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Abstract

Given an initial recognition model already trained on

a set of base classes, the goal of this work is to develop a

meta-model for few-shot learning. The meta-model, given

as input some novel classes with few training examples per

class, must properly adapt the existing recognition model

into a new model that can correctly classify in a unified way

both the novel and the base classes. To accomplish this goal

it must learn to output the appropriate classification weight

vectors for those two types of classes. To build our meta-

model we make use of two main innovations: we propose the

use of a Denoising Autoencoder network (DAE) that (dur-

ing training) takes as input a set of classification weights

corrupted with Gaussian noise and learns to reconstruct

the target-discriminative classification weights. In this case,

the injected noise on the classification weights serves the

role of regularizing the weight generating meta-model. Fur-

thermore, in order to capture the co-dependencies between

different classes in a given task instance of our meta-model,

we propose to implement the DAE model as a Graph Neu-

ral Network (GNN). In order to verify the efficacy of our

approach, we extensively evaluate it on ImageNet based

few-shot benchmarks and we report state-of-the-art results.

1. Introduction

Over the last few years, deep learning has achieved im-

pressive results on various visual understanding tasks, such

as image classification [19, 35, 38, 15], object detection [29],

or semantic segmentation [5]. However, their success heav-

ily relies on the ability to apply gradient based optimization

routines, which are computationally expensive, and having

access to a large dataset of training data, which often is

very difficult to acquire. For example, in the case of image

classification, it is required to have available thousands or

hundreds of training examples per class and the optimization

routines consume hundreds of GPU days. Moreover, the set

of classes that a deep learning based model can recognize

remains fixed after its training. In case new classes need to

be recognized, then it is typically required to collect thou-

sands / hundreds of training examples for each of them, and

re-train or fine-tune the model on those new classes. Even

worse, this latter training stage would lead the model to “for-

get” the initial classes on which it was trained. In contrast,

humans can rapidly learn a novel visual concept from only

one or a few examples and reliably recognize it later on.

The ability of fast knowledge acquisition is assumed to be

related with a meta-learning process in the human brain that

exploits past experiences about the world when learning a

new visual concept. Even more, humans do not forget past

visual concepts when learning a new one. Mimicking that

behavior with machines is a challenging research problem,

with many practical advantages, and is also the topic of this

work.

Research on this subject is usually termed few-shot object

recognition. More specifically, few-shot object recognition

methods tackle the problem of learning to recognize a set

of classes given access to only a few training examples for

each of them. In order to compensate for the scarcity of

training data they employ meta-learning strategies that learn

how to efficiently recognize a set of classes with few train-

ing data by being trained on a distribution of such few-shot

tasks (formed from the dataset available during training)

that are similar (but not the same) to the few-shot tasks

encountered at test time [39]. Few-shot learning is also

related to transfer learning since the learned meta-models

solve a new task by exploiting the knowledge previously

acquired by solving a different set of similar tasks. There

is a broad class of few-shot learning approaches, including,

among many, metric-learning-based approaches that learn a

distance metric between a test example and the training ex-

amples [39, 36, 18, 42, 41], methods that learn to map a test

example to a class label by accessing memory modules that
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store the training examples of that task [8, 22, 32, 16, 23],

approaches that learn how to generate model parameters for

the new classes given access to the few available training

data of them [9, 25, 10, 26, 12], gradient descent-based ap-

proaches [27, 7, 2] that learn how to rapidly adapt a model

to a given few-shot recognition task via a small number of

gradient descent iterations, and training data hallucination

methods [14, 41] that learn how to hallucinate more exam-

ples of a class given access to its few training data.

Our approach. In our work we are interested in learning

a meta-model that is associated with a recognition model

already trained on set of classes (these will be denoted as

base classes hereafter). Our goal is to train this meta-model

so as to learn to adapt the above recognition model to a set

of novel classes, for which there are only very few training

data available (e.g., one or five examples), while at the same

time maintaining the recognition performance on the base

classes. Note that, with few exceptions [14, 41, 9, 25, 26],

most prior work on few-shot learning neglects to fulfill the

second requirement. In order to accomplish this goal we

follow the general paradigm of model parameter generation

from few-data [9, 25, 10, 26]. More specifically, we assume

that the recognition model has two distinctive components,

a feature extractor network, which (given as input an image)

computes a feature representation, and a feature classifier,

which (given as input the feature representation of an image)

classifies it to one of the available classes by applying a set

of classification weight vectors (one per class) to the input

feature. In this context, in order to be able to recognize novel

classes one must be able to generate classification weight

vectors for them. So, the goal of our work is to learn a meta-

model that fulfills exactly this task: i.e., given a set of novel

classes with few training examples for each of them, as well

as the classification weights of the base classes, it learns to

output a new set of classification weight vectors (both for

the base and novel classes) that can then be used from the

feature classifier in order to classify in a unified way both

types of classes.

DAE based model parameters generation. Learning to

perform such a meta-learning task, i.e., inferring the classifi-

cation weights of a set of classes, is a difficult meta-problem

that requires plenty of training data in order to be reliably

solved. However, having access to such a large pool of data

is not always possible; or otherwise stated the training data

available for learning such meta-tasks might never be enough.

In order to overcome this issue we build our meta-model

based on a Denoising Autoencoder network (DAE). During

training, this DAE network takes as input a set of classifica-

tion weights corrupted with additive Gaussian noise, and is

trained to reconstruct the target-discriminative classification

weights. The injected noise on the inputs of our DAE-based
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Figure 1: Some classes (e.g., wild-cat animals, birds, or sea crea-

tures) are semantically or visually similar. Thus it is reasonable

to assume that there are correlations between their classification

weight vectors that could be exploited in order to reconstruct a

more discriminative classification weight vector for each of them.

parameter generation meta-model helps in the regularization

of the learning procedure thus allowing us to avoid the danger

of overfitting on the training data. Furthermore, thanks to the

theoretical interpretation of DAEs provided in [1], our DAE-

based meta-model is able to approximate gradients of the

log of conditional distribution of the classification weights

given the available training data by computing the difference

between the input weights and the reconstructed weights [1].

Thus, starting by an initial (but not very accurate) estimate of

classification weights, our meta-model is able to perform gra-

dient ascents step(s) that will move the classification weights

towards more likely configurations (when conditioned on

the given training data). In order to properly apply the DAE

framework in the context of few-shot learning, we also adapt

it so as to follow the episodic formulation [39] typically

used in few-shot learning. This further improves the perfor-

mance of the parameters generation meta-task by forcing it

to reconstruct more discriminative classification weights.

Building the model parameters DAE as a Graph Neu-

ral Network. Reconstructing classification weights condi-

tioned only on a few training data, e.g., one training example

per class, is an ill-defined task for which it is crucial to ex-

ploit as much of the available information on the training

data of base and novel classes as possible. In our context,

one way to achieve that is by allowing the DAE model to

learn the structure of the entire set of classification weights

that has to reconstruct on each instance (i.e., episode) of that

task. We believe that such an approach is more principled

and can reconstruct more distriminative classification weight

vectors than reconstructing the classification weight of each

class independently. For example, considering that some of

the classes (among the classes whose classification weight

vectors must be reconstructed by the DAE model in a given

task instance) are semantically or visually similar, such as
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different species of birds or see creatures (see Figure 1), it

would make sense to assume that there are correlations to

their classification weight vectors that could be exploited

in order to reconstruct a more discriminative classification

weight vector for each of them. In order to capture such

co-dependencies between different classes (in a given task

instance of our meta-model), we implement the DAE model

as a Graph Neural Network (GNN). This is a family of deep

learning networks designed to process an unordered set of

entities (in our case a set of classes) associated with a graph

G such that they take into account their inter-entity relation-

ships (in our case inter-class relationships) when making

predictions about them [11, 34, 20, 6, 37] (for a recent sur-

vey on models and applications of deep learning on graphs

see also Bronstein et al. [4]).

Related to our work, Gidaris and Komodakis [9] also tried

to capture such class dependencies in the context of few-

shot learning, by predicting the classification weight of each

novel class as a mixture of the base classification weights

through an attention mechanism. In contrast to them, we

consider the dependencies that exist between all the classes,

both novel and base (and not of a novel class with the base

ones as in [9]) and try to capture them in a more principled

way through GNN architectures, which are more expressive

compared to the simple attention mechanism proposed in [9].

Graph Neural Networks have been also used in the context of

few-shot learning by Garcia and Juan [8]. However, in their

work, they give as input to the GNN the labeled training

examples and the unlabeled test examples of a few-shot

problem and they train it to predict the label of the test

examples. Differently from them, in our work we provide as

input to the GNN some initial estimates of the classification

weights of the classes that we want to learn and we train them

to reconstruct more discriminative classification weights.

Finally, Graph Neural Networks have been applied on a

different but related problem, that of zero-shot learning [40,

17], for regressing classification weights. However, in this

line of work they apply the GNNs to knowledge graphs

provided by external sources (e.g., word-entity hierarchies)

while the input that is given to the GNN for a novel class is its

word-embedding. Differently from them, in our formulation

we do not consider any side-information (i.e., knowledge

graphs or word-embeddings), which makes our approach

more agnostic to the domain of problems that can solve and

the existence of such knowledge graphs.

To sum up, our contributions are, (1) the application of

Denoising Autoencoders in the context of few-shot learning,

(2) the use of Graph Neural Network architectures for the

classification weight generation task, and (3) performing

detailed experimental evaluation of our model on ImageNet-

FS [13] and MiniImageNet [39] datasets and achieving

state-of-the-art results on ImageNet-FS, MiniImageNet, and

tiered-MiniImageNet [28] datasets.

Figure 2: Given a few training data of some novel classes, our

meta-model adapts an existing recognition model such that it can

classify in a unied way both novel and base classes by generating

classication weights for both types of classes. We learn to perform

this task by employing a Denoising Autoencoders (DAE) for clas-

sication weight vectors. Specifically, given some initial estimate

of classication weights injected with additive Gaussian noise, the

DAE is trained to reconstruct target-discriminative classification

weights, where the injected noise serves the role of regularizing the

weight generation meta-model. Furthermore, in order to capture

co-dependencies between different classes (in a given task instance

of our meta-model), we implement the DAE model by use of a

Graph Neural Network (GNN) architecture.

In the following sections, we describe our classification

weights generation methodology in §2, we provide experi-

mental results in §3, and finally we conclude in §4.

2. Methodology

We define as C(F (·|θ)|w) a recognition model, where

F (·|θ) is the feature extractor part of the network with pa-

rameters θ, and C(·|w) is the feature classification part with

parameters w. The parameters w of the classifier con-

sists of N classification weight vectors, w = {wi}
N
i=1,

where N is the number of classes that the network can

recognize, and wi ∈ R
d is the d-dimensional classifica-

tion weight vector of the i-th class. Given an image x,

the feature extractor will output a d-dimensional feature

z = F (x|θ) and then the classifier will compute the classi-

fication scores [s1, ..., sN ] = [z⊺w1, ..., z
⊺
wN ] := C(z|w)

of the N classes. In our work we use cosine similarity-based

feature classifiers [9, 25]1 that have been shown to exhibit

better performance when transferred to a few-shot recogni-

tion task and to be more appropriate for performing unified

recognition of both base and novel classes. Therefore, for

the above formulation to be valid, we assume that the fea-

tures z of the feature extractor and the classification weights

wi ∈ w of the classifier are already L2 normalized.

Following the formulation of Gidaris and Komodakis [9],

we assume that the recognition network has already been

trained to recognize a set of Nbs base classes using a training

set Dbs
tr . The classification weight vectors that correspond

to those Nbs classes are defined as wbs = {wbs
i }

Nbs

i=1 . Our

goal is to learn a parameter-generating function g(·|φ) that,

given as input the classification weights w
bs of the base

1This practically means that the features z and the classification weights

wi ∈ w are L2 normalized
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classes, and a few training data Dnv
tr =

⋃Nbs+Nnv

i=Nbs+1 {xk,i}
K
k=1

of Nnv novel classes, it will be able to output a new set of

classification weight vectors

w = {wi}
N=Nbs+Nnv

i=1 = g(Dnv
tr ,w

bs|φ) (1)

for both the base and the novel classes, where K is the num-

ber of training examples per novel class, xk,i is the k-th

training example of i-th novel, N = Nbs +Nnv is the total

number of classes, and φ are the learnable parameters of the

weight generating function. This new set of classification

weights w will be used from the classifier C(·|w) for recog-

nizing from now on in a unified way both the base and the

novel classes.

The parameter-generating function consists of a Denois-

ing Autoencoder for classification weight vectors imple-

mented with a Graph Neural Network (see Figure 2 for an

overview). In the remainder of this section we will describe

in more detail how exactly we implement this parameter-

generating function.

2.1. Denoising Autoencoders for model parameters
generation

In our work we perform the task of generating classifica-

tion weights by employing a Denoising Autoencoder (DAE)

for classification weight vectors. The injected noise on the

classification weights that the DAE framework prescribes

serves the role of regularizing the weights generation model

g(·|φ) and thus (as we will see in the experimental section)

boost its performance. Furthermore, the DAE formulation

allows to perform the weights generation task as that of (iter-

atively) refining some initial (but not very accurate) estimates

of the weights in a way that moves them to more probable

configurations (when conditioned on the available training

data). Note that the learnable parameters φ in g(·|φ) refer

to the learnable parameters of the employed DAE model.

In the remainder of this section will briefly provide some

preliminaries about DAE models and then explain how they

are being used in our case.

Preliminaries about DAE. Denoising autoencoders are

neural networks that, given inputs corrupted by noise, are

trained to reconstruct “clean” versions of them. By being

trained on this task they learn the structure of the data to

which they are applied. It has been shown [1] that a DAE

model, when trained on inputs corrupted with additive Gaus-

sian noise, can estimate the gradient of the energy function

of the density p(w) of its inputs w:

∂ log p(w)

∂w
≈

1

σ2
· (r(w)−w) , (2)

where σ2 is the amount of Gaussian noise injected during

training, and r(·) is the autoencoder. The approximation be-

comes exact as σ → 0, and the autoencoder is given enough

capacity and training examples. The direction (r(w)−w)
points towards more likely configurations of w. Therefore,

the DAE learns a vector field pointing towards the mani-

fold where the input data lies. Those theoretical results are

independent of the parametrization of the autoencoder.

Applying DAE for classification weight generation. In

our case we are interested in learning a DAE model that,

given an initial estimate of the classification weight vectors

w, would provide a vector field that points towards more

probable configurations of w conditioned on the training

data Dtr = {Dnv
tr , D

bs
tr}. Therefore, we are interested in a

DAE model that learns to estimate:

∂ log p(w|Dtr)

∂w
≈

1

σ2
· (r(w)−w) , (3)

where p(w|Dtr) is the conditional distribution of w given

Dtr, and r(w) is a DAE for the classification weights.

So, after having trained our DAE model for the classifi-

cation weights, r(w), we can perform gradient ascent in

log p(w|Dtr) in order to (iteratively) reach a mode of the

estimated conditional distribution p(w|Dtr):

w← w+ ǫ ·
∂ log p(w|Dtr)

∂w
= w+ ǫ · (r(w)−w) , (4)

where ǫ is the gradient ascent step size.

The above iterative inference mechanism of the classifi-

cation weights requires to have available an initial estimate

of them. This initial estimate is produced using the training

data Dnv
tr of the novel classes and the existing classification

weights wbs = {wbs
i }

Nbs

i=1 of the base classes. Specifically,

for the base classes we build this initial estimate by using

the classification weights already available in w
bs and for

the novel classes by averaging for each of them the feature

vectors of their few training examples:

wi =

{

w
bs
i , if i is a base class

1
K

∑K

k=1 F (xk,i|θ), otherwise
, (5)

where xk,i is the k-th training example of the novel class i.

To summarize, our weight generation function

g(Dnv
tr ,w

bs|φ) is implemented by first producing an initial

estimate of the new classification weights by applying

equation (5) (for which it uses Dnv
tr , and w

bs ) and then

refining those initial estimates by applying the weight update

rule of equation (4) using the classification weights DAE

model r(w) (see an overview of this procedure in Figure 3).

Episodic training of classification weights DAE model.

For training, the DAE framework prescribes to apply Gaus-

sian noise on some target weights and then train the DAE

model r(·) to reconstruct them. However, in our case, it

is more effective to follow a training procedure that more
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Figure 3: Overview of how our meta-model (bottom) is applied at test time in order to properly adapt an existing recognition model (top-left)

into a new model (top-right) that can classify in a unified way both novel and base classes (where only a few training data are provided at

test time for the novel classes).

closely mimics how the DAE model would be used dur-

ing test time. Therefore, we propose to train the DAE

model using a learning procedure that is based on training

episodes [39]. More specifically, during training we form

training episodes by sampling Ñnv “fake” novel classes

from the available Nbs classes in the training data Dbs
tr

and use the remaining Ñbs = Nbs − Ñnv classes as base

ones. We call the sampled novel classes “fake” because

they actually belong to the set of base classes but during

this training episode are treated as being novel. So, for each

“fake” novel class we sample K training examples forming

a training set for the “fake” novel classes of this training

episode. We also sample M training examples both from

the “fake” novel and the remaining base classes forming

the validation set Dval = {(xm, ym)}Mm=1 of this training

episode, where (xm, ym) is the image xm and the label ym
of the m-th validation example. Then, we produce an ini-

tial estimate w̃ of the classification weights of the sampled

classes (both “fake” novel and base) using the mechanics

of equation (5), and we inject to it Gaussian additive noise

w̃ = {w̃i + ε}Ñ=Ñbs+Ñnv

i=1 , where ε ∼ N(0, σ). We give

w̃ as input to the DAE model in order to output the recon-

structed weights ŵ = {ŵi}
Ñ
i=1. Having computed ŵ we

apply to them a squared reconstruction loss of the target

weights w∗ = {w∗
i}

Ñ
i=1 and a classification loss of the M

validation examples of this training episode:

1

N

Ñ
∑

i=1

‖ŵi −w
∗
i‖

2 +
1

M

M
∑

m=1

loss(xm, ym|ŵ) , (6)

where loss(xm, ym|ŵ) = −z⊺mŵym
+ log(

∑Ñ

i=1 e
z
⊺

m
ŵi)

is the cross entropy loss of the m-th validation example

and zm = F (xm|θ) is the feature vector of the m-th exam-

ple. Note that the target weights w∗ are the corresponding

base class weight vectors already learned by the recognition

model.

2.2. Graph Neural Network based Denoising Au
toencoder

Here we describe how we implement our DAE model.

Reconstructing the classification weights of the novel classes,

for which training data are scarce, is an ill-defined problem.

One way to boost DAE’s reconstruction performance is by

allowing it to take into account the inter-class relationships

when reconstructing the classification weights of a set of

classes. Given the unordered nature in a set of classes, we

chose to implement the DAE model by use of a Graph Neural

Network (GNN). In the remainder of this subsection we

describe how we employed a GNN for the reconstruction

task and what type of GNN architecture we used.

GNNs are multi-layer networks that operate on graphs

G = (V,E) by structuring their computations according to

the graph connectivity. i.e., at each GNN layer the feature

responses of a node are computed based on the neighboring

nodes defined by the adjacency graph (see Figure 4a for

an illustration). In our case, we associate the set of classes

Y = {i}Ni=1 (for which we want to reconstruct their classifi-

cation weights) with a graph G = (V,E), where each node

vi ∈ V corresponds to the class i in Y (either base or novel).

To define the set of edges (i, j) ∈ E of the graph, we connect

each class i with its J2 closest classes in terms of the cosine-

similarity of the initial estimates of their classification weight

vectors (before the injection of the Gaussian noise). The edge

strength aij ∈ [0, 1] of each edge (i, j) ∈ E is computed by

applying the softmax operation over the cosine similarities

scores of its neighbors N (i) = {j, ∀(i, j) ∈ E}, thus forc-

ing
∑

j∈N (i) aij = 13. We define as h(l) = {h
(l)
i }

N
i=1 the

set of feature vectors that represent the N graph nodes (i.e.,

the N classes) at the l-th level of the GNN. In this case, the

input set h(0) to the GNN is the set of classification weight

2In our experiments we use J = 10 classes as neighbors.
3For this softmax operation we used an inverse temperature value of 5.
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(b) The architecture of the hidden GNN layers in our work.

Figure 4: (a) A GNN layer typically consists of two functions, an

aggregation function that, for a node of interest (e.g., node A in the

figure), aggregates information from its neighboring nodes, and an

update function that updates the state (i.e., the features) of that node

by taking into account both the state of that node and the aggregated

information from its neighborhood. (b) The GNN layer architecture

that we use in our work implements the aggregation function as

a small Relation-Net network [33]. The two linear layers in the

pairwise function q(·, ·) are the same (i.e., share parameters).

vectors w = {wi}
N
i=1 = h

(0) that the GNN model will

refine. Each GNN layer, receives as input the set h(l) and

outputs a new set h(l+1) as:

h
(l)
N (i) = AGGREGATE

(

{h
(l)
j , ∀j ∈ N (i)}

)

, (7)

h
(l+1)
i = UPDATE

(

h
(l)
i ,h

(l)
N (i)

)

, (8)

where AGGREGATE(·) is a parametric function that for each

node i aggregates information from its node neighbors N (i)

to generate the message feature h
(l)
N (i), and UPDATE(·, ·) is

a parametric function that for each node i will get as input

the features h
(l)
i , h

(l)
N (i) and will compute the new feature

vector h
(l+1)
i of that node.

Relation-Net based aggregation function. Generally,

the aggregation function is implemented as linear combi-

nation of message vectors received from the node neighbors:

h
(l)
N (i) =

∑

j∈N (i)

aij · q
(l)

(

h
(l)
i ,h

(l)
j

)

, (9)

where q(l)
(

h
(l)
i ,h

(l)
j

)

is a function that computes the mes-

sage vector that node i receives from its neighbor j. Inspired

by relation networks [33], we implement q(l)
(

h
(l)
i ,h

(l)
j

)

as

a non-linear parametric function of the feature vectors of

both the sender and the receiver nodes. Specifically, given

the two input vectors, q(l) forwards each of them through

the same fully connected linear layer, adds their outputs, and

then applies BatchNorm + Dropout + LeakyReLU units (see

Figure 4b). Note that in this implementation the message

between two nodes, is independent of the direction of the

message, i.e., q(l)
(

h
(l)
i ,h

(l)
j

)

= q(l)
(

h
(l)
j ,h

(l)
i

)

.

Update function. The update function of the hidden GNN

layers is implemented as:

h
(l+1)
i =

[

h
(l)
i ; u(l)

([

h
(l)
i ; h

(l)
N (i)

])]

, (10)

where [ααα;βββ] is the concatenation of vectors ααα and βββ, and

u(l)(·) is a non-linear parametric function that, given as input

a vector, forwards it through a fully connected linear layer

followed by BatchNorm + Dropout + LeakyReLU + L2-

normalization units (see Figure 4b). For the last prediction

GNN layer, the update function is implemented as:

δwi, oi = u(L−1)
([

h
(L−1)
i ; h

(L−1)
N (i)

])

, (11)

where u(L−1)(·) is a non-linear parametric function that,

given an input vector, outputs the two d-dimensional vectors

δwi and oi. u
(L−1)(·) is implemented as a fully connected

linear layer followed by a L2-normalization unit for the δwi

output, and a Sigmoid unit for the oi output. The final output

of the GNN is computed with the following operation:

ŵi = wi + oi ⊙ δwi. (12)

As can be seen, we opted for residual-like predictions of the

new classification weights ŵi, since this type of operations

are more appropriate for the type of refining/denoising that

must be performed by our DAE model. Our particular imple-

mentation uses the gating vectors oi to control the amount

of contribution of the residuals δwi to the input weights wi.

We named this GNN based DAE model for weights re-

construction wDAE-GNN model. Alternatively, we also

explored a simpler DAE model that is implemented to re-

construct each classification weight vector (in a given task

instance of our meta-model) independently with a MLP net-

work (wDAE-MLP model). More specifically, the wDAE-

MLP model is implemented with layers similar to those of

the GNN that only include the update function part and not

the aggregation function part. So, it only includes fully

connected layers and the skip connections (i.e., 2nd and 3rd

boxes in update function part of Figure 4b).

3. Experimental Evaluation

In this section we first compare our method against prior

work in §3.2 and then in §3.3 we perform a detailed experi-

mental analysis of it.
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Datasets and Evaluation Metrics. We evaluate our ap-

proach on three datasets, ImageNet-FS [13, 41], MiniIma-

geNet [39], and tiered-MiniImageNet [28]. ImageNet-FS

is a few-shot benchmark created by splitting the ImageNet

classses [30] into 389 base classes and 611 novel classes;

193 of the base classes and 300 of the novel classes are used

for validation and the remaining 196 base classes and 311
novel classes are used for testing. In this benchmark the mod-

els are evaluated based on (1) the recognition performance of

the 311 test novel classes (i.e., 311-way classification task),

and (2) recognition of all the 507 classes (i.e., both the 196
test base classes and the 311 novel classes; for more details

we refer to [13, 41]). We report result for K = 1, 2, 5, 10,

or 20 training examples per novel class. For each of those

K-shot settings we sample 100 test episodes (where each

episode consists of sampling K training examples per novel

class and then evaluating on the validation set of ImageNet)

and compute the mean accuracies over all episodes. Mini-

ImageNet consists of 100 classes randomly picked from the

ImageNet with 600 images per class. Those 100 classes

are divided into 64 base classes, 16 validation novel classes,

and 20 test novel classes. The images in MiniImageNet

have size 84× 84 pixels. tiered-MiniImageNet consists of

ImageNet 608 classes divided into 351 base classes, 97 vali-

dation novel classes, and 160 novel test classes. In total there

are 779, 165 images again with size 84 × 84. In MiniIma-

geNet and tiered-MiniImageNet, the models are evaluated

on several 5-way classification tasks (i.e., test episodes) cre-

ated by first randomly sampling 5 novel classes from the

available test novel classes, and then K = 1, or 5 training

examples and M = 15 test examples per novel class. To

report results we use 20000 such test episodes and compute

the mean accuracies over all episodes. Note that when learn-

ing the novel classes we also feed the base classes to our

wDAE-GNN models in order to take into account the class

dependencies between the novel and base classes.

3.1. Implementation details

Feature extractor architectures. For the ImageNet-FS

experiments we use a ResNet-10 [15] architecture that given

images of size 224× 224 outputs 512-dimensional feature

vectors. For the MiniImageNet and tiered-MiniImageNet

experiments we used a 2-layer Wide Residual Network [43]

(WRN-28-10) that receives images of size 80× 80 (resized

form 84× 84) and outputs 640-dimensional feature vectors.

wDAE-GNN and wDAE-MLP architectures. In all our

experiments we use a wDAE-GNN architecture with two

GNN layers. In ImageNet-FS (MiniImageNet) the q(l)(·, ·)
parametric function of all GNN layers and the u(l)(·) para-

metric function of the hidden GNN layer output features

of 1024 (320) channels. All dropout units have 0.7 (0.95)

dropout ratio, and the σ of the Gaussian noise in DAE is

0.08 (0.1). A similar architecture is used in wDAE-MLP but

without the aggregation function parts.

For training we use SGD optimizer with momentum 0.9
and weight decay 5e− 4. We train our models only on the

1-shot setting and then use them for all the K-shot settings.

During test time we apply only 1 refinement step of the

initial estimates of the classification weights (i.e., only 1

application of the update rule (4)). In ImageNet-FS the step

size ε of the update rule (4) is set to 1.0, 1.0, 0.6, 0.4, and

0.2 for the K = 1, 2, 5, 10, and 20 shot settings respectively.

In MiniImageNet ε is set to 1.0 and 0.5 for the K = 1 and

K = 5 settings respectively. All hyper-parameters were

cross-validated in the validation splits of the datasets.

We provide the implementation code at

https://github.com/gidariss/wDAE GNN FewShot

3.2. Comparison with prior work

Here we compare our wDAE-GNN and wDAE-MLP mod-

els against prior work on the ImageNet-FS, MiniImageNet,

and tiered-MiniImageNet datasets. More specifically, on

ImageNet-FS (see Table 1) the proposed models achieve

in most cases superior performance than prior methods -

especially on the challenging and interesting scenarios of

having less than 5 training examples per novel class (i.e.,

K ≤ 5). For example, the wDAE-GNN model improves the

1-shot accuracy for novel classes of the previous state-of-

the-art [9] by around 1.8 accuracy points. On MiniImageNet

and tiered-MiniImageNet (see Tables 2 and 4 respectively)

the proposed models surpass the previous methods on all

settings and achieve new state-of-the-art results. Also, for

MiniImageNet we provide in Table 3 the classification ac-

curacies of both the novel and base classes and we compare

with the LwoF [9] prior work. Again, we observe that our

models surpass the prior work.

3.3. Analysis of our method

Ablation study of DAE framework. Here we perform ab-

lation study of various aspects of our DAE framework on the

ImageNet and the MiniImageNet datasets (see correspond-

ing results on Tables 1 and 2). Specifically, we examine the

cases of (1) training the reconstruction models without noise

(entries with suffix No Noise), (2) during training providing

as input to the model noisy versions of the target classifica-

tion weights that has to reconstruct (entries with suffix Noisy

Targets as Input), (3) training the models without classifi-

cation loss on the validation examples (i.e., using only the

first term of the loss (6); entries with suffix No Cls. Loss),

and (4) training the models with only the classification loss

on the validation examples and without the reconstruction

loss (i.e., using only the second term of the loss (6); entries

with suffix No Rec. Loss). (5) We also provide the recogni-

tion performance of the initial estimates of the classification

weight vectors without being refined by our DAE models
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Novel classes All classes

Approach K=1 2 5 10 20 K=1 2 5 10 20

Prior work

Prototypical-Nets (from [41]) 39.3 54.4 66.3 71.2 73.9 49.5 61.0 69.7 72.9 74.6

Matching Networks (from [41]) 43.6 54.0 66.0 72.5 76.9 54.4 61.0 69.0 73.7 76.5

Logistic regression [13] 38.4 51.1 64.8 71.6 76.6 40.8 49.9 64.2 71.9 76.9

Logistic regression w/ H [13] 40.7 50.8 62.0 69.3 76.5 52.2 59.4 67.6 72.8 76.9

SGM w/ H [13] - - - - - 54.3 62.1 71.3 75.8 78.1

Batch SGM [13] - - - - - 49.3 60.5 71.4 75.8 78.5

Prototype Matching Nets w/ H [41] 45.8 57.8 69.0 74.3 77.4 57.6 64.7 71.9 75.2 77.5

LwoF [9] 46.2 57.5 69.2 74.8 78.1 58.2 65.2 72.7 76.5 78.7

Ours

wDAE-GNN 48.0 59.7 70.3 75.0 77.8 59.1 66.3 73.2 76.1 77.5

wDAE-MLP 47.6 59.2 70.0 74.8 77.7 59.0 66.1 72.9 75.8 77.4

Ablation study on wDAE-GNN

Initial estimates 45.4 56.9 68.9 74.5 77.7 57.0 64.3 72.3 75.6 77.3

wDAE-GNN - No Noise 47.6 59.0 70.0 74.9 77.8 60.0 66.0 72.9 75.8 77.4

wDAE-GNN - Noisy Targets as Input 47.8 59.4 70.1 74.8 77.7 58.7 66.0 73.1 76.0 77.5

wDAE-GNN - No Cls. Loss 47.7 59.1 69.8 74.6 77.6 58.4 65.5 72.7 75.8 77.5

wDAE-GNN - No Rec. Loss 47.8 59.4 70.1 75.0 77.8 58.7 66.0 73.1 76.1 77.6

Table 1: Top-5 accuracies on the novel and on all classes for

the ImageNet-FS benchmark [13]. To report results we use 100

test episodes. For all our models the 95% confidence intervals

on the K = 1, 2, 5, 10, and 20 settings are (around) ±0.21,

±0.15, ±0.08, ±0.06, and ±0.05 respectively for Novel classes

and ±0.13, ±0.10, ±0.05, ±0.04, and ±0.03 for All classes.

Models Backbone 1-shot 5-shot

Prior work

MAML [7] Conv-4-64 48.70 ± 1.84% 63.10 ± 0.92%

Prototypical Nets [36] Conv-4-64 49.42 ± 0.78% 68.20 ± 0.66%

LwoF [9] Conv-4-64 56.20 ± 0.86% 72.81 ± 0.62%

RelationNet [42] Conv-4-64 50.40 ± 0.80% 65.30 ± 0.70%

GNN [8] Conv-4-64 50.30% 66.40%

R2-D2 [3] Conv-4-64 48.70 ± 0.60% 65.50 ± 0.60%

R2-D2 [3] Conv-4-512 51.20 ± 0.60% 68.20 ± 0.60%

TADAM [24] ResNet-12 58.50 ± 0.30% 76.70 ± 0.30%

Munkhdalai et al. [23] ResNet-12 57.10 ± 0.70% 70.04 ± 0.63%

SNAIL [33] ResNet-12 55.71 ± 0.99% 68.88 ± 0.92%

Qiao et al. [26]† WRN-28-10 59.60 ± 0.41% 73.74 ± 0.19%

LEO [31]† WRN-28-10 61.76 ± 0.08% 77.59 ± 0.12%

LwoF [9] (our implementation) WRN-28-10 60.06 ± 0.14% 76.39 ± 0.11%

Ours

wDAE-GNN WRN-28-10 61.07 ± 0.15% 76.75 ± 0.11%

wDAE-MLP WRN-28-10 60.61 ± 0.15% 76.56 ± 0.11%

wDAE-GNN† WRN-28-10 62.96 ± 0.15% 78.85 ± 0.10%

wDAE-MLP† WRN-28-10 62.67 ± 0.15% 78.70 ± 0.10%

Ablation study on wDAE-GNN

Initial estimate WRN-28-10 59.68 ± 0.14% 76.48 ± 0.11%

wDAE-GNN - No Noise WRN-28-10 60.29 ± 0.14% 76.49 ± 0.11%

wDAE-GNN - Noisy Targets as Input WRN-28-10 60.92 ± 0.15% 76.69 ± 0.11%

wDAE-GNN - No Cls. Loss WRN-28-10 60.96 ± 0.15% 76.75 ± 0.11%

wDAE-GNN - No Rec. Loss WRN-28-10 60.76 ± 0.15% 76.64 ± 0.11%

Ablation study on wDAE-MLP

wDAE-MLP - No Noise WRN-28-10 60.16 ± 0.15% 76.50 ± 0.11%

wDAE-MLP - Noisy Targets as Input WRN-28-10 60.43 ± 0.15% 76.49 ± 0.11%

wDAE-MLP - No Cls. Loss WRN-28-10 60.55 ± 0.15% 76.62 ± 0.11%

wDAE-MLP - No Rec. Loss WRN-28-10 60.45 ± 0.15% 76.50 ± 0.11%

Table 2: Top-1 accuracies on the novel classes of MiniImageNet

test set with 95% confidence intervals. †: using also the validation

classes for training.

(entries Initial Estimates). We observe that each of those

ablations to our DAE models lead to worse few-shot recogni-

tion performance. Among them, the models trained without

noise on theirs inputs achieves the worst performance, which

demonstrates the necessity of the DAE formulation.

Novel classes All classes

Models 1-shot 5-shot 1-shot 5-shot

LwoF [9] 60.03 ± 0.14% 76.35 ± 0.11% 55.70 ± 0.08% 66.27± 0.07%

wDAE-GNN 61.07 ± 0.15% 76.75 ± 0.11% 56.55 ± 0.08% 67.00 ± 0.07%

wDAE-MLP 60.61 ± 0.14% 76.56 ± 0.11% 56.07 ± 0.08% 67.05 ± 0.07%

Table 3: Top-1 accuracies on the novel and on all classes of Mini-

ImageNet test set with 95% confidence intervals.

Models Backbone 1-shot 5-shot

MAML [7] (from [21]) Conv-4-64 51.67 ± 1.81% 70.30 ± 0.08%

Prototypical Nets [36] Conv-4-64 53.31 ± 0.89% 72.69 ± 0.74 %

RelationNet [42] (from [21]) Conv-4-64 54.48 ± 0.93% 71.32 ± 0.78%

Liu et al. [21] Conv-4-64 57.41 ± 0.94% 71.55 ± 0.74

LEO [31] WRN-28-10 66.33 ± 0.05% 81.44 ± 0.09 %

LwoF [9] (our implementation) WRN-28-10 67.92 ± 0.16% 83.10 ± 0.12%

wDAE-GNN (Ours) WRN-28-10 68.18 ± 0.16% 83.09 ± 0.12%

Table 4: Top-1 accuracies on the novel classes of tiered-

MiniImageNet test set with 95% confidence intervals.

Impact of GNN architecture. By comparing the classi-

fication performance of the wDAE-GNN models with the

wDAE-MLP models in Tables 1 and 2, we observe that in-

deed, taking into account the inter-class dependencies with

the proposed GNN architecture is beneficial to the few-shot

recognition performance. Specifically, the GNN architecture

offers a small (e.g., around 0.40 percentage points in the

1-shot case) but consistent improvement that according to

the confidences intervals of Tables 1 and 2 is in almost all

cases statistically significant.

4. Conclusion

We proposed a meta-model for few-shot learning that

takes as input a set of novel classes (with few training ex-

amples for each of them) and then generates classification

weight vectors for them. Our model is based on the use

of a Denoising Autoencoder (DAE) network. During train-

ing, the injected noise on the classification weights given as

input to the DAE network allows the regularization of the

learning procedure and helps in boosting the performance

of the meta-model. After training, the DAE model is used

for refining an initial set of classification weights with the

goal of making them more discriminative with respect to

the classification task at hand. We implemented the above

DAE model by use of a Graph Neural Network architecture

so as to allow our meta-model to properly learn (and take

advantage of) the structure of the entire set of classification

weights that must be reconstructed on each instance (i.e.,

episode) of the meta-learning task. Our detailed experiments

on the ImageNet-FS [13] and MiniImageNet [39] datasets re-

veal (1) the significance of our DAE formulation for training

meta-models capable to generate classification weights, and

(2) that the GNN architecture manages to offer a consistent

improvement on the few-shot classification accuracy. Fi-

nally, our model surpassed prior methods on all the explored

datasets.
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