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Abstract

We propose 3DSmoothNet, a full workflow to match

3D point clouds with a siamese deep learning architecture

and fully convolutional layers using a voxelized smoothed

density value (SDV) representation. The latter is com-

puted per interest point and aligned to the local refer-

ence frame (LRF) to achieve rotation invariance. Our com-

pact, learned, rotation invariant 3D point cloud descrip-

tor achieves 94.9% average recall on the 3DMatch bench-

mark data set [49], outperforming the state-of-the-art by

more than 20 percent points with only 32 output dimen-

sions. This very low output dimension allows for near real-

time correspondence search with 0.1 ms per feature point

on a standard PC. Our approach is sensor- and scene-

agnostic because of SDV, LRF and learning highly de-

scriptive features with fully convolutional layers. We show

that 3DSmoothNet trained only on RGB-D indoor scenes

of buildings achieves 79.0% average recall on laser scans

of outdoor vegetation, more than double the performance

of our closest, learning-based competitors [49, 17, 5, 4].

Code, data and pre-trained models are available online at

https://github.com/zgojcic/3DSmoothNet.

1. Introduction

3D point cloud matching is necessary to combine mul-

tiple overlapping scans of a scene (e.g., acquired using an

RGB-D sensor or a laser scanner) into a single represen-

tation for further processing like 3D reconstruction or se-

mantic segmentation. Individual parts of the scene are usu-

ally captured from different viewpoints with a relatively low

overlap. A prerequisite for further processing is thus align-

ing these individual point cloud fragments in a common co-

ordinate system, to obtain one large point cloud of the com-

plete scene.

Although some works aim to register 3D point clouds

based on geometric constraints (e.g., [27, 48, 35]), most ap-

proaches match corresponding 3D feature descriptors that

are custom-tailored for 3D point clouds and usually de-

Figure 1: 3DSmoothNet generalization ability: our de-

scriptor, trained solely on indoor scenes (top) can seam-

lessly generalize to outdoor scenes (bottom).

scribe point neighborhoods with histograms of point dis-

tributions or local surface normals (e.g., [16, 8, 28, 38]).

Since the comeback of deep learning, research on 3D local

descriptors has followed the general trend in the vision com-

munity and shifted towards learning-based approaches and

more specifically deep neural networks [49, 17, 5, 45, 4].

Although the field has seen significant progress in the last

three years, most learned 3D feature descriptors are either

not rotation invariant [49, 5, 45], need very high output di-

mensions to be successful [49, 4] or can hardly general-

ize to new domains [49, 17]. In this paper, we propose

3DSmoothNet, a deep learning approach for 3D point cloud

matching, which has low output dimension (16 or 32) for

very fast correspondence search, high descriptiveness (out-

performs all state-of-the-art approaches by more than 20
percent points), is rotation invariant, and does generalize

across sensor modalities and from indoor scenes of build-

ings to natural outdoor scenes.

Contributions We propose a new compact learned local

feature descriptors for 3D point cloud matching that is ef-

ficient to compute and outperforms all existing methods

significantly. A major technical novelty of our paper is

the smoothed density value (SDV) voxelization as a new

input data representation that is amenable to fully convolu-

tional layers of standard deep learning libraries. The gain

of SDV is twofold. On the one hand, it reduces the sparsity
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of the input voxel grid, which enables better gradient flow

during backpropagation, while reducing the boundary ef-

fects, as well as smoothing out small miss-alignments due to

errors in the estimation of the local reference frame (LRF).

On the other hand, we assume that it explicitly models the

smoothing that deep networks typically learn in the first

layers, thus saving network capacity for learning highly

descriptive features. Second, we present a Siamese net-

work architecture with fully convolutional layers that learns

a very compact, rotation invariant 3D local feature de-

scriptor. This approach generates low-dimensional, highly

descriptive features that generalize across different sensor

modalities and from indoor to outdoor scenes. Moreover,

we demonstrate that our low-dimensional feature descriptor

(only 16 or 32 output dimensions) greatly speeds up corre-

spondence search, which allows real-time applications.

2. Related Work

This section reviews advances in 3D local feature de-

scriptors, starting from the early hand-crafted feature de-

scriptors and progressing to the more recent approaches that

apply deep learning.

Hand-crafted 3D Local Descriptors Pioneer works on

hand-crafted 3D local feature descriptors were usually in-

spired by their 2D counterparts. Two basic strategies exist

depending on how rotation invariance is established. Many

approaches including SHOT [38], RoPS [11], USC [37]

and TOLDI [42] try to first estimate a unique local refer-

ence frame (LRF), which is typically based on the eigen-

value decomposition of the sample covariance matrix of the

points in neighborhood of the interest point. This LRF is

then used to transform the local neighborhood of the interest

point to its canonical representation in which the geometric

peculiarities, e.g. orientation of the normal vectors or lo-

cal point density are analyzed. On the other hand, several

approaches [29, 28, 2] resort to a LRF-free representation

based on intrinsically invariant features (e.g., point pair fea-

tures). Despite significant progress, hand-crafted 3D local

descriptors never reached the performance of hand-crafted

2D descriptors. In fact, they still fail to handle point cloud

resolution changes, noisy data, occlusions and clutter [10].

Learned 3D Local Descriptors The success of deep-

learning methods in image processing also inspired vari-

ous approaches for learning geometric representations of

3D data. Due to the sparse and unstructured nature of raw

point clouds, several parallel tracks regarding the represen-

tation of the input data have emerged.

One idea is projecting 3D point clouds to 2D images and

then inferring local feature descriptors by drawing from the

rich library of well-established 2D CNNs developed for im-

age interpretation. For example, [6] project 3D point clouds

to 2D depth maps and extract features using a 2D auto-

encoder. [13] use a 2D CNN to combine the rendered views

of feature points at multiple scales into a single local feature

descriptor. Another possibility are dense 3D voxel grids ei-

ther in the form of binary occupancy grids [21, 40, 25] or an

alternative encoding [49, 44]. For example, 3DMatch [49],

one of the pioneer works in learning 3D local descriptors,

uses a volumetric grid of truncated distance functions to

represent the raw point clouds in a structured manner. An-

other option is estimating the LRF (or a local reference

axis) for extracting canonical, high-dimensional, but hand-

crafted features and using a neural network solely for a di-

mensionality reduction. Even-though these methods [17, 9]

manage to learn a non-linear embedding that outperforms

the initial representations, their performance is still bounded

by the descriptiveness of the initial hand-crafted features.

PointNet [24] and PointNet++ [26] are seminal works

that introduced a new paradigm by directly working on raw

unstructured point-clouds. They have shown that a per-

mutation invariance of the network, which is important for

learning on unordered sets, can be accomplished by using

symmetric functions. Albeit, successful in segmentation

and classification tasks, they do not manage to encapsulate

the local geometric information in a satisfactory manner,

largely because they are unable to use convolutional lay-

ers in their network design [5]. Nevertheless, PointNet of-

fers a base for PPFNet [5], which augments raw point co-

ordinates with point-pair features and incorporates global

context during learning to improve the feature represen-

tation. However, PPFNet is not fully rotation invariant.

PPF-FoldNet addresses the rotation invariance problem of

PPFNet by solely using point-pair features as input. It is

based on the architectures of the PointNet [24] and Fold-

ingNet [43] and is trained in a self-supervised manner. The

recent work of [45] is based on PointNet, too, but deviates

from the common approach of learning only the feature de-

scriptor. It follows the idea of [46] in trying to fuse the

learning of the keypoint detector and descriptor in a single

network in a weakly-supervised way using GPS/INS tagged

3D point clouds. [45] does not achieve rotation invariance

of the descriptor and is limited to smaller point cloud sizes

due to using PointNet as a backbone.

Arguably, training a network directly from raw point

clouds fulfills the end-to-end learning paradigm. On the

downside, it does significantly hamper the use of convo-

lutional layers, which are crucial to fully capture local ge-

ometry. We thus resort to a hybrid strategy that, first, trans-

forms point neighborhoods into LRFs, second, encodes un-

structured 3D point clouds as SDV grids amenable to con-

volutional layers and third, learns descriptive features with

a siamese CNN. This strategy does not only establish rota-

tion invariance but also allows very good performance with

small output dimensions, which massively speeds up corre-

spondence search.
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Figure 2: Input parameterization: (a) We extract the spherical support S of the interest point p, which is used (b) to

estimate a unique LRF. (c) Each data cube is transformed to its canonical representation and (d) voxelized using a Gaussian

smoothing kernel. (e) The normalized 3D SDV voxel grid is used as input to our siamese 3DSmoothNet architecture. Note

that (d) and (e) show 2D slices of 3D cubes.

3. Method

In a nutshell, our workflow is as follows (Fig. 2 & 3):

(i) given two raw point clouds, (ii) compute the LRF of

the spherical neighborhood around the randomly selected

interest points, (iii) transform the neighborhoods to their

canonical representations, (iv) voxelize them with the help

of Gaussian smoothing, (v) infer the per point local feature

descriptors using 3DSmoothNet and, for example, use them

as input to a RANSAC-based robust point cloud registration

pipeline.

More formally, consider two overlapping point cloud

sets P and Q represented in matrix form as P ∈ R
n×3

and Q ∈ R
m×3. Let (P)i =: pi represent the coordinate

vector of an individual point of point cloud P located in the

overlapping region. A bijective function maps point pi to

its corresponding (but initially unknown) point (Q)j =: qj

in the second point cloud. Under the assumption of a static

scene and rigid point clouds (and neglecting noise and dif-

fering point cloud resolutions), this bijective function can

be described with the transformation parameters of the con-

gruent transformation

qj = Rpi + t, (1)

where R ∈ SO(3) denotes the rotation matrix and t ∈ R
3

the translation vector. With point subsets Pc and Qc for

which correspondences exist, the mapping function can be

written as

Qc = KPcRT + 1⊗ tT , (2)

where K ∈ P
|Q′| denotes a permutation matrix whose en-

tries kij = 1 if pi corresponds to qj and 0 otherwise and

1 is a vector of ones. In our setting both, the permutation

matrix K and the transformation parameters R and t are

unknown initially. Simultaneously solving for all is hard

as the problem is non-convex with binary entries in K [20].

However, if we find a way to determine K, the estimation of

the transformation parameters is straightforward. This boils

down to learning a function that maps point pi to a higher

dimensional feature space in which we can determine its

corresponding point qj . Once we have established corre-

spondence, we can solve for R and t. Computing a rich

feature representation across the neighborhood of pi en-

sures robustness against noise and facilitates high descrip-

tiveness. Our main objective is a fully rotation invariant

local feature descriptor that generalizes well across a large

variety of scene layouts and point cloud matching settings.

We choose a data-driven approach for this task and learn a

compact local feature descriptor from raw point clouds.

3.1. Input parameterization

A core requirement for a generally applicable local fea-

ture descriptor is its invariance under isometry of the Eu-

clidian space. Since achieving the rotation invariance in

practice is non-trivial, several recent works [49, 5, 45]

choose to ignore it and thus do not generalize to rigidly

transformed scenes [4]. One strategy to make a feature de-

scriptor rotation invariant is regressing the canonical orien-

tation of a local 3D patch around a point as an integral part

of a deep neural network [24, 45] inspired by recent work

in 2D image processing [15, 47]. However, [5, 7] find that

this strategy often fails for 3D point clouds. We therefore

choose a different approach and explicitly estimate LRFs by

adapting the method of [42]. An overview of our method is

shown in Fig. 2 and is described in the following.

Local reference frame Given a point p in point cloud

P , we select its local spherical support S ⊂ P such that

S = {pi : ||pi − p||2 ≤ rLRF } where rLRF denotes

the radius of the local neighborhood used for estimating the

LRF. In contrast to [42], where only points within the dis-

tance 1
3rLRF are used, we approximate the sample covari-

ance matrix Σ̃S using all the points pi ∈ S . Moreover,

we replace the centroid with the interest point p to reduce

computational complexity. We compute the LRF via the

eigendecomposition of Σ̃S :

Σ̃S =
1

|S|
∑

pi∈S

(pi − p)(pi − p)T (3)
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Figure 3: 3DSmoothNet network architecture: We extract interest points in the overlapping region of two fragments. The

cubic patches (bounding box is color coded to the interest points), centered at the interest point and aligned with the estimate

LRF are converted to the SDV voxel grid and fed to the network. 3DSmoothNet consists of convolutional (green rectangles

with number of filters and filter size respectively), batch-normalization (orange), ReLU activation function (blue) and an

l2-normalization (magenta) layer. Both branches share all the parameters. The anchor fθ(X
a), positive fθ(X

p) and negative

fθ(X
n) arguments of the batch hard loss are color coded according to the interest points. Negative examples are sampled on

the fly from all the positive examples of the mini-batch (denoted with the four voxel grids).

We select the z-axis ẑp to be collinear to the estimated nor-

mal vector n̂p obtained as the eigenvector corresponding to

the smallest eigenvalue of Σ̃S . We solve for the sign ambi-

guity of the normal vector ẑp by

ẑp =







n̂p, if
∑

pi∈S

〈n̂p, pip〉 ≥ 0

−n̂p, otherwise
(4)

The x-axis x̂p is computed as the weighted vector sum

x̂p =
1

|| ∑

pi∈S

αiβivi||2
∑

pi∈S

αiβivi (5)

where vi = ppi − 〈ppi , ẑp〉ẑp is the projection of the

vector ppi to a plane orthogonal to ẑp and αi and βi are

weights related to the norm and the scalar projection of the

vector ppi to the vector ẑp computed as

αi = (rLRF − ||p− pi||2)2

βi = 〈ppi , ẑp〉2
(6)

Intuitively, the weight αi favors points lying close to the

interest point thus making the estimation of x̂p more ro-

bust against clutter and occlusions. βi gives more weight to

points with a large scalar projection, which are likely to con-

tribute significant evidence particularly in planar areas [42].

Finally, the y-axis ŷp completes the left-handed LRF and is

computed as ŷp = x̂p × ẑp.

Smoothed density value (SDV) voxelization Once

points in the local neighborhood pi ∈ S have been trans-

formed to their canonical representation p′
i ∈ S ′

(Fig. 2(c)), we use them to describe the transformed local

neighborhood of the interest points. We represent points

in a SDV voxel grid, centered on the interest point p′ and

aligned with the LRF. We write the SDV voxel grid as a

three dimensional matrix XSDV ∈ R
W×H×D whose ele-

ments (XSDV)jkl =: xjkl represent the SDV of the cor-

responding voxel computed using the Gaussian smoothing

kernel with bandwidth h:

xjkl =
1

njkl

njkl
∑

i=1

1√
2πh

exp
−||cjkl − p′

i||22
2h2

s.t. ||cjkl − p′
i||2 < 3h

(7)

where njkl denotes the number of points p′
i ∈ S ′ that

lie within the distance 3h of the voxel centroid cjkl (see

Fig. 2(d)). Further, all values of XSDV are normalized such

that they sum up to 1 in order to achieve invariance with

respect to varying point cloud densities. For ease of nota-

tion we omit the superscript SDV in XSDV in all follow-

ing equations. The proposed SDV voxel grid represen-

tation has several advantages over the traditional binary-

occupancy grid [21, 40], the truncated distance function

[49] or hand-crafted feature representations [17, 9, 5, 4].

First, we mitigate the impact of boundary effects and noise

of binary-occupancy grids and truncated distance functions

by smoothing density values over voxels. Second, com-

pared to the binary occupancy grid we reduce the sparsity

of the representation on the fragments of the test part of

3DMatch data set by more than 30 percent points (from

about 90% to about 57%), which enables better gradient
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Figure 4: Results on the 3DMatch data set after RANSAC: 3DSmoothNet generates reliable correspondences for pairs

with low overlap (32% (top), 48% (bottom)) and predominantly planar regions (top row) or hard cases with vegetation and

repetitive geometries (Christmas tree, windows in bottom row).

flow during backpropagation. Third, the SDV representa-

tion helps our method to achieve better generalization as we

do not overfit exact data cues during training. Finally, in

contrast to hand-crafted feature representations, SDV voxel

grid representation provides input with a geometrically in-

formed structure, which enables us to exploit convolutional

layers that are crucial to capture the local geometric charac-

teristics of point clouds (Fig. 5).

Network architecture Our network architecture (Fig. 3)

is loosely inspired by L2Net [36], a state-of-the-art learned

local image descriptor. 3DSmoothNet consists of stacked

convolutional layers that applies strides of 2 (instead of

max-pooling) in some convolutional layers to down-sample

the input [33]. All convolutional layers, except the final

one, are followed by batch normalization [14] and use the

ReLU activation function [22]. In our implementation, we

follow [36] and fix the affine parameters of the batch nor-

malization layer to 1 and 0 and we do not train them during

the training of the network. To avoid over-fitting the net-

work, we add dropout regularization [34] with a 0.3 dropout

rate before the last convolutional layer. The output of the

last convolutional layer is fed to a batch normalization layer

followed by an l2 normalization to produce unit length local

feature descriptors.

Training We train 3DSmoothNet (Fig. 3) on point cloud

fragments from the 3DMatch data set [49]. This is an

RGB-D data set consisting of 62 real-world indoor scenes,

ranging from offices and hotel rooms to tabletops and

restrooms. Point clouds obtained from a pool of data

sets [41, 32, 19, 39, 3] are split into 54 scenes for train-

ing and 8 scenes for testing. Each scene is split into sev-

eral partially overlapping fragments with their ground truth

transformation parameters T .

Consider two fragments Fi and Fj , which have more

than 30% overlap. To generate training examples, we start

by randomly sampling 300 anchor points pa from the over-

lapping region of fragment Fi. After applying the ground

truth transformation parameters Tj() the positive sample pp

is then represented as the nearest-neighbor pp =: nn(pa) ∈
Tj(Fj), where nn() denotes the nearest neighbor search

in the Euclidean space based on the l2 distance. We re-

frain from pre-sampling the negative examples and instead

use the hardest-in-batch method [12] for sampling negative

samples on the fly. During training we aim to minimize the

soft margin Batch Hard (BH) loss function

LBH(θ,X ) =
1

|X |

|X |
∑

i=1

ln
(

1 + exp
[

||fθ(Xa
i)− fθ(X

p
i )||2

− min
j=1...|X |

j 6=i

||fθ(Xa
i)− fθ(X

p
j)||2

]

)

(8)

The BH loss is defined for a mini-batch X , where Xa
i and

X
p
i represent the SDV voxel grids of the anchor and posi-

tive input samples, respectively. The negative samples are

retrieved as the hardest non-corresponding positive sam-

ples in the mini-batch (c.f. Eq. 8). Hardest-in-batch sam-

pling ensures that negative samples are neither too easy

(i.e, non-informative) nor exceptionally hard, thus prevent-

ing the model to learn normal data associations [12].

4. Results

Implementation details Our 3DSmoothNet approach is

implemented in C++ (input parametrization) using the

PCL [30] and in Python (CNN part) using Tensorflow [1].

During training we extract SDV voxel grids of size W =
H = D = 0.3 m (corresponding to [49]), centered at

each interest point and aligned with the LRF. We use

rLRF =
√
3W to extract the spherical support S and esti-

mate the LRF. We obtain the circumscribed sphere of our
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Figure 5: 3DSmoothNet descriptors are geometrically

informed: Embedding in 3D space with PCA (first three

components RGB color-coded). Planar regions lie in the

blue-green, edges and corners in the orange-pink and spher-

ical surfaces in the yellow color spectrum.

voxel grid and use the points transformed to the canoni-

cal frame to extract the SDV voxel grid. We split each

SDV voxel grid into 163 voxels with an edge w = W
16 and

use a Gaussian smoothing kernel with an empirically deter-

mined optimal width h = 1.75w
2 . All the parameters wew

slected on the validation data set. We train the network with

mini-batches of size 256 and optimize the parameters with

the ADAM optimizer [18], using an initial learning rate of

0.001 that is exponentially decayed every 5000 iterations.

Weights are initialized orthogonally [31] with 0.6 gain, and

biases are set to 0.01. We train the network for 20 epochs.

We evaluate the performance of 3DSmoothNet for cor-

respondence search on the 3DMatch data set [49] and com-

pare against the state-of-the-art. In addition, we evaluate

its generalization capability to a different sensor modality

(laser scans) and different scenes (e.g., forests) on the Chal-

lenging data sets for point cloud registration algorithms

data set [23] denoted as ETH data set.

Comparison to state-of-the-art We adopt the commonly

used hand-crafted 3D local feature descriptors FPFH [28]

(33 dimensions) and SHOT [38] (352 dimensions) as base-

lines and run implementations provided in PCL [30] for

both approaches. We compare against the current state-

of-the-art in learned 3D feature descriptors: 3DMatch [49]

(512 dimensions), CGF [17] (32 dimensions), PPFNet [5]

(64 dimensions), and PPF-FoldNet [4] (512 dimensions).

In case of 3DMatch and CGF we use the implementations

provided by the authors in combination with the given pre-

trained weights. Because source-code of PPFNet and PPF-

FoldNet is not publicly available, we report the results pre-

sented in the original papers. For all descriptors based on

the normal vectors, we ensure a consistent orientation of

the normal vectors across the fragments. To allow for a

fair evaluation, we use exactly the same interest points (pro-

vided by the authors of the data set) for all descriptors. In

case of descriptors that are based on spherical neighbor-

hoods, we use a radius that yields a sphere with the same

volume as our voxel. All exact parameter settings, further

implementation details etc. used for these experiments are

available in supplementary material.
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Figure 6: Recall in relation to 3DSmoothNet output di-

mensions. Values in brackets denote average recall over all

scenes.

4.1. Evaluation on the 3DMatch data set

Setup The test part of the 3DMatch data set consists of 8
indoor scenes split into several partially overlapping frag-

ments. For each fragment, the authors provide indices of

5000 randomly sampled feature points. We use these fea-

ture points for all descriptors. The results of PPFNet and

PPF-FoldNet are based on a spherical neighborhood with

a diameter of 0.6m. Furthermore, due to its memory bot-

tleneck, PPFNet is limited to 2048 interest points per frag-

ment. We adopt the evaluation metric of [5] (see supple-

mentary material). It is based on the theoretical analysis

of the number of iterations needed by a robust registration

pipeline, e.g. RANSAC, to find the correct set of transfor-

mation parameters between two fragments. As done in [5],

we set the threshold τ1 = 0.1m on the l2 distance between

corresponding points in the Euclidean space and τ2 = 0.05
to threshold the inlier ratio of the correspondences at 5%.

Output dimensionality of 3DSmoothNet A general goal

is achieving the highest matching performance with the

lowest output dimensionality (i.e., filter number in the last

convolutional layer of 3DSmoothNet) to decrease run-time

and to save memory. Thus, we first run trials to find a good

compromise between matching performance and efficiency

for the 3DSmoothNet descriptors1. We find that the perfor-

mance of 3DSmoothNet quickly starts to saturate with in-

creasing output dimensions (Fig. 6). There is only marginal

improvement (if any) when using more than 64 dimensions.

We thus decide to process all further experiments only for

16 and 32 output dimensions of 3DSmoothNet.

Comparison to state-of-the-art Results of experimen-

tal evaluation on the 3DMatch data set are summarized in

Tab. 1 (left) and two hard cases are shown in Fig. 4. Ours

1Recall that for correspondence search, the brute-force implementation

of nearest-neighbor search scales with O(DN
2), where D denotes the

dimension and N the number of data points. The time complexity can

be reduced to O(DN logN) using tree-based methods, but still becomes

inefficient if D grows large (”curse of dimensionality”).
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Figure 7: Recall in relation to inlier ratio threshold. Re-

call of 3DSmoothNet on the 3DMatch data set remains high

even when the inlier threshold ratio is increased.

(16) and Ours (32) achieve an average recall of 92.8%
and 94.7%, respectively, which is close to solving the

3DMatch data set. 3DSmoothNet outperforms all state-of-

the-art 3D local feature descriptors with a significant mar-

gin on all scenes. Remarkably, Ours (16) improves aver-

age recall over all scenes by almost 20 percent points with

only 16 output dimensions compared to 512 dimensions of

PPF-FoldNet and 352 of SHOT. Furthermore, Ours (16)

and Ours (32) show a much smaller recall standard devi-

ation (STD), which indicates robustness of 3DSmoothNet

to scene changes and hints at good generalization ability.

The inlier ratio threshold τ2 = 0.05 as chosen by [5] re-

sults in ≈ 55k iterations to find at least 3 correspondences

(with 99.9% probability) with the common RANSAC ap-

proach. Increasing the inlier ratio to τ2 = 0.2 would de-

crease RANSAC iterations significantly to ≈ 850, which

would speed up processing massively. We thus evaluate

how gradually increasing the inlier ratio changes perfor-

mance of 3DSmoothNet in comparison to all other tested

approaches (Fig. 7). While the average recall of all other

methods drops below 30% for τ2 = 0.2, recall of Ours

(16) (blue) and Ours (32) (orange) remains high at 62%
and 72%, respectively. This indicates that any descriptor-

based point cloud registration pipeline can be made more

efficient by just replacing the existing descriptor with our

3DSmoothNet.

Rotation invariance We take a similar approach as [4]

to validate rotation invariance of 3DSmoothNet by rotating

all fragments of 3DMatch data set (we name it 3DRotat-

edMatch) around all three axis and evaluating the perfor-

mance of the selected descriptors on these rotated versions.

Individual rotation angles are sampled arbitrarily between

[0, 2π] and the same indices of points for evaluation are

used as in the previous section. Results of Ours (16) and

Ours (32) remain basically unchanged (Tab 1 (right)) com-

pared to the non-rotated variant (Tab 1 (left)), which con-

firms rotation invariance of 3DSmoothNet (due to estimat-

ing LRF). Because performance of all other rotation invari-

3DMatch data set

Original Rotated

Average STD Average STD

FPFH [28] 54.3 11.8 54.8 12.1
SHOT [38] 73.3 7.7 73.3 7.6
3DMatch [49]2 57.3 7.8 3.6 1.7
CGF [17] 58.2 14.2 58.5 14.0
PPFNet [5] 62.3 11.5 0.3 0.5
PPF-FoldNet [4] 71.8 9.9 73.1 11.1
Ours (16 dim) 92.8 3.4 93.0 3.2
Ours (32 dim) 94.7 2.7 94.9 2.5

Table 1: Results on the 3DMatch and 3DRotatedMatch data

sets. We report average recall in percent over all scenes

along with the standard deviation (STD) per method. Best

performance is shown in bold. Note that results of non-

rotation invariant methods naturally drop to zero for the ro-

tated case (right column). See detailed results per scene in

the Supplementary material.

ant descriptors [28, 38, 17, 4] remains mainly identical, too,

3DSmoothNet again outperforms all state-of-the-art meth-

ods by more than 20 percent points.

Ablation study To get a better understanding of the rea-

sons for the very good performance of 3DSmoothNet, we

analyze the contribution of individual modules with an ab-

lation study on 3DMatch and 3DRotatedMatch data sets.

Along with the original 3DSmoothNet, we consider ver-

sions without SDV (we use a simple binary occupancy

grid), without LRF and finally without both, LRF and SDV.

All networks are trained using the same parameters and for

the same number of epochs. Results of this ablation study

are summarized in Tab. 2. It turns out that the version

without LRF performs best on 3DMatch because most frag-

ments are already oriented in the same way and the original

data set version is tailored for descriptors that are not rota-

tion invariant. Inferior performance of the full pipeline on

this data set is most likely due to a few wrongly estimated

LRF, which reduces performance on already oriented data

sets (but allows generalizing to the more realistic, rotated

cases). Unsurprisingly, 3DSmoothNet without LRF fails on

3DRotatedMatch because the network cannot learn rotation

invariance from the data. A significant performance gain of

up to more than 9 percent points can be attributed to using

an a SDV voxel grid instead of the traditional binary occu-

pancy grid.

4.2. Generalizability across modalities and scenes

We evaluate how 3DSmoothNet generalizes to outdoor

scenes obtained using a laser scanner (Fig. 1). To this end,

2Using the precomputed feature descriptors provided by the authors.

For more results see the Supplementary material.
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3DMatch data set

Original Rotated

τ2 = 0.05 τ2 = 0.2 τ2 = 0.05 τ2 = 0.2

All together 94.7 72.7 94.9 72.8

W/o SDV 92.5 63.5 92.5 63.6
W/o LRF 96.3 81.6 11.6 2.7
W/o SDV & LRF 95.6 78.6 9.7 2.1

Table 2: Ablation study of 3DSmoothNet on 3DMatch and

3DRotatedMatch data sets. We report average recall over

all overlapping fragment pairs. Best performance is shown

in bold.

Gazebo Wood

Sum. Wint. Sum. Aut. Average

FPFH [28] 38.6 14.2 14.8 20.8 22.1
SHOT [38] 73.9 45.7 60.9 64.0 61.1
3DMatch [49] 22.8 8.3 13.9 22.4 16.9
CGF [17] 37.5 13.8 10.4 19.2 20.2
Ours ( 16 dim) 76.1 47.7 31.3 37.6 48.2
Ours ( 32 dim) 91.3 84.1 67.8 72.8 79.0

Table 3: Results on the ETHdata set. We report average

recall in percent per scene as well as across the whole data

set.

we use models Ours (16) and Ours (32) trained on 3DMatch

(RGB-D images of indoor scenes) and test on four outdoor

laser scan data sets Gazebo-Summer, Gazebo-Winter, Wood-

Summer and Wood-Autumn that are part of the ETH data

set [23]. All acquisitions contain several partially overlap-

ping scans of sparse and dense vegetation (e.g., trees and

bushes). Accurate ground-truth transformation matrices

are available through extrinsic measurements of the scan-

ner position with a total-station. We start our evaluation

by down-sampling the laser scans using a voxel grid filter

of size 0.02m. We randomly sample 5000 points in each

point cloud and follow the same evaluation procedure as

in Sec 4.1, again considering only point clouds with more

than 30% overlap. More details on sampling of the fea-

ture points and computation of the point cloud overlaps are

available in the supplementary material. Due to the lower

resolution of the point clouds, we now use a larger value of

W = 1 m for the SDV voxel grid (consequently the radius

for the descriptors based on the spherical neighborhood is

also increased). A voxel grid with an edge equal to 1.5 m is

used for 3DMatch because of memory restrictions. Results

on the ETH data set are reported in Tab 3. 3DSmoothNet

achieves best performance on average (right column), Ours

(32) with 79.0% average recall clearly outperforming Ours

(16) with 48.2% due to its larger output dimension. Ours

(32) beats runner-up (unsupervised) SHOT by more than 15
percent points whereas all state-of-the-art methods stay sig-

nificantly below 30%. In fact, Ours (32) applied to outdoor

Input prep. Inference NN search Total

[ms] [ms] [ms] [ms]

3DMatch 0.5 3.7 0.8 5.0
3DSmoothNet 4.2 0.3 0.1 4.6

Table 4: Average run-time per feature-point on test frag-

ments of 3DMatch data set.

laser scans still outperforms all competitors that are trained

and tested on the 3DMatch data set (cf. Tab. 3 with Tab. 1).

4.3. Computation time

We compare average run-time of our approach per inter-

est point on 3DMatch test fragments to [49] in Tab. 4 (ran

on the same PC with Intel Xeon E5-1650, 32 GB of ram

and NVIDIA GeForce GTX1080). Note that input prepa-

ration (Input prep.) and inference of [49] are processed

on the GPU, while our approach does input preparation on

CPU in its current state. For both methods, we run near-

est neighbor correspondence search on the CPU. Naturally,

input preparation of 3DSmoothNet on the CPU takes con-

siderably longer (4.2 ms versus 0.5 ms), but still the overall

computation time is slightly shorter (4.6 ms versus 5.0 ms).

Main drivers for performance are inference (0.3 ms versus

3.7 ms) and nearest neighbor correspondence search (0.1 ms

versus 0.8 ms). This indicates that it is worth investing com-

putational resources into custom-tailored data preparation

because it significantly speeds up all later tasks. The bigger

gap between Ours(16 dim) and Ours(32 dim), is a result of

the lower capacity and hence lower descriptiveness of the

16-dimensional descriptor, which becomes more apparent

on the harder ETH data set, but can also be seen in addi-

tional experiments in supplementary material. Supplemen-

tary material also contains additional experiments, which

show the invariance of the proposed descriptor to changes

in point cloud density.

5. Conclusions

We have presented 3DSmoothNet, a deep learning ap-

proach with fully convolutional layers for 3D point cloud

matching that outperforms all state-of-the-art by more than

20 percent points. It allows very efficient correspondence

search due to low output dimensions (16 or 32), and a model

trained on indoor RGB-D scenes generalizes well to terres-

trial laser scans of outdoor vegetation. Our method is ro-

tation invariant and achieves 94.9% average recall on the

3DMatch benchmark data set, which is close to solving it.

To the best of our knowledge, this is the first learned, uni-

versal point cloud matching method that allows transferring

trained models between modalities. It takes our field one

step closer to the utopian vision of a single trained model

that can be used for matching any kind of point cloud re-

gardless of scene content or sensor.
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[48] B. Zeisl, K. Köser, and M. Pollefeys. Automatic registration

of rgb-d scans via salient directions. In IEEE International

Conference on Computer Vision, pages 2808–2815, 2013. 1

[49] Andy Zeng, Shuran Song, Matthias Nießner, Matthew

Fisher, Jianxiong Xiao, and Thomas Funkhouser. 3DMatch:

Learning Local Geometric Descriptors from RGB-D Recon-

structions. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2017. 1, 2, 3, 4, 5, 6, 7, 8

5554


