
Balanced Self-Paced Learning for Generative Adversarial Clustering Network

Kamran Ghasedi Dizaji1, Xiaoqian Wang1, Cheng Deng2, and Heng Huang∗1,3

1Electrical and Computer Engineering Department, University of Pittsburgh, PA, USA
2School of Electronic Engineering, Xidian University, Xi’an, Shaanxi, China

3JD Digits
kamran.ghasedi@gmail.com, xiaoqian.wang@pitt.edu, chdeng.xd@gmail.com, heng.huang@pitt.edu

Abstract

Clustering is an important problem in various machine

learning applications, but still a challenging task when

dealing with complex real data. The existing clustering al-

gorithms utilize either shallow models with insufficient ca-

pacity for capturing the non-linear nature of data, or deep

models with large number of parameters prone to overfit-

ting. In this paper, we propose a deep Generative Ad-

versarial Clustering Network (ClusterGAN), which tack-

les the problems of training of deep clustering models in

unsupervised manner. ClusterGAN consists of three net-

works, a discriminator, a generator and a clusterer (i.e. a

clustering network). We employ an adversarial game be-

tween these three players to synthesize realistic samples

given discriminative latent variables via the generator, and

learn the inverse mapping of the real samples to the dis-

criminative embedding space via the clusterer. Moreover,

we utilize a conditional entropy minimization loss to in-

crease/decrease the similarity of intra/inter cluster samples.

Since the ground-truth similarities are unknown in cluster-

ing task, we propose a novel balanced self-paced learn-

ing algorithm to gradually include samples into training

from easy to difficult, while considering the diversity of se-

lected samples from all clusters. Our unsupervised learning

framework makes it possible to efficiently train clusterers

with large depth. Experimental results indicate that Clus-

terGAN achieves competitive results compared to the state-

of-the-art models on several datasets.

1. Introduction

Clustering is one of the essential active research top-

ics in computer vision and machine learning communities

∗Corresponding Author. K. Ghasedi, X. Wang, H. Huang were par-

tially supported by U.S. NSF IIS 1836945, IIS 1836938, DBI 1836866,

IIS 1845666, IIS 1852606, IIS 1838627, IIS 1837956.

with various applications. Clustering problem has been ex-

tensively studied in the literature by introducing numerous

algorithms with unsupervised learning frameworks [51].

However, the existing methods that employ shallow or deep

models suffer from different issues. The shallow clustering

models may not capture the nonlinear nature of data due to

their shallow and linear embedding functions, adversely af-

fect their performance by using inflexible hand-crafted fea-

tures, and have difficulties in scaling to large datasets. In

contrast, the deep clustering methods have enough capac-

ity to model the non-linear and complex data, and are able

to deal with large-scale datasets. But they are prone to the

overfitting issue leading to get stuck in bad local minima,

since there is no reliable supervisory signal for training their

large number of parameters.

In this paper, we propose a generative adversarial cluster-

ing network, called ClusterGAN, as a novel deep clustering

model to address the aforementioned issues. ClusterGAN

adopts the adversarial game in GAN for the clustering task,

and employs an efficient self-paced learning algorithm to

boost its performance. The standard GAN is formulated as

an adversarial game between two networks, a discrimina-

tor and a generator [19]. In particular, the generator G is

supposed to synthesize realistic images to fool the discrimi-

nator D by mapping the random input z into the data space,

and the discriminator aims to distinguish the real data from

the generated samples. The objective function in this two-

player adversarial game between D and G is:

min
G

max
D

E
x∼P (x)

[

logD(x)
]

(1)

+ E
z∼P (z)

[

log
(

1−D(G(z))
)]

,

where P (x) is the real data distribution, and P (z) is the

generator random input distribution. In this adversarial loss,

G is trained to learn the conditional distribution of real data

given the random variables, and D is trained to find the

boundaries between samples drawn from the real and gen-

14391

erated data distributions.

Unlike the traditional GAN, ClusterGAN consists of

three networks, a discriminator D, a generator G, and a

clusterer C (i.e. a clustering network). The generator and

clusterer are both conditional generative networks, where

G : z → x̂ generates the realistic data samples given the

latent variables and C : x → ẑ generates the discriminative

latent variables given the real data. The discriminator D
accepts a joint distribution of samples and features (i.e. la-

tent variables) as the input, and tries to identify whether the

paired samples belong to the generator (z, x̂) or the clus-

terer (ẑ,x). Thus, training the generator and clusterer to

fool the discriminator leads to generating synthesized sam-

ples similar to real data and estimating features similar to

the generator latent variables. By considering a discrimi-

native distribution for the generator inputs, we employ the

adversarial game between D, G and C, and learn a discrim-

inative embedding space in the output of the clusterer. Fig-

ure 1 illustrates the architecture of ClusterGAN.

Moreover, we introduce a novel clustering objective,

which is directly applied on the output of the clusterer given

the real samples. The basic idea is to impose a block diag-

onal constraint on the adjacency matrix of the real data. To

do so, we first compute the similarity values between real

samples using the cosine similarity function applied on the

clusterer outputs. Then, a minimum entropy loss function is

imposed to the similarity values to push them towards 0 (i.e.

dissimilar) or 1 (i.e. similar). However, the main challenge

is that the ground-truth similarities are unknown in unsu-

pervised learning, which makes it difficult to train a deep

clustering model from the scratch. In order to tackle this

issue, we enhance the minimum entropy objective by uti-

lizing a novel self-paced learning algorithm. Generally, the

standard self-paced learning algorithm initiates the training

process with easy samples, and then gradually takes more

difficult samples into the training. Considering the difficulty

level of samples based on their loss values, the self-paced

learning is reported to alleviate the problem of getting stuck

in bad local minima, and provides better generalization for

the models [30]. In addition to this gradually learning ap-

proach, we take the prior of selected samples into consider-

ation using an exclusive lasso regularization. This helps us

to select a more diverse set of samples in each training step,

and prevents learning from easy samples belonging only to

a few clusters. We also provide a theoretical proof for our

balanced self-paced learning algorithm in regard to achiev-

ing the global optimum closed form solution.

In our experiments, ClusterGAN achieves state-of-the-

art results compared to the alternative clustering methods on

several datasets. We also examine the effects of each com-

ponent in our learning objective function using an ablation

study. Moreover, we evaluate the performance of Cluster-

GAN representations in comparison with unsupervised hash

functions on information retrieval tasks. The experimental

results confirm the effectiveness of our learning framework

in training unsupervised models with large depth. There-

fore, the contribution of this paper can be summarized as

the following points.

• We introduce a deep clustering model by adopting the

generative adversarial network for clustering.

• We propose a novel balanced self-paced learning algo-

rithm for clustering by gradually incorporating easy to

more difficult samples into training steps, while keep-

ing the prior of selected samples balanced in each step.

• Our proposed model achieves comparable results to

the state-of-the-art methods on clustering and informa-

tion retrieval tasks.

2. Related Works

2.1. Clustering Algorithms

Countless number of clustering methods have been pro-

posed in the literature, which can be divided into shallow

and deep models. In shallow clustering algorithms, K-

means and Gaussian mixture model (GMM) [3] are two

classical examples of distance-based clustering methods,

which represent the clusters using geometric properties of

the data points. The kernel-based algorithms, like max-

margin methods [59, 50], attempt to model the non-linearity

of data via the proper kernel functions. The connectivity-

based algorithms, including spectral methods [37, 56], aim

to partition the data points that are highly connected. How-

ever, these algorithms are not able to model the complex

real-world data because of their shallow and linear models.

Recently, deep clustering models attract more attentions

due to their capabilities in dealing with complex, high-

dimension and large-scale datasets. A mutli-layer sparse

coding network followed by a clustering algorithm is in-

troduced in [47], where an alternative learning approach is

used to update the code books and estimate the clustering

assignments. Trigeorgis et al. stacked multiple semi non-

negative matrix factorization layers to achieve discrimina-

tive representations at the top layer, and used K-means to

get cluster assignments [44].

Autoencoder network is also adopted in multiple deep

clustering models to build discriminative embedding space

using the reconstruction task. Tian et al. trained a stacked

autoencoder on the affinity matrix of a graph, and then ob-

tained the clusters by running K-means at the top layer fea-

tures [43]. Xie et al. introduced deep embedded clustering

(DEC), which is first pre-trained using the reconstruction

loss, and then fine-tuned via Kullback-Leibler divergence

minimization [49]. Dizaji et al. proposed DEPICT as a

deep clustering autoencoder network, that is trained using

a joint reconstruction loss and relative entropy minimiza-

24392

tion. DEPICT also benefits from a regularization term for

balancing the prior probability of cluster assignments [14].

Moreover, JULE employs a convolutional neural net-

work to represent the features, which are iteratively clus-

tered using an agglomerative clustering algorithm [53]. Yu

et. al. extended GMM to GAN mixture model by allocat-

ing a GAN model for each cluster [55]. Hu et. al. intro-

duced a clustering algorithm, called IMSAT, by encourag-

ing the predictions for augmented samples to be close to

the original ones, and maximizing the mutual information

of the predicted representations. IMSAT employs the vir-

tual adversarial training [36] and geometric transformations

as data augmentation approaches [22]. ClusterGAN differs

from the previous models, because it adopts the adversarial

game in GAN for unsupervised learning of discriminative

representations, and employs a novel self-paced learning al-

gorithm for clustering. Consequently, it is able to efficiently

train deeper clusterers compared to alternative algorithms.

2.2. SelfPaced Learning Algorithms

Inspired by the human learning principle, curriculum

learning starts learning with easier examples, and then grad-

ually takes more complex examples into consideration [2].

But in order to avoid heuristic easiness measures, Kumar et.

al. proposed self-paced learning algorithm that incorporates

curriculum learning into the model optimization. It adds

a regularization term to the objective function, and conse-

quently defines easiness measures by the loss value regard-

ing each sample [30]. Jiang et. al. extended self-paced

learning to also consider the diversity of samples selected

in each training step [25]. Many studies further adopted

self-paced learning in their tasks to avoid getting stuck in

bad local minima and improve the generalization of their

models [57, 33, 32]. Our balanced self-paced learning ap-

proach differs with the existing methods, since it is applied

to an unsupervised loss based on adjacency matrix. It is also

specially different with the algorithm in [25], which uses the

ℓ2,1-norm regularization and supervised class labels, but our

approach utilizes the exclusive lasso regularization with no

need to supervisory signals.

2.3. Generative Adversarial Networks

GAN [19] is a powerful class of deep generative models,

and is able to generate realistic images with great details.

Particularly, its effective approach is relied on a minimax

game between a generator and a discriminator, which com-

pete each other to synthesize more realistic samples and de-

tect the real samples. Several studies further attempted to

improve the quality of generated images, for instance by us-

ing Laplacian pyramid framework [11], strided convolution

layers and batch normalization [40], and a generator con-

ditioning on the class labels or text descriptions [35, 39].

In addition, GAN has been adopted in supervised, semi-

supervised and unsupervised tasks, which have an inference

model (e.g. classifier) [6, 10, 41, 16, 15, 46]. Among them,

ALI [12] and Triple-GAN [7] are more close to our pro-

posed model, where they are specifically designed for semi-

supervised classification, but ClusterGAN is developed for

clustering. In particular, our learning framework is unique

by utilizing a novel self-paced learning algorithm and cus-

tomized generative adversarial network for clustering.

3. Method

In this section, we first define the adversarial game re-

garding the minimax objective in ClusterGAN, and then ex-

plain our conditional entropy minimization loss, which is

enhanced by the proposed balanced self-paced learning al-

gorithm. Given n unlabeled samples X = [x1, ...,xn] as

the inputs, we aim to cluster them into c categories, where

the ground-truth labels are represented by y = [y1, ..., yn].
While ClusterGAN contains three networks, a discrimina-

tor, a generator, and a clusterer, our final goal is to construct

a block diagonal adjacency matrix A based on the outputs

of the clusterer, where aij = 1 if yi = yj and aij = 0
otherwise. Achieving the proper block diagonal adjacency

matrix leads to easy clustering assignments with no need to

a complicated clustering algorithm. Since the output layer

of the clusterer is sigmoid function, we simply use the co-

sine similarity function to compute the adjacency matrix as

aij = ẑ
⊺

i ẑj/‖ẑi‖‖ẑj‖, where ẑi is the clusterer output for

the i-th sample, and ‖.‖ represents the ℓ2-norm function.

3.1. ClusterGAN Adversarial Loss

As shown in Figure 1, ClusterGAN consists of a discrim-

inator D, a generator G and a clusterer C, in which the gen-

erator and clusterer aims to fool the discriminator by syn-

thesizing realistic samples by G : z → x̂ and similar la-

tent variable to the generator inputs by C : x → ẑ, and

the discriminator tries to distinguish the joint distribution

of samples (ẑ,x) and (z, x̂) coming from the clusterer and

generator respectively.

In order to assist constructing the block diagonal adja-

cency matrix A, we require to set the random input vectors

of generator z to be orthogonal or parallel. To do so, we

consider a binary random variable with m/c elements equal

to 1 and the remaining equal to 0, where m is the length

of z vector. In this case, if the distribution of clusterer out-

put ẑ becomes similar to the generator input variables z, we

achieve the goal of an adjacency matrix with block diagonal

structure. But in order to represent the intra-cluster varia-

tions, we add small uniform random noise to the inputs of

the generator. While this trick empirically helps to generate

realistic samples with more diversity, it just has insignificant

effect on the block diagonal adjacency matrix.

As mentioned, the discriminator in ClusterGAN tries

to discriminate the two joint distributions P (z, x̂) =

34393

Fake

Real

z ොx
x Lentොz

(z,ොx)
(ොz,x) LadvD

G

Cx

Figure 1: Architecture of ClusterGAN along with the applied loss functions. ClusterGAN consists of three networks, a

generator G, a clusterer C and a discriminator D. The generator synthesizes the realistic samples given the discriminative

random inputs. The clusterer maps the real images into the discriminative latent variables. The discriminator distinguishes

whether its input pair belongs to the generator or the clusterer. The adversarial Ladv and minimum entropy Lent loss functions

are applied to the discriminator and clusterer outputs respectively.

P (z)PG(x|z) and P (ẑ,x) = P (x)PC(z|x), which are

coming form the generator and clusterer respectively. Since

the generator random variable distribution P (z) and the em-

pirical distribution of real data P (x) are known, our objec-

tive is to learn the conditional distribution of PG(x|z) and

PC(z|x) to match the distributions P (z, x̂) and P (ẑ,x). In

order to acquire this condition, we employ the adversar-

ial game between D, G and C such that the discriminator

is trained to identify whether joint pairs are sampled from

P (z, x̂) or P (ẑ,x), whereas the generator and clusterer are

learned to fool the discriminator. Therefore, the objective

function of this adversarial game for ClusterGAN is:

min
G,C

max
D

U(D,G, C) = E
x∼P (x)

[

logD
(

C(x),x
)]

+ E
z∼P (z)

[

log
(

1−D
(

z,G(z)
))]

. (2)

Using this minimax objective function, we are able to al-

leviate the overfitting issue in training of a deep network

with large complexity. This becomes more important in

unsupervised clustering task, since there is no reliable su-

pervised information to learn the deep clustering model. It

can be shown that the optimal discriminator defined by this

objective is balanced between the joint distribution of pairs

belonging to the clusterer P (ẑ,x) and generator P (z, x̂).

Lemma 1. For any fixed G and C, the optimal D defined by

the utility function U(D,G, C) is:

D∗(z,x) =
P (x)PC(z|x)

P (x)PC(z|x) + P (z)PG(x|z)

Given D∗(x, z), we can further replace D in the util-

ity function U(D,G, C) and reformulate the objective as

V(G, C) = max
D

U(D,G, C), whose optimal value is shown

in the following Lemma.

Lemma 2. The global optimum point of V(G, C) is

achieved if and only if P (z, x̂) = P (ẑ,x).

Employing this adversarial game in ClusterGAN, we can

attain the desired clusterer and generator for our problem.

In fact, the generator is trained to synthesize the images

similar to the real data distribution. The clusterer is trained

to learn the inverse mapping function of the generator, es-

timating discriminative features for the real data. Thus, we

can construct an almost block diagonal adjacency matrix

from the clusterer outputs. In another point of view, this

adversarial loss can be considered as a data-dependent reg-

ularization in training our deep clustering model, helping

to avoid getting stuck in bad local minima. The proof for

Lemma 1 and Lemma 2 are presented in the Appendix.

3.2. ClusterGAN Entropy Minimization Loss

In addition to the adversarial loss, we introduce a clus-

tering objective based on conditional entropy minimiza-

44394

tion, which is directly applied to the adjacency matrix con-

structed from the real data. Maximizing the mutual infor-

mation or minimizing the conditional entropy has been re-

ported to have successful results in clustering [4, 27]. The

conditional entropy minimization loss in our problem has

the following form:

min
C

−
n
∑

i,j=1

[

aij log aij + (1− aij) log(1− aij)
]

, (3)

in which the adjacency elements aij are pushed towards 0
or 1. Therefore, minimizing the conditional entropy is in

favor of the block diagonal adjacency matrix. However, the

similarity values computed from the clusterer features are

not reliable especially at the first iterations of training. To

tackle this issue, we can use the standard self-paced learn-

ing approach, which embeds gradual learning from easy to

more difficult samples into model optimization as follows.

min
C,ν

n
∑

i=1

νili − λν

n
∑

i=1

νi , s.t. ν ∈ [0, 1]n (4)

where li = −
∑n

j=1 aij log aij − (1− aij) log(1− aij) is a

loss related to the i-th sample, νi is the self-paced learning

parameter, and λν is a hyper-parameter for controlling the

learning pace. The parameters of self-paced learning algo-

rithm and clusterer are generally trained using an alternative

learning strategy. Keeping the model parameters fixed, the

globally optimum solution for the self-paced learning pa-

rameters is ν∗i = 1 if li < λν , and ν∗i = 0 otherwise.

It is obvious that by increasing λν throughout training, the

self-paced learning algorithm allows more difficult samples

into the training process. However, the standard self-paced

learning does not consider selecting a balanced set of sam-

ples from all clusters, and may choose easy samples of only

a few clusters. In order to address this issue, we propose

balanced self-paced learning algorithm, which penalizes the

lack of diversity using the following objective function:

min
C,ν

c
∑

k=1

[nk
∑

i=1

νki(lki − λν) + γ
(

nk
∑

i=1

|νki|
)2

]

s.t. ν ∈ [0, 1]n , (5)

where γ is the regularization hyper-parameter, and νki
represents the self-paced learning parameter for the i-th
sample of the k-th cluster, where the data are assumed

to belong to c clusters as
∑c

k=1 nk = n. The second

term in the loss is also the exclusive lasso regularization

‖ν‖e =
∑c

k=1

(
∑nk

i=1 |νki|
)2

. Note that the balanced

self-paced learning objective has two regularization terms,

−‖ν‖1 = −λν

∑c

k=1

∑nk

i=1 νki that is in favor of selecting

easier samples, and ‖ν‖e that penalizes groups with more

selected samples. Thus, the proposed balanced self-paced

Algorithm 1: ClusterGAN Algorithm

1 for number of training iterations do

2 Sample a batch of pairs
(

x, C(x)
)

and
(

G(z), z
)

using the

clusterer and generator

3 Update the discriminator parameters by

max
D

n
∑

i=1

logD
(

C(xi),xi

)

+
n
∑

j=1

log
(

1−D
(

zj ,G(zj)
))

4 Update the generator parameters by

min
G

n
∑

j=1

log
(

1−D
(

zj ,G(zj)
))

5 Update the clusterer parameters by

min
C

n
∑

j=1

logD
(

C(xi),xi

)

+ νili + ‖C(xi)− C(x̃i)‖
2

6 Update the self-paced learning parameters by

min
ν

n
∑

i=1

νili − λν‖ν‖1 + γ‖ν‖e s.t. ν ∈ [0, 1]n

7 end

learning algorithm consider both the easiness and diversity

of selected samples to ensure robust and unbiased training

steps. In order to solve this objective function, we use an

alternative learning approach, where the clusterer param-

eters are fixed while obtaining the self-paced learning pa-

rameters, and the self-paced parameters are assumed to be

known while updating the clusterer parameters. Given the

fixed C, the objective function for estimating ν is:

min
ν

n
∑

i=1

νili − λν‖ν‖1 + γ‖ν‖e s.t. ν ∈ [0, 1]n. (6)

We derive the global optimum solution for this optimiza-

tion problem as shown in the following theorem.

Theorem 1. For any fixed C, the optimal ν∗ defined by the

objective function in Eq. (6) is:

ν∗kq = 1, if lkq < λν − 2γq

ν∗kq =
λν−lkq

2γ − q, if λν − 2γq ≤ lkq < λν − 2γ(q − 1)

ν∗kq = 0, if lkq ≥ λν − 2γ(q − 1)

where q ∈ {1, ..., nk} is the sorted index based on the loss

values {lk1, ..., lknk
} in the k-th group.

This solution intuitively makes sense, since the samples

with loss greater/less than the threshold λν − 2γ(q − 1)
are considered as the difficult/easy samples, and are not-

involved/involved in the current training step. Interestingly,

the threshold is also a function of the ordered loss in each

group, and consequently is increased as the number of sam-

ples in a cluster increases. Hence, the balanced self-paced

learning algorithm considers both the easiness and diversity

of selected samples in our learning framework. The proof

for Theorem 1 is presented in Appendix.

In addition to the adversarial loss and the minimum en-

tropy loss, we utilize a consistency loss to train the clusterer

54395

parameters. The consistency loss encourages the clusterer

to have similar outputs for each samples x and its variations

x̃ augmented by image transformations or noise as follows:

min
C

n
∑

i=1

‖C(xi)− C(x̃i)‖
2 . (7)

The minimum entropy loss function in Eq. (3) is defined

on the full-batch, and has quadratic complexity w.r.t. the

number of samples. However, we practically alleviate this

scalability issue by applying the loss only to the samples of

each mini-batch. Algorithm 1 shows the training steps for

ClusterGAN, where all of the networks are trained using our

alternative leaning framework.

4. Experiments

We perform several experiments to evaluate the perfor-

mance of ClusterGAN in clustering and information re-

trieval tasks on several datasets. We also examine the ef-

fect of each component in our learning framework using an

ablation study.

Datasets: We examine ClusterGAN clustering perfor-

mance in comparison with alternative algorithms on MNIST

[31], USPS, FRGC [53], CIFAR-10 [28] and STL-10 [8]

datasets. Moreover, we compare ClusterGAN with unsuper-

vised hash functions in the image retrieval task on MNIST

and CIFAR-10 datasets. Table 1 provides the summary of

datasets statistics.

Implementation details: We mainly use the architec-

tures of Triple-GAN in [7] for ClusterGAN except the last

layer of clusterer, which is set as same as the size of gen-

erator input with the sigmoid non-linearity. For image pre-

processing, we only normalize the image intensities to be

in the range of [−1, 1] on CIFAR-10 and STL-10 and [0, 1]
for the others, and consequently use the tangent-hyperbolic

and sigmoid functions in the last layer of the generator. The

added noise to the generator inputs has uniform distribu-

tion with range [0, 0.5] which is linearly shrinking to [0, 0.1]
throughout training. Moreover, we set the learning rate to

10−4 and linearly decrease it to 10−5, and adopt Adam

[26] as our optimization method with the hyper-parameters

β1 = 0.5, β2 = 0.999, ǫ = 1e − 08. In order to avoid

manually setting λν and γ for different datasets, we choose

them based on the loss values of samples such that we start

training with only 1% of samples at the first iteration, and

then linearly increase λν to include all samples in 3/4 of the

maximum epoch. We run K-means on the clusterer outputs

for clustering, and use the indicator function 1(. > 0.5) to

binarize the clusterer outputs for hashing. The reported re-

sults are all the average of 5 experimental outcomes. We

use Theano toolbox [1] for writing our code, and run the

algorithm on a machine with one Titan X Pascal GPU.

Dataset # Samples # Classes # Dimensions

MNIST 70,000 10 1×28×28

USPS 11,000 10 1×16×16

FRGC 2,462 20 3×32×32

CIFAR-10 60,000 10 3×32×32

STL-10 13,000 10 3×96×96

Table 1: Dataset Descriptions

4.1. Image Clustering

Alternative Models: We compare our clustering model

with several baselines and state-of-the-art clustering algo-

rithms, including K-means, normalized cuts (N-Cuts) [42],

large-scale spectral clustering (SC-LS) [5], agglomerative

clustering via path integral (AC-PIC) [58], spectral embed-

ded clustering (SEC) [38], local discriminant models and

global integration (LDMGI) [54], NMF with deep model

(NMF-D) [44], deep embedded clustering (DEC) [49], joint

unsupervised learning (JULE-RC) [53], DEPICT [14] and

IMSAT [22].

Evaluation metrics: To compare the clustering perfor-

mance of our model with previous studies, we rely on the

two popular metrics used to evaluate clustering: normal-

ized mutual information (NMI), and accuracy (ACC). NMI

provides a measure of similarity between two data with the

same label, which is normalized between 0 (lowest simi-

larity) to 1 (highest similarity) [52]. To calculate ACC, we

find the best map between the predicted clusters and the true

labels [29].

Performance comparison: Table 2 shows the cluster-

ing results of ClusterGAN and the alternative models on

five datasets. As it is expected, the deep clustering mod-

els mostly have better results than their shallow alterna-

tives. Among the deep models, ClusterGAN outperforms

the other methods almost on all datasets. Note that the IM-

SAT results on CIFAR-10 and STL-10 are obtained using the

50-layer pre-trained deep residual networks on ImageNet

dataset [9], and cannot be compared to the results of other

models trained with no supervisory signals. It is worth men-

tioning that ClusterGAN is able to train deeper clustering

networks (e.g. 9 hidden layers on CIFAR-10) compared to

the other deep models (e.g. 3 or 4 hidden layers on CIFAR-

10). This effective learning framework could be the reason

for ClusterGAN’s better performances on the more complex

datasets like CIFAR-10 and STL-10. This experiment con-

firms the efficiency ClusterGAN discriminative representa-

tions in clustering of different datasets with various sizes,

dimensions and complexities.

4.2. Ablation Study

We perform an ablation study to examine the contri-

bution of the adversarial loss (GAN), the balanced self-

64396

Dataset MNIST USPS FRGC CIFAR-10 STL-10

Model NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

S
h

al
lo

w
K-means 0.500 0.534 0.450 0.460 0.287 0.243 0.102∗ 0.239∗ 0.209∗ 0.284∗

N-Cuts [42] 0.411 0.327 0.675 0.314 0.285 0.235 - - - -

SC-LS [5] 0.706 0.714 0.681 0.659 0.550 0.407 0.114∗ 0.258∗ 0.105∗ 0.168∗

AC-PIC [58] 0.017 0.115 0.840 0.855 0.415 0.320 0.118∗ 0.264∗ 0.235∗ 0.329∗

SEC [38] 0.779 0.804 0.511 0.544 - - 0.107∗ 0.249∗ 0.245∗ 0.307∗

LDMGI [54] 0.802 0.842 0.563 0.580 - - 0.109∗ 0.253∗ 0.260∗ 0.331∗

D
ee

p

NMF-D [44] 0.152 0.175 0.287 0.382 0.259 0.274 - - - -

DEC [49] 0.816 0.844 0.586 0.619 0.505 0.378 0.267∗ 0.312∗ 0.284∗ 0.359∗

JULE-RC [53] 0.913 0.964 0.913 0.950 0.574 0.461 0.194∗ 0.275∗ 0.204∗ 0.288∗

DEPICT [14] 0.917 0.965 0.927 0.964 0.610 0.470 0.274∗ 0.326∗ 0.303∗ 0.371∗

IMSAT [22] - 0.984 - - - - - 0.456† - 0.941†

ClusterGAN 0.921 0.964 0.931 0.970 0.615 0.476 0.323 0.412 0.335 0.423

Table 2: Clustering performance of ClusterGAN and several alternative models on several datasets based on ACC and NMI.

The results of other models are reported from the reference papers, except for the ones marked by (∗) on top, which are

obtained by us running the released code. The result with † sign are for the models with supervised pre-training.

Figure 2: The difference in clustering accuracy, when Clus-

terGAN is trained using some components of the original

objective function.

paced learning algorithm (BSPL), and the consistency loss

(Lcons). To do so, we train ClusterGAN without GAN ar-

chitecture and adversarial loss (BSPL+Lcons), without the

balanced self-paced learning algorithm (GAN+Lcons), and

without the consistency loss (GAN+BSPL). Moreover, we

explore the effect of exclusive lasso regularization in BSPL

by training ClusterGAN using the standard self-paced learn-

ing algorithm (GAN+SPL+Lcons). Figure 2 illustrates the

difference in accuracy between each scenario and the origi-

nal ClusterGAN on MNIST and CIFAR-10 datasets.

The first observation is that all of the terms contribute

in improving the results. Moreover, the figure shows the

strong effect for GAN as a key components to avoid get-

ting stuck in bad local minima. It also demonstrates that the

balanced self-paced learning is important in stable training,

and also has better results compared to standard self-paced

learning approach. Furthermore, the relative analysis of the

results in both dataset demonstrates that consistency loss

is more effective on CIFAR-10 than on MNIST. This is ex-

pected as we only use noise for image transformation on

MNIST since the images are centered and scaled, but em-

ploy extra transformations including translations and hori-

zontal flipping on CIFAR-10.

Moreover, we visualize the embedding subspace of a

few clustering models on USPS dataset in Figure 3. The

figure shows the 2D visualization of clusterer outputs for

BSPL+Lcons and ClusterGAN using principle component

analysis (PCA). In addition, we also illustrate the raw data

in the input space. As shown in the figure, ClusterGAN pro-

vides a significantly more discriminative embedding sub-

space compared to the other model and raw data.

4.3. Image Retrieval

Alternative models: For image retrieval, we compare

our method with the previous unsupervised hash functions

including K-means hashing (KMH) [20], spherical hash-

ing (SphH) [21], spectral hashing (SpeH) [48], PCA-based

hashing (PCAH) [45], locality sensitivity hashing (LSH)

[17], iterative quantization (ITQ) [18], deep hashing (DH)

[13], discriminative attributes representations (DAR) [23],

DeepBit [34] and unsupervised triplet hashing (UTH) [24].

Evaluation metrics: We evaluate the performance of

ClusterGAN compared to the other unsupervised hash-

ing functions using precision and mean average precision

(mAP). We follow the standard protocol for both MNIST

and CIFAR-10 datasets, and randomly sample 1000 images

as the query set and use the remaining data as the gallery

set. In particular, we report the results of the image retrieval

in terms of precision@1000, mAP, and mAP@1000.

74397

