the image, with which we extract textures

(Sec. 3.1). Then, we input the texture and the target expres-

sion to the texture branch and generate the target texture

containing the details of the desired expression (Sec. 3.2).

As the 3DDM-based shape representations are often inaccu-

Figure 3: Examples of fitting a 3DMM to an RGB-D image.

rate, we use a fully connected network in the shape branch

to predict a more accurate shape for improved synthesis

quality (Sec. 3.3). The predicted texture and shape are then

combined and rendered to obtain a target image. We then

use the global branch network on the target image to further

improve the quality (Sec. 3.4).

3.1. 3D Face Fitting

Face fitting is the process of estimating the 3D face shape

and the camera projection matrix given an input face image.

Following [5], we represent the 3D face shape using a bilin-

ear model as:

S = Cr ×2 a×3 e, (1)

where S ∈ R
3N is the face shape, N is the number of ver-

tices, Cr ∈ R
3N×Na×Ne is the weight tensor, a ∈ R

Na

are the identity coefficients, e ∈ R
Ne are the expression

coefficients, ×i is the tensor contraction operation along

the ith mode of the bilinear model. In our experiments,

Ne = 46, Na = 50 and N = 1220.

Given a face image (Fig. 3a), we first detect the 96 2D

landmarks using [12] (Fig. 3b). Then, we jointly estimate
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Figure 4: Texture branch inputs and outputs. The input image is mapped to the texture space. The texture branch uses

important geometry information represented spatially using UV-maps. The output of the texture branch is a texture containing

the desired target expression.

the camera projection transformation M : R
3 → R

2, as

well as identity and expression coefficients, by minimizing

the L2 distance between the projected landmarks and de-

tected landmarks. Note that we fix the identity coefficients

for multiple images of the same person during optimization.

The inaccuracy in the fitting process causes the extracted

textures to be misaligned and thus introduces additional

variance for neural network to learn. To tackle this, we

make use of the depth data when it is available. For the

input image with a depth map (Fig. 3c), we minimize the

L2 distance between the shape vertices and its closest 3D

depth points and then refine the shape using [8] (Fig. 3d).

When the depth is not available, we deform the shape to

further reduce the landmark errors as in [5].

We define a 2D UV coordinate for each 3D shape ver-

tex, consistent across the dataset. The textures are extracted

with the UV coordinates, camera projection and fitted 3D

shape using the standard rasterization pipeline. (Fig. 3e).

3.2. Texture Branch

Our texture branch learns a function G(Tsrc, esrc, etgt)
which transfers a texture T

src extracted from the source

image with the expression e
src, to texture T

tgt, contain-

ing the target expression e
tgt. Inspired by recent advances

in image-to-image translation [9, 32], we adopt conditional

generative adversarial networks (cGAN) to learn the func-

tion G.

Input format. Typically the generator G is modeled as

a convolutional neural network. In our case, the generator

needs to take both the texture image T and the expression

coefficients e as input. A straightforward approach to com-

bine these different formats is to concatenate each element

of e as a separate feature map to the input image T as in

[6, 21]. We argue that converting the geometry information

of e into a spatial representation, such as a UV-map, helps

better utilize local convolutional operations learned by the

texture branch.

In our implementation, this information includes object

space normals, deformation, curvature, position difference,

normal difference and semantic labels. We show examples

in Fig. 4. Normal determines the local surface orientation

which is considered important in shading. Deformation is

determined by the ratio of the one-ring area near each vertex

in the target and neutral expressions, where a small defor-

mation value means compression and can be associated with

wrinkles. Curvature differentiates bumped regions from flat

regions. Position and normal differences imply similarities

between source and target expressions near each vertex, in-

dicating the likelihood of the output pixel resembling the

input pixel at the same location. Furthermore, to address

the translational equivariance issue of convolutions [18], se-

mantic labels are used to indicate different facial compo-

nents which should be synthesized differently. These labels

include eyes, eyebrows, nose, lips and inner mouth and oth-

ers. As all the shapes have the fixed layout in the UV space,

we manually define the labels on the 3D mesh and rasterize

them to get the semantic map. We then use this semantic

map for all the samples. We evaluate the effectiveness of

our input format in Sec. 5.1.

Loss functions. Let Treal
i,p ,Tfake

i,p be the real and fake

textures of identity ai under the expression ep. We design

three discriminator terms to improve the synthesis quality:

• Dreal is the standard discriminator to distinguish be-

tween real textures Treal
i,p and synthesized fake textures

T
fake
i,p .

• Dpair is used to ensure pair consistency between the

texture and the expression coefficients as [2]. Our

discriminator Dpair learns to differentiate matched

pairs of real texture and expressions (Treal
i,p , ep)

from matched pairs of fake texture and expressions

(Tfake
i,p , ep) and mismatched pairs of real texture and

expressions (Treal
i,p , er), where er is a random expres-

sion.

• Diden is designed to preserve identities. It is used

to differentiate real textures with the same identity

(Treal
i,p ,Treal

i,q ), from real and fake textures with the
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Figure 5: The first 5 eigenvectors of an average face model.

In each eigenvector, the vertices with similar colors have

similar deformation.

same identity (Treal
i,p ,Tfake

i,q ), and real textures with dif-

ferent identities (Treal
i,p ,Treal

j,q ), where p, q index ran-

dom expressions and i, j index different identities.

We use LSGAN [20] to calculate the respective loss

terms Lreal,Lpair,Liden. The combined GAN objective

writes as:

LGAN = Lreal + Lpair + Liden. (2)

The objective for our discriminators is

max
Dreal,Dpair,Diden

LGAN. (3)

The generator G minimizes LGAN and is supervised by

L1 loss and perceptual loss [10] Lperc. Though the original

perceptual loss is proposed in image space, we find it effec-

tive in texture space as well (Sec. 5.1). Thus our generator

objective is

min
G

LGAN + λL1
L1 + λpercLperc. (4)

In our experiments, we empirically set λL1
= 10, λperc =

10. For more details of our loss terms, please see our sup-

plementary materials.

3.3. Shape Branch

The 3D face shape S is a non-linear function of the ex-

pression coefficients due to the complex interaction of mus-

cles, flesh and bones. Previous works [4, 5] model this com-

plex interaction linearly. Although this method is simple

and widely adopted, we argue that these limited expression

models can only represent the large-scale motion, and strug-

gle to capture the fine-grained details.

To further increase the accuracy of the shape branch, we

deform the face shape either through depth or landmarks as

mentioned in Sec 3.1. To fully capture these geometric de-

tails, we formulate the shape function as a linear part using

Eqn. 1 and and a non-linear part D(a, esrc, etgt), which is

an additional deformation field. Similarly to [24], we train

a neural network to learn only the non-linear deformation

D to reduce variance.

The output of D(a, esrc, etgt) represents the per vertext

displacement vectors. These vectors can be very high di-

mensional. To reduce dimensionality, we model the dis-

placements with a spectral representation as in [3]. More

Figure 6: Demonstration of the global branch.

specifically, we compute eigenvectors of the k smallest non-

zero eigenvalues of the graph Laplacian matrix of a generic

3D face shape [15] and use them as the basis of vertex dis-

placements. We use a fully connected network with 2 hid-

den layers to predict the basis coefficients. Fig. 5 shows the

first 5 eigenvectors. In our experiments we set k = 100.

3.4. Global Branch

We use the predicted texture T̂ and shape Ŝ to render the

predicted face on the image. The goal of the global branch is

to blend this face into the background seamlessly. We show

the process in Fig. 6. We first make the artificial margin

between the rendered face and the background and train a

network to hallucinate in between. The margin is computed

using a dilation approach with kernel size 12. To fill in the

margin, one could use image inpainting techniques [29, 30].

We have a simpler problem since the input image is usu-

ally similar to the background image. Therefore, we use the

global network that takes the input image, the rendered face

and the region outside of the margin as input. The network

then learns to blend the generated face and the background

together. Occasionally this still produces artifacts near the

boundary. Therefore at test time, we apply image blending

with the input image as a post-processing step. We describe

this step in more details in the supplemental materials.

4. Implementation Details

Datasets. Our datasets include FaceWarehouse [5] and

Chicago Face Dataset (CFD) [19]. For the training set, we

use 493 identities from FaceWarehouse, each with at least

20 different expressions and 152 identities from CFD, each

with at least 5 expressions. Among this data, 140 identities

in Facewarehouse have depth. For the test set, we use 87

identities from Facewarehouse and 5 identities from CFD.

Our datasets span different genders and skin colors. We use

256 × 256 for our image and texture resolution. To further

increase the resolution multistage generative models can be

employed [11, 31].

Network architecture. The texture and global branch

generators adopt pix2pix [9] architecture with attention

maps [21]. We change the transposed convolutions to up-

sampling layers followed by 3x3 convolutions. Similarly

our discriminators adopt the pix2pix discriminator architec-

tures. See the supplement for more details.
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Figure 7: Qualitative samples of different inputs of the tex-

ture branch evaluated on rare facial expressions. Note that

the proposed approach generalizes better compared to the

standard method of directly appending expression coeffi-

cients.

Training. We use Adam [13] optimizer with a learning

rate of 0.0001, β1 = 0.5, β2 = 0.9. We first train the texture

branch and the shape branch. Then we fix their weights

and train the global branch. We use a single NVIDIA Tesla

V100 GPU and we train for 5 days to get the best results.

5. Experiments

In this section, we first conduct an ablation study to eval-

uate the design choices in our system. Next, we compare

our approach with other approaches both qualitatively and

quantitatively. Finally, we show additional qualitative re-

sults.

5.1. Ablation Study

Texture branch input format. We compare our pro-

posed input format with directly concatenating expression

coefficients to the input of the neural network as in [6, 21].

We show that our approach generalizes better by transfer-

ring an image from CFD to a rare expression that CFD

rarely covers in Fig. 7. The model (top row) which appends

expression coefficients directly as input fails to generate the

correct appearance for regions like the inner mouth, cheeks

near mouth corners and lips. This occurs since the generator

has rarely seen the combination of this face skin color with

these specific coefficients in the training dataset. The pro-

posed approach, which conditions on the texture branch on

the spatial representation of geometry information, gener-

alizes better. We believe our approach better uses the local

convoluational structure of the neural network.

Texture branch loss functions. We apply ablation study

on our loss terms. We show results in Fig. 8. We first re-

move Lpair and Liden. The Lpair term is designed to en-

force texture-expression pair consistency. We can observe

that expression specific features such as wrinkles are less

observable after the removal. Liden is designed to preserve

identities, which helps direct appearance details from the

source texture to the synthesized texture. We can see that

Figure 8: Qualitative evaluation of different loss terms. The

model trained with the full objects generates images with

higher fidelity.

Table 1: RMSE of vertices with/without shape branch.

Lower number is better.

RMSE (mm)

Without shape branch 2.2158

With shape branch 1.7619

the synthesized images, especially near the teeth region, are

more blurry after the removal. We then remove the percep-

tual loss while keeping the rest unchanged. Similar to L1

loss [9], the perceptual loss helps avoid artifacts near the

mouth region. It also allows the network to capture more

subtle details such as wrinkles on the forehead compared to

L1 loss alone.

Shape branch. We demonstrate that our shape branch

generates more realistic shapes than the linear blendshapes

both quantitatively and qualitatively. We first compute the

root mean square error (RMSE) between the generated face

mesh and our ground truth fitted face mesh in Table 1. After

being deformed by our shape branch, the predicted mesh

is closer to the ground truth. We also show an example

demonstrating the change of the mesh in Fig. 9. Without

the shape branch, the fitted linear blendshapes tend to open

the jaw more widely, which looks less natural, while our

shape branch learns to close the jaw, such that the shape

gets closer to the ground truth.

Note that despite the obvious benefits of the texture

shape decoupling, our carefully designed input format, loss

functions and shape branch are necessary for best results.

5.2. Comparisons

We compare our face manipulation results to the direct

texture mapping approach [5], StarGAN [6] and GANima-

tion [21]. The method in [5] is a linear model combined

with a computer graphics rendering approach, which also

separates the texture and the shape but does not alter the
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Figure 9: Qualitative evaluation of the shape branch. The

top row shows the input image, the generated images with-

out and with the shape branch and the ground truth target

image. The bottom row shows the fitted mesh with the color

coded depth error in mm. Lower depth error makes the gen-

erated images more realistic.

texture. The latter two train on image space only concate-

nating the attributes or action units directly to the input. To

evaluate the effectiveness of different methods at handling

wide ranges of extreme expressions, we choose FaceWare-

house [5] as our training set because it contains many chal-

lenging expressions other datasets do not normally cover.

We use the 87 identities in our test set as mentioned in

Sec. 4 and we do not include CFD for easier comparisons.

We trained StarGAN using 20 different expressions as at-

tributes. We implemented GANimation with all the atten-

tion mechanisms and loss terms, except that we replaced the

regressor with a classifer in their discriminator, which tends

to give better results on our dataset. For all the compari-

son experiments, we transfer neutral expressions to differ-

ent expressions. We use the real captured data from [5] as

the ground truth.

Qualitative study. We show several examples in Fig. 10.

Direct texture mapping is not able to generate wrinkles

in the smiling expression, teeth in mouth opening expres-

sion or correct shading details in mouth blowing expression.

For StarGAN and GANimation, we observe that they tend

to produce more artifacts in expressions that have larger

scale facial movements like mouth opening and mouth slop-

ing. We hypothesize that this is because the competing ap-

proaches need to learn a complex model with all the rigid

pose, shape and appearance variance together, while our

fitting process and shape branch take the first two away,

leaving a simpler function for the texture branch to learn.

We also find that GANimation sometimes leaves the details

from the input image in the output. Interested readers can

Table 2: Quantitative comparisons and user studies results

of different methods. We report the Average Content Dis-

tance (ACD, lower is better) and the user preference score

(higher is beter). Best results in bold.

Methods ACD
User Preference

Ours / Others

Texture mapping [5] 0.6194 69.8 / 30.2

StarGAN [6] 0.5981 86.8 / 13.2

GANimation [21] 0.5595 86.2 / 13.8

Ours 0.5107 N/A

Ground truth 0.4608 53.4 / 46.6

magnify the lips region on the 4th column and eyebrows re-

gion in the 5th column to see the artifacts. We hypothesize

that this is a problem caused by the attention mechanism in

the image space. Our approach has a fixed texture layout

and thus does not have this problem.

Note that our synthesized images have different camera

poses than the ground truth. This is because FaceWarehouse

is captured with different head poses and our images are

cropped differently based on the face sizes. Also note that

the synthesized images look different from the ground truth.

This is because there are numerous ways that a person can

perform an expression and our method only generates a pos-

sible realization of that expression.

Quantitative study. We adopt Average Content Dis-

tance (ACD) from [26] to evaluate how well identities are

preserved using different methods. We extract feature vec-

tors from each synthesized image and compute the L2 dis-

tance to the feature vector of the input image. We show

the results in Table 2. Our method gives the best results

besides ground truth. Note that we do not optimize with re-

spect to any pretrained face recognition networks at training

time. We attribute our lower ACD to our disentanglement

representation of texture and shape, which makes it easier

to preserve identities.

User study. We perform a user study on Amazon Me-

chanical Turk (AMT), where each worker is presented with

the reference image, an image synthesized by our method

and an image synthesized by a competing method. We ask

the turkers to evaluate the synthesized images based on their

quality, realism of the expression, and similarity to the ref-

erence image. Since faces in ground truth images have dif-

ferent poses, for comparison with ground truth we only ask

the subjects to evaluate based on the quality of the image

and expression, eliminating other irrelevant factors as much

as possible. For each comparison, we have 1, 740 pairs of

images and each pair is evaluated by 3 workers. We only

accepted turkers with a lifetime HIT approval rate ≥ 95%.

We show the results in Table 2. Users prefer our methods

over all other methods. We get a slightly higher preference

score than ground truth. This proves that it is difficult for
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Figure 10: Comparison of face synthesis methods. Given the same input image each method generated 11 different facial

expressions. Our approach produced less artifacts and renders more realistically looking images than the competing methods.

Figure 11: Manipulating images with different source ex-

pressions. Although the input images are different, each

manipulated image looks plausible.

humans to distinguish between the images generated by our

method and the ground truth.

5.3. More Results

Different input expressions. Our method can handle in-

put expressions that are not neutral. We show synthesized

images using the same person with different expressions as

input in Fig. 11. Although our input images are different,

our synthesized images with the same target expressions

still look similar. We also note that the method can generate

a different version of each expression for each subject.

Images in the wild. We show examples of our method

applied to images in-the-wild in Fig. 1 and refer the reader

to the supplementary materials for more in-the-wild results.

Due to the decoupled face representation and separate tex-

ture and shape branches, our method is robust to different

identities, expressions, head poses or lighting.

6. Conclusion

We presented a 3D guided fine grained face manipula-

tion approach to transfer from one arbitrary expression to

another arbitrary expression. The method decomposes an

image into shape and texture spaces, followed by process-

ing of these spaces with separate branches. We showed the

benefits of such a scheme. Conditioning the pipeline on

the spatial representation of important geometry informa-

tion is advantageous over the straightforward approach of

directly appending expression coefficients. To further boost

the quality, we introduced several of the loss functions ac-

counting for the pairwise consistency and identity. Our ab-

lation studies supported the proposed framework. Further-

more, our method showed a significantly better ACD score

as well as a preference by human annotators when com-

pared to the competing approaches. Finally, when com-

pared to the real images, the annotators were not able to

distinguish our generated images from the real images, fully

supporting the benefits of the presented method.
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