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Abstract

Man-made scenes can be densely packed, containing nu-

merous objects, often identical, positioned in close proxim-

ity. We show that precise object detection in such scenes re-

mains a challenging frontier even for state-of-the-art object

detectors. We propose a novel, deep-learning based method

for precise object detection, designed for such challenging

settings. Our contributions include: (1) A layer for esti-

mating the Jaccard index as a detection quality score; (2)

a novel EM merging unit, which uses our quality scores to

resolve detection overlap ambiguities; finally, (3) an exten-

sive, annotated data set, SKU-110K, representing packed

retail environments, released for training and testing un-

der such extreme settings. Detection tests on SKU-110K

and counting tests on the CARPK and PUCPR+ show our

method to outperform existing state-of-the-art with substan-

tial margins. The code and data will be made available on

www.github.com/eg4000/SKU110K_CVPR19.

1. Introduction

Recent deep learning–based detectors can quickly and

reliably detect objects in many real world scenes [15, 16,

19, 27, 30, 36, 37, 38]. Despite this remarkable progress, the

common use case of detection in crowded images remains

challenging even for leading object detectors.

We focus on detection in such densely packed scenes,

where images contain many objects, often looking simi-

lar or even identical, positioned in close proximity. These

scenes are typically man-made, with examples including re-

tail shelf displays, traffic, and urban landscape images. De-

spite the abundance of such environments, they are under-

represented in existing object detection benchmarks. It is

therefore unsurprising that state-of-the-art object detectors

are challenged by such images.

To understand what makes these detection tasks difficult,

consider two identical objects placed in immediate proxim-

ity, as is often the case for items on store shelves (Fig. 1).

⋆Equal Contribution.
†Work done while at the University of Southern California.

Figure 1. Detection in packed domains. A typical image in our

SKU-110K, showing densely packed objects. (Top) (a) Detection

results for the state-of-the-art RetinaNet [27], showing incorrect

and overlapping detections, especially for the dark objects at the

bottom which are harder to separate. (b) Our results showing far

fewer misdetections and better fitting bounding boxes. (Bottom)

Zoomed-in views for (c) RetinaNet [27] and (d) our method.

The challenge is to determine where one object ends and

the other begins; minimizing overlaps between their adja-

cent bounding boxes. In fact, as we show in Fig. 1(a,c),

the state-of-the-art RetinaNet detector [27], often returns

bounding boxes which partially overlap multiple objects or

detections of adjacent object regions as separate objects.

We describe a method designed to accurately detect ob-

jects, even in such densely packed scenes (Fig. 1(b,d)). Our

method includes several innovations. We propose learn-

ing the Jaccard index with a soft Intersection over Union

(Soft-IoU) network layer. This measure provides valuable

information on the quality of detection boxes. We explain

how detections can be represented as a Mixture of Gaus-

sians (MoG), reflecting their locations and their Soft-IoU
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Name #Img. #Obj./img. #Cls. #Cls./img. Dense. Idnt. BB

UCSD (2008) [8] 2000 24.9 1 1 ✓ ✗ ✗

PACAL VOC (2012) [13] 22,531 2.71 20 2 ✗ ✗ ✓

ILSVRC Detection (2014) [12] 516,840 1.12 200 2 ✗ ✗ ✓

COCO (2015) [28] 328,000 7.7 91 3.5 ✗ ✗ ✓

Penguins (2016) [2] 82,000 25 1 1 ✓ ✗ ✗

TRANCOS (2016) [34] 1,244 37.61 1 1 ✓ ✓ ✗

WIDER FACE (2016) [49] 32,203 12 1 1 ✗ ✗ ✓

CityPersons (2017) [51] 5000 6 1 1 ✗ ✗ ✓

PUCPR+ (2017) [22] 125 135 1 1 ✓ ✓ ✓

CARPK (2018) [22] 1448 61 1 1 ✓ ✓ ✓

Open Images V4 (2018) [25] 1,910,098 8.4 600 2.3 ✗ ✓ ✓

Our SKU-110K 11,762 147.4 110,712 86 ✓ ✓ ✓

Table 1. Key properties for related benchmarks. #Img.: Number of images. #Obj./img.: Average items per image. #Cls.: Number

of object classes (more implies a harder detection problem due to greater appearance variations). #Cls./img.: Average classes per image.

Dense: Are objects typically densely packed together, raising potential overlapping detection problems? Idnt: Do images contain multiple

identical objects or hard to separate object sub-regions? BB: Bounding box labels available for measuring detection accuracy?

scores. An Expectation-Maximization (EM) based method

is then used to cluster these Gaussians into groups, resolv-

ing detection overlap conflicts.

To summarize, our novel contributions are as follows:

• Soft-IoU layer, added to an object detector to estimate

the Jaccard index between the detected box and the

(unknown) ground truth box (Sec. 3.2).

• EM-Merger unit, which converts detections and Soft-

IoU scores into a MoG, and resolves overlapping de-

tections in packed scenes (Sec. 3.3).

• A new data set and benchmark, the store keeping

unit, 110k categories (SKU-110K), for item detection

in store shelf images from around the world (Sec. 4).

We test our detector on SKU-110K. Detection results show

our method to outperform state-of-the-art detectors. We fur-

ther test our method on the related but different task of ob-

ject counting, on SKU-110K and the recent CARPK and

PUCPR+ car counting benchmarks [22]. Remarkably, al-

though our method was not designed for counting, it offers

a considerable improvement over state-of-the-art methods.

2. Related work

Object detection. Work on this problem is extensive

and we refer to a recent survey for a comprehensive

overview [29]. Briefly, early detectors employed sliding

window–based approaches, applying classifiers to window

contents at each spatial location [10, 14, 45]. Later methods

narrow this search space by determining region proposals

before applying sophisticated classifiers [1, 7, 35, 44, 52].

Deep learning–based methods now dominate detection

results. To speed detection, proposal-based detectors such

as R-CNN [15] and Fast R-CNN [16] were developed, fol-

lowed by Faster R-CNN [38] which introduced a region

proposal network (RPN), then accelerated even more by R-

FCN [9]. Mask-RCNN [19] later added segmentation out-

put and better detection pooling [38]. We build on these

methods, claiming no advantage in standard object detec-

tion tasks. Unlike us, however, these two-stage methods

were not designed for crowded scenes where small objects

appear in dense formations.

Recently, some offered proposal-free detectors, includ-

ing YOLO [36], SSD [30], and YOLO9000 [37]. To handle

scale variance, feature pyramid network (FPN) [26] added

up-scaling layers. RetinaNet [27] utilized the same FPN

model, introducing a Focal Loss to dynamically weigh hard

and easy samples for better handling of class imbalances

that naturally occur in detection datasets. We extend this

approach, introducing a new detection overlap measure, al-

lowing for precise detection of tightly packed objects.

These methods use hard-labeled log-likelihood detec-

tions to produce confidences for each candidate image re-

gion. We additionally predict a Soft-IoU confidence score

which represents detection bounding box accuracy.

Merging duplicate detections. Standard non-maximum

suppression (NMS) remains a de-facto object detection du-

plicate merging technique, from Viola & Jones [45] to re-

cent deep detectors [27, 37, 38]. NMS is a hand-crafted al-

gorithm, applied at test time as post-processing, to greedily

select high scoring detections and remove their overlapping,

low confidence neighbors.

Existing NMS alternatives include mean-shift [10, 46],

agglomerative [5], and affinity propagation clustering [31],

or heuristic variants [4, 40, 23]. GossipNet [21] proposed

to perform duplicate-removal using a learnable layer in the

detection network. Finally, others bin IoU values into five

categories [43]. We instead take a probabilistic interpreta-

tion of IoU prediction and a very different general approach.

Few of these methods showed improvement over sim-

ple, greedy NMS, with some also being computationally

demanding [21]. In densely packed scenes, resolving detec-
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Figure 2. System diagram. (a) Input image. (b) A base network, with bounding box (BB) and objectness (Obj.) heads (Sec. 3.1), along

with our novel Soft-IoU layer (Sec. 3.2). (c) Our EM-Merger converts Soft-IoU to Gaussian heat-map representing (d) objects captured by

multiple, overlapping bounding boxes. (e) It then analyzes these box clusters, producing a single detection per object (e) (Sec. 3.3).

tion ambiguities is exacerbated due to the many overlapping

detections. We propose an unsupervised method, designed

for clustering duplicate detection in cluttered regions.

Crowded scene benchmarks. Many benchmarks were de-

signed for testing object detection or counting methods and

we survey a few in Table 1. Importantly, we are unaware of

detection benchmarks intended for densely packed scenes,

such as those of interest here.

Popular object detection sets include ILSVRC [12],

PASCAL VOC [13] detection challenges, MS COCO [28],

and the very recent Open Images v4 [25]. None of these

provides scenes with packed items. A number of recent

benchmarks emphasize crowded scenes, but are designed

for counting, rather than detection [2, 8, 34].

As evident from Table 1, our new SKU-110K dataset, de-

scribed in Sec. 4, provides one to three orders of magnitude

more items per image than nearly all these benchmarks (the

only exception is the PUCPR+ [22] which offers two orders

of magnitude fewer images, and a single object class to our

more than 110k classes). Most importantly, our enormous,

per image, object numbers imply that all our images contain

very crowded scenes, which raises the detection challenges

described in Sec. 1. Moreover, identical or near identical

items in SKU-110K are often positioned closely together,

making detection overlaps a challenge. Finally, the large

number of classes in SKU-110K implies appearance varia-

tions which add to the difficulty of this benchmark, even in

challenges of object/non-object detection.

3. Deep IoU detection network

Our approach is illustrated in Fig. 2. We build on a

standard detection network design, described in Sec. 3.1.

We extend this design in two ways. First, we define a

novel Soft-IoU layer which estimates the overlap between

predicted bounding boxes and the (unknown) ground truth

(Sec. 3.2). These Soft-IoU scores are then processed by

a proposed EM-Merger unit, described in Sec. 3.3, which

resolves ambiguities between overlapping bounding boxes,

returning a single detection per object.

3.1. Base detection network

Our base detector is similar to existing methods [26,

27, 30, 38]. We first detect objects by building a FPN

network [26] with three upscaling-layers, using ResNet-

50 [20] as a backbone. The proposed model provides three

fully-convolutional output heads for each RPN [38]: Two

heads are standard and used also by previous work [27, 37]

(our novel third head is described in Sec. 3.2).

The first is a detection head which produces a bound-

ing box regression output for each object, represented as

4-tuples: (x, y, h, w) for the 2D coordinates of a bound-

ing box center, height and width. The second, classifica-

tion head provides an objectness score (confidence) label,

c ∈ [0, 1] (assuming an object/no-object detection task with

one object class). In practice, we filter detections for which

c ≤ 0.1, to avoid creating a bias towards noisy detections

when training our Soft-IoU layer, described next.

3.2. Soft­IoU layer

In non-dense scenes, greedy NMS applied to objectness

scores, c, can resolve overlapping detections. In dense im-

ages, however, multiple overlapping bounding boxes often

reflect multiple, tightly packed objects, many of which re-

ceive high objectness scores. As we later show (Sec. 5.2), in

such cases, NMS does not adequately discriminate between

overlapping detections or suppress partial detections.

To handle these cluttered positive detections, we propose

predicting an additional value for each bounding box: The

IoU (i.e., Jaccard index) between a regressed detection box

and the object location. This Soft-IoU score, ciou ∈ [0, 1],
is estimated by a fully-convolutional layer which we add as

a third head to the end of each RPN in the detector.

Given N predicted detections, the IoU between a pre-

dicted bounding box bi, i ∈ {1..N} and its ground truth

bounding box, b̂i, is defined as:

IoUi =
Intersection(b̂i,bi)

Union(b̂i,bi)
. (1)
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Figure 3. Visualizing the output of the EM-Merger unit. Raw

detections on these images (not shown) contain many overlapping

bounding boxes. Our approach of representing detections as a

MoG (Eq. (5)), visualized here as heat maps, provides clear sig-

nals for where items are located. The simplified MoG of Eq. (7) is

visualized as green ellipsoids. See Sec. 3.3 for details.

We chose b̂i to be the closest annotated box to bi (in image

coordinates). If the two do not overlap, then IoUi = 0.

Both Intersection(·) and Union(·) count pixels.

We take a probabilistic interpretation of Eq. (1), learning

it with our Soft-IoU layer using a binary cross-entropy loss:

LsIoU = (2)

−
1

n

n
∑

i=1

[IoUi log (c
iou
i ) + (1−IoUi) log (1−cioui )],

where n is the number of samples in each batch.

The loss used to train each RPN in the detection network

is therefore defined as:

L = LClassification + LRegression + LsIoU. (3)

Here, LClassification and LRegression are the standard cross-

entropy and euclidean losses, respectively [16, 36, 38], and

LsIoU is defined in Eq. (2).

Objectness vs. Soft-IoU. The objectness score used in pre-

vious methods predicts object/no-object labels whereas our

Soft-IoU predicts the IoU of a detected bounding box and

its ground truth. So, for instance, a bounding box which

partially overlaps an object can still have a high objectness

score, c, signifying high confidence that the object appears

in the bounding box. For the same detection, we expect ciou

to be low, due to the partial overlap.

In fact, object/no-object classifiers are trained to be in-

variant to occlusions and translations. A good objectness

classifier would therefore be invariant to the properties

which our Soft-IoU layer is sensitive to. Objectness and

Soft-IoU could thus be considered reflecting complemen-

tary properties of a detection bounding box.

3.3. EM­Merger unit for inference

We now have N predicted bounding box locations, each

with its associated objectness, c, and Soft-IoU, ciou, scores.

Bounding boxes, especially in crowded scenes, often clump

together in clusters, overlapping each other and their item

locations. Our EM-Merger unit filters, merges, or splits

these overlapping detection clusters, in order to resolve a

single detection per object. We begin by formally defining

these detection clusters.

Detections as Gaussians. We consider the N bounding

boxes produced by the network as a set of 2D Gaussians:

F = {fi}
N
i=1 = {N (p;µi,Σi)}

N
i=1, (4)

with p ∈ R
2, a 2D image coordinate. The i-th detec-

tion is thus represented by a 2D mean, the central point of

the box, µi = (xi, yi), and a diagonal covariance, Σi =
[(hi/4)

2, 0; , 0, (wi/4)
2], reflecting the box size, (hi, wi).

We represent these Gaussians, jointly, as a single Mix-

ture of Gaussians (MoG) density:

f(p) =

N
∑

i=1

αifi(p), (5)

where the mixture coefficients, αi =
cioui

∑N

k=1 c
iou
k

, reflect-

ing our confidence that the bounding box overlaps with its

ground truth, are normalized to create a MoG.

Fig. 3 visualizes the density of Eq. (5) as heat-maps,

translating detections into spatial region maps representing

our per-pixel confidences of detection overlaps; each region

weighted by the accumulated Soft-IoU.

Selecting predictions: formal definition. We next re-

solve our N Gaussians (detections) into precise, non-

overlapping bounding box detections by using a MoG clus-

tering method [6, 17, 18, 50].

We treat the problem of resolving the final detections as

finding a set of K << N Gaussians,

G = {gj}
K
j=1 = {N (p;µ′

j ,Σ
′
j)}

K
j=1 (6)

such that when aggregated, the selected Gaussians approxi-

mate the original MoG distribution f of Eq. (5), formed by

all N detections. That is, if g is defined by

g(p) =

K
∑

j=1

βjgj(p), (7)

then we seek a mixture of K Gaussians, G, for which

d(f, g) =

N
∑

i=1

αi

K

min
j=1

KL(fi||gj), (8)
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is minimized, where KL is the KL-divergence [24] used as

a non-symmetric distance between two detection boxes.

An EM-approach for selecting detections. We approxi-

mate a solution to minimization of Eq. (8) using an EM-

based method. The E-step assigns each box to the nearest

box cluster, where box similarity is defined by a KL dis-

tance between the corresponding Gaussians. E-step assign-

ments are defined as:

π(i) = arg
K

min
j=1

KL(fi||gj). (9)

The M-step then re-estimates the model parameters by:

βj =
∑

i∈π−1(j)

αi

µ′

j =
1

βj

∑

i∈π−1(j)

αiµi (10)

Σ′

j =
1

βj

∑

i∈π−1(j)

αi

(

Σi + (µi − µ′

j)(µi − µ′

j)
⊤
)

.

Note that these matrix computations are fast in 2D space.

Moreover, all our Gaussians represent axis-aligned detec-

tion and so they all have diagonal covariances. In such

cases, the KL distance between two Gaussians has a sim-

pler form which is even more efficient to compute.

General EM theory guarantees that the iterative process

described in Eq. (9)–(10), is monotonically decreasing in

the value of Eq. (8) and converging to a local minimum [11].

We determine convergence when the value of Eq. (8) is

smaller than ǫEM = 1e − 10. We found this process to

nearly always converge within ten iterations and so we set a

maximum number of iterations at that number.

EM parameters are often initialized using fast clustering

to prevent convergence to poor local minima. We initialize

it with an agglomerative, hierarchical clustering [39], where

each detection initially represents a cluster of its own and

clusters are successively merged until K clusters remain.

We note in passing that there have been several re-

cent attempts to develop deep clustering methods [47, 48].

Such methods are designed for clustering high-dimensional

data, training autoencoders to map input data into a low-

dimensional feature space where clustering is easier. We

instead use EM, as these methods are not relevant in our

settings, where the original data is two-dimensional.

Gaussians as detections. Once EM converged, the es-

timated Gaussians represent a set of K detections. As

an upper bound for the number of detections, we use

K = size(I)/(µwµh), approximating the amount of non-

overlapping, mean-sized boxes that fit into the image.

As post-processing, we suppress less confident Gaussians

which overlap other Gaussians by more than a predefined

threshold. This step can be viewed as model selection and it

determines the actual number of detected objects, K ′ ≤ K.

To extract the final detections, for each of the K ′ Gaus-

sians, we consider the ellipse at two standard deviations

around its center, visualized in Fig. 3 in green. We then

search the original set of N detections (Sec. 3.1) for those

whose center, µ = (x, y), falls inside this ellipse. A Gaus-

sian is converted to a detection window by taking the me-

dian dimensions of the detections in this set.

4. The SKU-110K benchmark

We assembled a new labeled data set and benchmark

containing images of supermarket shelves. We focus on

such retail environments for two main reasons. First, to

maximize sales and store real-estate usage, shelves are reg-

ularly optimized to present many items in tightly packed,

efficient arrangements [3, 33]. Our images therefore repre-

sent extreme examples of dense environments; precisely the

type of scenes we are interested in.

Second, retail items naturally fall into product, brand,

and sub-brand object classes. Different brands and products

are designed to appear differently. A typical store can sell

hundreds of products, thereby presenting a detector with

many inter-class appearance variations. Sub-brands, on the

other hand, are often distinguishable only by fine-grained

packaging differences. These subtle appearance variations

increase the range of nuisances that detectors must face

(e.g., spatial transformations, image quality, occlusion).

As we show in Table 1, SKU-110K is very different from

existing alternatives in the numbers and density of the ob-

jects appearing in each image, the variability of its item

classes, and, of course, the nature of its scenes. Example

images from SKU-110K are provided in Fig. 1, 2, and 5.

Image collection. SKU-110K images were collected from

thousands of supermarket stores around the world, includ-

ing locations in the United States, Europe, and East Asia.

Dozens of paid associates acquired our images, using their

personal cellphone cameras. Images were originally taken

at no less than five mega-pixel resolution but were then

JPEG compressed at one megapixel. Otherwise, phone and

camera models were not regulated or documented. Image

quality and view settings were also unregulated and so our

images represent different scales, viewing angles, lighting

conditions, noise levels, and other sources of variability.

Bounding box annotations were provided by skilled an-

notators. We chose experienced annotators over unskilled,

Mechanical Turkers, as we found the boxes obtained this

way were more accurate and did not require voting schemes

to verify correct annotations [28, 42]. We did, however, vi-

sually inspect each image along with its detection labels, to

filter obvious localization errors.

Benchmark protocols. SKU-110K images were parti-
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Method FPS DPS

Faster-RCNN (2015) [38] 2.37 93

YOLO9000 (2017) [37] 5 317

RetinaNet (2018) [27] 0.5 162

Base detector 0.5 162

+ Soft-IoU 0.5 162

+ EM-Merger (on the CPU) 0.23 73

Table 2. Detection runtime comparison on SKU-110K.

tioned into train, test, and validate splits. Training con-

sists of 70% of the images (8, 233 images) and their asso-

ciated 1, 210, 431 bounding boxes; 5% of the images (588),

are used for validation (with their 90, 968 bounding boxes).

The rest, 2, 941 images (432, 312 bounding boxes) were

used for testing. Images were selected at random, ensur-

ing that the same shelf display from the same shop does not

appear in more than one of these subsets.

Evaluation. We adopt evaluation metrics similar to those

used by COCO [28], reporting the average precision (AP)

at IoU=.50:.05:.95 (their primary challenge metric), AP

at IoU=.75, AP.75 (their strict metric), and average recall

(AR)300 at IoU=.50:.05:.95 (300 is the maximal number

of objects). We further report the value sampled from the

precision-recall curve at recall = 0.5 for IoU=0.75 (PR=.5).

The many, densely packed items in our images are rem-

iniscent of the settings in counting benchmarks [2, 22]. We

capture both detection and counting accuracy, by borrowing

the error measures used for those tasks: If {K ′
i}

n
i=1 is the

predicted numbers of objects in each test image, i ∈ [1, n],
and {ti}

n
i=1are the per image ground truth numbers, then

the mean absolute error (MAE) is 1
n

∑n

i |K
′
i − ti| and the

root mean squared error (RMSE) is

√

1
n

∑n

i (K
′
i − ti)2.

5. Experiments

5.1. Run­time analysis

Table 2 compares average frames per second (FPS) and

detections per second (DPS) for baseline methods and vari-

ations of our approach. Runtimes were measured on the

same machine using an Intel(R) Core(TM) i7-5930K CPU

@3.50GHz GeForce and a GTX Titan X GPU.

Our base detector is modeled after RetinaNet [27] and so

their runtimes are identical. Adding our Soft-IoU layer does

not affect runtime. EM-Merger is slower despite the opti-

mizations described in Sec. 3.3, mostly because of memory

swapping between GPU and CPU/RAM. Our initial tests

suggest that a GPU optimized version will be nearly as fast

as the base detector.

5.2. Experiments on the SKU­110K benchmark

Baseline methods. We compare the detection accuracies

of our proposed method and recent state-of-the-art on the

Method AP AP.75 AR300 PR=.5 MAE RMSE

Monkey .000 0 .010 0 N/A N/A

Faster-RCNN [38] .045 .010 .066 0 107.46 113.42

YOLO9000opt [37] .094 .073 .111 0 84.166 97.809

RetinaNet [27] .455 .389 .530 .544 16.584 30.702

Base & NMS .413 .384 .484 .491 24.962 34.382

Soft-IoU & NMS .418 .386 .483 .492 25.394 34.729

Base & EM-Merger .482 .540 .553 .802 23.978 283.971

Our full approach .492 .556 .554 .834 14.522 23.992

Table 3. Detection on SKU-110K. Bold numbers are best results.

Figure 4. Result Curves. (a) PR Curves on SKU-110K with

IoU=0.75 (higher curve is better). (b) The log-log curve of miss

rate vs False Positives Per Image [51] (lower curve is better).

SKU-110K benchmark. All methods, with the exception of

the Monkey detector, were trained on the training set por-

tion SKU-110K.

The following two baseline methods were tested us-

ing the original implementations released by their authors:

RetinaNet [27] and Faster-RCNN [38]. YOLO9000 [37]

is not suited for images with more than 50 objects. We of-

fer results for YOLO9000opt, which is YOLO9000 with its

loss function optimized and retrained to support detection

of up to 300 boxes per image.

We also report the following ablation studies, detailing

the contributions of individual components of our approach.

• Monkey: Because of the tightly packed items in SKU-

110K images, it is plausible that randomly tossed

bounding boxes would correctly predict detections by

chance. To test this naive approach, we assume we

know the object number, K ′, the mean and standard-
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Figure 5. Qualitative detection results on SKU-110K. Please see project web-page for more results and images in higher resolutions.

deviation width, µw, σw, and height, µh, σh, for these

boxes. Monkey samples 2D upper-left corners for the

K ′ bounding boxes from a uniform distribution and

box heights and widths from Gaussian distributions

N (h;µh, σh) and N (h;µw, σw), respectively.

• Base & NMS: Our basic detector of Sec. 3.1 with stan-

dard NMS applied to objectness scores, c.
• Soft-IoU & NMS: Base detector with Soft-IoU

(Sec. 3.2). Standard NMS applied to Soft-IoU scores,

ciou, instead of objectness scores.

• Base & EM-Merger: Our basic detector, now using

EM-Merger of Sec. 3.3, but applying it to original ob-

jectness scores, c.
• Our full approach: Applying the EM-Merger unit to

Deep-IoU scores, ciou.

To test MAE and RMSE we report the number of de-

tected objects, K ′, and compare it with the true number of

items per image. In RetinaNet the number of detections is

extremely high so we first filter detections with low con-

fidences. This confidence threshold was determined using

cross-validation to optimize the results of this baseline.

Detection results on SKU-110K. Quantitative detection re-

sults are provided in Table 3, result curves are presented

in Fig. 4, and a selection of qualitative results, comparing
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Method MAE RMSE

Counting results on CARPK

Faster R-CNN (2015) [38] 24.32 37.62

YOLO (2016) [36] 48.89 57.55

One-Look Regression (2016) [32] 59.46 66.84

LPN Counting (2017) [22] 23.80 36.79

YOLO9000opt (2017) [37] 45.36 52.02

RetinaNet (2018) [27] [22] 16.62 22.30

IEP Counting (2019) [41] 51.83 -

Our full approach 6.77 8.52

Counting results on PUCPR+

Faster R-CNN (2015) [38] 39.88 47.67

YOLO (2016) [36] 156.00 200.42

One-Look Regression (2016) [32] 21.88 36.73

LPN Counting (2017) [22] 22.76 34.46

YOLO9000opt (2017) [37] 130.40 172.46

RetinaNet (2018) [27] 24.58 33.12

IEP Counting (2019) [41] 15.17 -

Our full approach 7.16 12.00

Table 4. CARPK and PUCPR+ counting results [22].

our full approach with RetinaNet [27], the best performing

baseline system, is offered in Fig. 5.

Apparently, despite the packed nature of our scenes, ran-

domly tossing detections fails completely, as evident by the

near zero accuracy of Monkey. Both Faster-RCNN [38]

and YOLO9000opt [37] are clearly unsuited for detecting

so many tightly packed objects. RetinaNet [27], performs

much better, in fact outperforming our base network despite

sharing a similar design (Sec. 3.1). This could be due to the

better framework optimization of RetinaNet.

Our full system outperforms all its baselines with wide

margins. Much of its advantage seems to come from our

EM-Merger (Sec. 3.3). Comparing the accuracy of EM-

Merger applied to either objectness scores or our Soft-IoU

demonstrates the added information provided by Soft-IoU.

This contribution is especially meaningful when examining

the counting results, which show that Soft-IoU scores pro-

vide a much better means of filtering detection boxes than

objectness scores.

It is further instructional to compare detection accuracy

with counting accuracy. The counting accuracy gap be-

tween our method and the closest runner up, RetinaNet, is

greater than the gap in detection accuracy (though both mar-

gins are wide). The drop in counting accuracy can at least

partially be explained by their use of greedy NMS com-

pared with our EM-Merger. In fact, Fig. 5 demonstrates the

many overlapping and/or mis-localized detections produced

by RetinaNet compared to the single detections per item

predicted by our approach (see, in particular, Fig. 5(a,e)).

Finally, we note that our best results remain far from

perfect: The densely packed settings represented by SKU-

110K images appear to be highly challenging, leaving room

for further improvement.

5.3. Experiments on CARPK and PUCPR+

We test our method on data from other benchmarks, to

see if our approach generalizes well to other domains be-

yond store shelves and retail objects. To this end, we use

the recent CARPK and PUCPR+ [22] benchmarks. Both

data sets provide images of parking lots from high vantage

points. We use their test protocols, comparing the number

of detections per image to the ground truth numbers made

available by these benchmarks. Accuracy is reported using

MAE and RMSE, as in our SKU-110K (Sec. 4).

Counting results. We compare our method with results re-

ported by others [22, 41]: Faster R-CNN [38], YOLO [36],

and One-Look Regression [32]. Existing baselines also

include two methods designed and tested for counting

on these two benchmarks: LPN Counting [22] and IEP

Counting [41]. In addition, we trained and tested counting

accuracy with YOLO9000opt [37] and RetinaNet [27].

Table 4 reports the MAE and RMSE for all tested meth-

ods. Despite not being designed for counting, our method is

more accurate than recent methods designed for that task. A

significant difference between these counting datasets and

our SKU-110K is in the much closer proximity of the ob-

jects in our images. This issue has a significant impact on

baseline detectors, as can be seen in Tables 4 and 3. Our

model suffers a much lower degradation in performance due

to better filtering of these overlaps.1

6. Conclusions

The performance of modern object/no-object detectors

on existing benchmarks is remarkable yet still limited. We

focus on densely packed scenes typical of every-day retail

environments and offer SKU-110K, a new benchmark of

such retail shelf images, labeled with item detection boxes.

Our tests on this benchmark show that such images chal-

lenge state-of-the-art detectors.

To address these challenges, along with our benchmark,

we offer two technical innovations designed to raise de-

tection accuracy in such settings: The first is a Soft-IoU

layer for estimating the overlap between predicted and (un-

known) ground truth boxes. The second is an EM-based

unit for resolving bounding box overlap ambiguities, even

in tightly packed scenes where these overlaps are common.

We test our approach on SKU-110K and two existing

benchmarks for counting, and show it to surpass existing

detection and counting methods. Still, even the best results

on SKU-110K are far from saturated, suggesting that these

densely packed scenes remain a challenging frontier for fu-

ture work.

1See project web-page for qualitative results on these benchmarks.
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ing for generic object detection: A survey. arXiv preprint

arXiv:1809.02165, 2018.

[30] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C.

Berg. SSD: Single shot multibox detector. In European Conf.

Comput. Vision, 2016.

[31] Damian Mrowca, Marcus Rohrbach, Judy Hoffman, Rong-

hang Hu, Kate Saenko, and Trevor Darrell. Spatial semantic

regularisation for large scale object detection. In Proc. Int.

Conf. Comput. Vision, 2015.

[32] T Nathan Mundhenk, Goran Konjevod, Wesam A Sakla, and

Kofi Boakye. A large contextual dataset for classification,

detection and counting of cars with deep learning. In Euro-

pean Conf. Comput. Vision. Springer, 2016.

5235
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