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Abstract

In this work, we present a domain flow genera-

tion(DLOW) model to bridge two different domains by gen-

erating a continuous sequence of intermediate domains

flowing from one domain to the other. The benefits of our

DLOW model are two-fold. First, it is able to transfer

source images into different styles in the intermediate do-

mains. The transferred images smoothly bridge the gap be-

tween source and target domains, thus easing the domain

adaptation task. Second, when multiple target domains are

provided for training, our DLOW model is also able to gen-

erate new styles of images that are unseen in the training

data. We implement our DLOW model based on CycleGAN.

A domainness variable is introduced to guide the model to

generate the desired intermediate domain images. In the

inference phase, a flow of various styles of images can be

obtained by varying the domainness variable. We demon-

strate the effectiveness of our model for both cross-domain

semantic segmentation and the style generalization tasks on

benchmark datasets. Our implementation is available at

https://github.com/ETHRuiGong/DLOW .

1. Introduction

The domain shift problem is drawing increasing atten-

tion in recent years [21, 64, 54, 52, 15, 8]. In particular,

there are two tasks that are of interest in computer vision

community. One is the domain adaptation problem, where

the goal is to learn a model for a given task from a label-

rich data domain (i.e., source domain) to perform well in

a label-scarce data domain (i.e., target domain). The other

one is the image translation problem, where the goal is to

transfer images in the source domain to mimic the image

style in the target domain.

Generally, most existing works focus on the target do-

main only. They aim to learn models that well fit the target

data distribution, e.g., achieving good classification accu-

racy in the target domain, or transferring source images into

∗The corresponding author.

Figure 1: Illustration of data flow generation. Traditional

image translation methods directly map the image from

the source domain to the target domain, while our DLOW

model is able to produce a sequence of intermediate do-

mains shifting from the source domain to the target domain.

the target style. In this work, we instead are interested in the

intermediate domains between source and target domains.

We present a new domain flow generation (DLOW) model,

which is able to translate images from the source domain

into an arbitrary intermediate domain between source and

target domains. As shown in Fig 1, by translating a source

image along the domain flow from the source domain to the

target domain, we obtain a sequence of images that natu-

rally characterize the distribution shift from the source do-

main to the target domain.

The benefits of our DLOW model are two-fold. First,

those intermediate domains are helpful to bridge the distri-

bution gap between two domains. By translating images

into intermediate domains, those translated images can be

used to ease the domain adaptation task. We show that the

traditional domain adaptation methods can be boosted to

achieve better performance in target domain with interme-

diate domain images. Moreover, the obtained models also

exhibit good generalization ability on new datasets that are

not seen in the training phase, benefiting from the diverse

intermediate domain images.
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Second, our DLOW model can be used for style general-

ization. Traditional image-to-image translation works [64,

28, 30, 38] mainly focus on learning a deterministic one-

to-one mapping that transfers a source image into the target

style. In contrast, our DLOW model allows to translate a

source image into an intermediate domain that is related to

multiple target domains. For example, when performing the

photo to painting transfer, instead of obtaining a Monet or

Van Gogh style, our DLOW model could produce a mixed

style of Van Gogh, Monet, etc. Such mixture can be cus-

tomized in the inference phase by simply adjusting an input

vector that encodes the relatedness to different domains.

We implement our DLOW model based on Cycle-

GAN [64], which is one of the state-of-the-art unpaired

image-to-image translation methods. We augment the Cy-

cleGAN to include an additional input of domainness vari-

able. On one hand, the domainness variable is injected into

the translation network using the conditional instance nor-

malization layer to affect the style of output images. On

the other hand, it is also used as weights on discriminators

to balance the relatedness of the output images to different

domains. For multiple target domains, the domainness vari-

able is extended as a vector containing the relatedness to

all target domains. Extensive results on benchmark datasets

demonstrate the effectiveness of our proposed model for do-

main adaptation and style generalization.

2. Related Work

Image to Image Translation: Our work is related to

the image-to-image translation works. The image-to-image

translation task aims at translating the image from one do-

main into another domain. Inspired by the success of Gener-

ative Adversarial Networks(GANs) [17], many works have

been proposed to address the image-to-image translation

based on GANs [28, 56, 64, 38, 39, 20, 65, 27, 1, 8, 33, 58,

37]. The early works [28, 56] assume that paired images

between two domains are available, while the recent works

such as CycleGAN [64], DiscoGAN [30] and UNIT [38] are

able to train networks without using paired images. How-

ever, those works focus on learning deterministic image-to-

image mappings. Once the model is learnt, a source image

can only be transferred to a fixed target style.

A few recent works [39, 20, 65, 27, 1, 8, 33, 58, 37, 32]

concentrate on learning a unified model to translate im-

ages into multiple styles. These works can be divided into

two categories according to the controllability of the target

styles. The first category, such as [27, 1], realizes the mul-

timodal translation by sampling different style codes which

are encoded from the target style images. However, those

works focus on modelling intra-domain diversity, while our

DLOW model aims at characterizing the inter-domain di-

versity. Moreover, they cannot explicitly control the trans-

lated target style using the input codes.

The second category, such as [8, 32], assigns the domain

labels to different target domains and the domain labels are

proven to be effective in controlling the translation direc-

tion. Among those, [32] shows that they could make in-

terpolation between target domains by continuously shift-

ing the different domain labels to change the extent of the

contribution of different target domains. However, these

methods only use the discrete binary domain labels in the

training. Unlike the above work, the domainness variable

proposed in this work is derived from the data distribution

distance, and is used explicitly to regularize the style of out-

put images during training.

Domain Adaptation and Generalization: Our work

is also related to the domain adaptation and generalization

works. Domain adaptation aims to utilize a labeled source

domain to learn a model that performs well on an unlabeled

target domain [13, 18, 12, 55, 29, 3, 31, 16, 6, 61, 57].

Domain generalization is a similar problem, which aims

to learn a model that could be generalized to an un-

seen target domain by using multiple labeled source do-

mains [42, 15, 45, 41, 44, 34, 36, 35].

Our work is partially inspired by [18, 16, 10], which have

shown that the intermediate domains between source and

target domains are useful for addressing the domain adap-

tation problem. They represent each domain as a subspace

or covariance matrix, and then connect them on the corre-

sponding manifold to model intermediate domains. Differ-

ent from those works, we model the intermediate domains

by directly translating images on pixel level. This allows us

to easily improve the existing deep domain adaptation mod-

els by using the translated images as training data. More-

over, our model can also be applied to image-level domain

generalization by generating mixed-style images.

Recently, there is an increasing interest to apply domain

adaptation techniques for semantic segmentation from syn-

thetic data to the real scenario [22, 21, 7, 67, 40, 25, 11,

46, 51, 53, 23, 47, 62, 54, 43, 50, 52, 66, 5]. Most of those

works conduct the domain adaptation by adversarial train-

ing on the feature level with different priors. The recent

Cycada [21] also shows that it is beneficial to perform pixel-

level domain adaptation firstly by transferring source image

into the target style based on the image-to-image translation

methods like CycleGAN [64]. However, those methods ad-

dress domain shift by adapting to only the target domain. In

contrast, we aim to perform pixel-level adaptation by trans-

ferring source images to a flow of intermediate domains.

Moreover, our model can also be used to further improve

the existing feature-level adaptation methods.
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3. Domain Flow Generation

3.1. Problem Statement

In the domain shift problem, we are given a source do-

main S and a target domain T containing samples from two

different distributions PS and PT , respectively. Denoting a

source sample as xs ∈ S and a target sample as xt ∈ T , we

have x
s ∼ PS , xt ∼ PT , and PS 6= PT .

Such distribution mismatch usually leads to a signifi-

cant performance drop when applying the model trained

on S to T . Many works have been proposed to ad-

dress the domain shift for different vision applications. A

group of recent works aim to reduce the distribution dif-

ference on the feature level by learning domain-invariant

features [13, 18, 31, 16], while others work on the image

level to transfer source images to mimic the target domain

style [64, 38, 65, 27, 1, 8].

In this work, we also propose to address the domain shift

problem on image level. However, different from existing

works that focus on transferring source images into only the

target domain, we instead transfer them into all intermedi-

ate domains that connect source and target domains. This

is partially motivated by the previous works [18, 16, 10],

which have shown that the intermediate domains between

source and target domains are useful for addressing the do-

main adaptation problem.

In the follows, we first briefly review the conven-

tional image-to-image translation model CycleGAN. Then,

we formulate the intermediate domain adaptation problem

based on the data distribution distance. Next, we present

our DLOW model based on the CycleGAN model. We then

show the benefits of our DLOW model with two applica-

tions: 1) improve existing domain adaptation models with

the images generated from DLOW model, and 2) transfer

images into arbitrarily mixed styles when there are multiple

target domains.

3.2. The CycleGAN Model

We build our model based on the state-of-the-art Cycle-

GAN model [64] which is proposed for unpaired image-to-

image translation. Formally, the CycleGAN model learns

two mappings between S and T , i.e., GST : S → T
which transfers the images in S into the style of T , and

GTS : T → S which acts in the inverse direction. We take

the S → T direction as an example to explain CycleGAN.

To transfer source images into the target style and also

preserve the semantics, the CycleGAN employs an adver-

sarial training module and a reconstruction module, respec-

tively. In particular, the adversarial training module is used

to align the image distributions for two domains, such that

the style of mapped images matches the target domain. Let

us denote the discriminator as DT , which attempts to distin-

guish the translated images and the target images. Then the

Figure 2: Illustration of domain flow. Many possible paths

(the green dash lines) connect source and target domains,

while the domain flow is the shortest one (the red line).

There are multiple domains (the blue dash line) keeping the

expected relative distances to source and target domains.

An intermediate domain (the blue dot) is the point at the

domain flow that keeps the right distances to two domains.

objective function of the adversarial training module can be

written as,

min
GST

max
DT

E
x
t
∼PT

[

log(DT (x
t))

]

(1)

+ Ex
s
∼PS

[log(1−DT (GST (x
s)))] .

Moreover, the reconstruction module is to ensure the

mapped image GST (x
s) to preserve the semantic content

of the original image x
s. This is achieved by enforcing a

cycle consistency loss such that GST (x
s) is able to recover

x
s when being mapped back to the source style, i.e.,

min
GST

Ex
s
∼PS

[‖GTS(GST (x
s))− x

s‖1] . (2)

Similar modules are applied to the T → S direction. By

jointly optimizing all modules, CycleGAN model is able to

transfer source images into the target style and v.v.

3.3. Modeling Intermediate Domains

Intermediate domains have been shown to be helpful for

domain adaptation [18, 16, 10], where they model interme-

diate domains as a geodesic path on Grassmannian or Rie-

mannian manifold. Inspired by those works, we also char-

acterize the domain shift using intermediate domains that

connect the source and target domains. Diffrent from those

works, we directly operate at the image level, i.e., trans-

lating source images into different styles corresponding to

intermediate domains. In this way, our method can be easily

integrated with deep learning techniques for enhancing the

cross-domain generalization ability of models.

In particular, let us denote an intermediate domain as

M(z), where z ∈ [0, 1] is a continous variable which mod-

els the relatedness to source and target domains. We refer to

z as the domainness of intermediate domain. When z = 0,

the intermediate domain M(z) is identical to the source do-

main S; and when z = 1, it is identical to the target domain

T . By varying z in the range of [0, 1], we thus obtain a

sequence of intermediate domains that flow from S to T .
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Figure 3: The overview of our DLOW model: the generator takes domainness z as additional input to control the image

translation and to reconstruct the source image; The domainness z is also used to weight the two discriminators.

There are many possible paths to connect the source and

target domains. As shown in Fig 2, assuming there is a

manifold of domains, where a domain with given data dis-

tribution can be seen as a point residing at the manifold. We

expect the domain flow M(z) to be the shortest geodesic

path connecting S and T . Moreover, given any z, the dis-

tance from S to M(z) should also be proportional to the

distance between S to T by the value of z. Denoting the

data distribution of M(z) as P
(z)
M , we expect that,

dist
(

PS , P
(z)
M

)

dist
(

PT , P
(z)
M

) =
z

1− z
, (3)

where dist(·, ·) is a valid distance measurement over two

distributions. Thus, generating an intermediate domain

M(z) for a given z becomes finding the point satisfying Eq.

(3) that is closet to S and T , which leads to minimize the

following loss,

L = (1− z) · dist
(

PS , P
(z)
M

)

+ z · dist
(

PT , P
(z)
M

)

. (4)

As shown in [2], many types of distance have been exploited

for image generation and image translation. The adversarial

loss in Eq. (1) can be seen as a lower bound of the Jessen-

Shannon divergence. We also use it to measure distribution

distance in this work.

3.4. The DLOW Model

We now present our DLOW model to generate interme-

diate domains. Given a source image x
s ∼ Ps, and a do-

mainness variable z ∈ [0, 1], the task is to transfer xs into

the intermediate domain M(z) with the distribution P
(z)
M

that minimizes the objective in Eq. (4). We take the S → T
direction as an example, and the other direction can be sim-

ilarly applied.

In our DLOW model, the generator GST no longer aims

to directly transfer xs to the target domain T , but to move

x
s towards it. The interval of such moving is controlled by

the domainness variable z. Let us denote Z = [0, 1] as the

domain of z, then the generator in our DLOW model can

be represented as GST (x
s, z) : S × Z → M(z) where the

input is a joint space of S and Z .

Adversarial Loss: As discussed in Section 3.3, We de-

ploy the adversarial loss as the distribution distance mea-

surement to control the relatedness of an intermediate do-

main to the source and target domains. Specifically, we

introduce two discriminators, DS(x) to distinguish M(z)

and S , and DT (x) to distinguish M(z) and T , respectively.

Then, the adversarial losses between M(z) and S and T can

be written respectively as,

Ladv( GST , DS) = Ex
s
∼PS

[log(DS(x
s))] (5)

+ Ex
s
∼PS

[log(1−DS(GST (x
s, z)))]

Ladv( GST , DT ) = E
x
t
∼PT

[

log(DT (x
t))

]

(6)

+ Ex
s
∼PS

[log(1−DT (GST (x
s, z)))] .

By using the above losses to model dist(PS , P
(z)
M ) and

dist(PT , P
(z)
M ) in Eq. (4), we derive the following loss,

Ladv = (1− z)Ladv(GST , DS) + zLadv(GST , DT ). (7)

Image Cycle Consistency Loss: Similarly as in Cyl-

ceGAN, we also apply a cycle consistency loss to ensure

the semantic content is well-preserved in the translated im-

age. Let us denote the generator on the other direction as

GTS(x
t, z) : T × Z → M(1−z), which transfers a sam-

ple x
t from the target domain towards the source domain

by a interval of z. Since GTS acts in an inverse direction to

GST , we can use it to recover xs from the translated version

GST (x
s, z), which gives the following loss,

Lcyc =Ex
s
∼Ps

[‖GTS(GST (x
s, z), z)− x

s‖1] . (8)
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Full Objective: We integrate the losses defined above,

then the full objective can be defined as,

L = Ladv + λ1Lcyc, (9)

where λ1 is a hyper-parameter used to balance the two

losses in the training process.

Similar loss can be defined for the other direction T →
S . Due to the usage of adversarial loss Ladv , the training

is performed in an alternating manner. We first minimize

the full objective with regard to the generators, and then

maximize it with regard to the discriminators.

Implementation: We illustrate the network structure of

of our DLOW model in Fig 3. First, the domainness vari-

able z is taken as the input of the generator GST . This is

implemented with the Conditional Instance Normalization

(CN) layer [1, 26]. We first use one deconvolution layer

to map the domainness variable z to the vector with dimen-

sion (1, 16, 1, 1), and then use this vector as the input for the

CN layer. Moreover, the domainness variable also plays the

role of weighting discriminators to balance the relatedness

of the generated images to different domains. It is also used

as input in the image cycle consistency module. During the

training phase, we randomly generate the domainess param-

eter z for each input image. As inspired by [24], we force

the domainness variable z to obey the beta distribution, i.e.

f(z, α, β) = 1
B(α,β)z

α−1(1− z)β−1, where β is fixed as 1,

and α is a function of the training step α = e
t−0.5T

0.25T with t

being the current iteration and T being the total number of

iterations. In this way, z tends to be sampled more likely as

small values at the beginning, and gradually shift to larger

values at the end, which gives slightly more stable training

than uniform sampling.

3.5. Boosting Domain Adaptation Models

With the DLOW model, we are able to translate

each source image x
s into an arbitrary intermediate do-

main M(z). Let us denote the source dataset as S =
{(xs

i , yi)|ni=1} where yi is the label of xs
i . By feeding each

of the image x
s
i combined with zi randomly sampled from

the uniform distribution U(0, 1), we then obtain a translated

dataset S̃ = {(x̃s
i , yi)|ni=1} where x̃

s
i = GST (x

s
i , zi) is the

translated version of x
s
i . The images in S̃ spread along

the domain flow from source to target domain, and there-

fore become much more diverse. Using S̃ as the train-

ing data is helpful to learn domain-invariant models for

computer vision tasks. In Section 4.1, we demonstrate

that model trained on S̃ achieves good performance for the

cross-domain semantic segmentation problem.

Moreover, the translated dataset S̃ can also be used to

boost the existing adversarial training based domain adapta-

tion approaches. Images in S̃ fill the gap between the source

and target domains, and thus ease the domain adaptation

Figure 4: Illustration of boosting domain adaptation model

for corss-domain semantic segmentation with DLOW

model. Intermediate domain images are used as source

dataset, and the adversarial loss is weighted by domainness.

task. Taking semantic segmentation as an example, a typ-

ical way is to append a discriminator to the segmentation

model, which is used to distinguish the source and target

samples. Using the adversarial training strategy to optimize

the discriminator and the segmentation model, the segmen-

tation model is trained to be more domain-invariant.

As shown in Fig 4, we replace the source dataset S with

the translated version S̃ , and apply a weight
√
1− zi to the

adversarial loss. The motivation is as follows, for each sam-

ple x̃s
i , if the domainness zi is higher, it is closer to the target

domain, then the weight of adversarial loss can be reduced.

Otherwise, we should enhance the loss weight.

3.6. Style Generalization

Most existing image-to-image translation works learn a

deterministic mapping between two domains. After the

model is learnt, source images can only be translated to a

fixed style. In contrast, our DLOW model takes an random

z to translate images into various styles. When multiple

target domains are provided, it is also able to transfer the

source image into a mixture of different target styles. In

other words, we are able to generalize to an unseen inter-

mediate domain that is related to existing domains.

In particular, suppose we have K target domains, de-

noted as T1, . . . , TK . Accordingly, the domainness variable

z is expanded as a K-dim vector z = [z1, . . . , zK ]′ with
∑K

k=1 zk = 1. Each elelment zk represents the relatedness

to the k-th target domain. To map an image from the source

domain to the intermediate domain defined by z, we need

to optimize the following objective,

L =

K
∑

k=1

zk · dist(PM , PTk
), s.t.

K
∑

1

zk = 1 (10)

where PM is the distribution of the intermediate domain,

PTK
is the distribution of Tk. The network structure can

be easily adjusted from our DLOW model to optimize the
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above objective. We leave the details in the Supplementary

due to the space limitation.

4. Experiments

In this section, we demonstrate the benefits of our

DLOW model with two tasks. In the first task, we ad-

dress the domain adaptation problem, and train our DLOW

model to generate the intermediate domain samples to boost

the domain adaptation performance. In the second task,

we consider the style generalization problem, and train our

DLOW model to transfer images into new styles that are

unseen in the training data.

4.1. Domain Adaptation and Generalization

4.1.1 Experiments Setup

For the domain adaptation problem, we follow [22, 21, 7,

67] to conduct experiments on the urban scene semantic

segmentation by learning from synthetic data to real sce-

nario. The GTA5 dataset [48] is used as the source domain

while the Cityscapes dataset [9] as the target domain. More-

over, we also evaluate the generalization ability of learnt

segmentation models to unseen domains, for which we take

the KITTI [14], WildDash [60] and BDD100K [59] datasets

as additional unseen datasets for evaluation. We also con-

duct experiments using the SYNTHIA dataset [49] as the

source domain, and provide the results in Supplementary.

Cityscapes is a dataset consisting of urban scene images

taken from some European cities. We use the 2, 993 training

images without annotation as unlabeled target samples in

training phase, and 500 validation images with annotation

for evaluation, which are densely labelled with 19 classes.

GTA5 is a dataset consisting of 24, 966 densely labelled

synthetic frames generated from the computer game whose

scenes are based on the city of Los Angeles. The annota-

tions of the images are compatible with the Cityscaps.

KITTI is a dataset consisting of images taken from

mid-size city of Karlsruhe. We use 200 validation images

densely labeled and compatible with Cityscapes.

WildDash is a dataset covers images from different

sources, different environments(place, weather, time and so

on) and different camera characteristics. We use 70 labeled

and Cityscapes annotation compatible validation images.

BDD100K is a driving dataset covering diverse images

taken from US whose label maps are with training indices

specified in Cityscapes. We use 1, 000 densely labeled im-

ages for validation in our experiment.

In this task, we first train our proposed DLOW model us-

ing the GTA5 dataset as the source domain, and Cityscapes

as the target domain. Then, we generate a translated GTA5

dataset with the learnt DLOW model. Each source image

is fed into DLOW with a random domainness variable z.

The new translated GTA5 dataset contains exactly the same

number of images as the original one, but the styles of im-

ages randomly drift from the synthetic style to the real style.

We then use the translated GTA dataset as the new source

domain to train segmentation models.

We implement our model based on Augmented Cycle-

GAN [1] and CyCADA [21]. Following their setup, all

images are resized to have width 1024 while keeping the

aspect ratio and the crop size is set as 400 × 400. When

training the DLOW model, the image cycle consistency loss

weight is set as 10. The learning rate is fixed as 0.0002. For

the segmentation network, we use the AdaptSegNet [54]

model, which is based on DeepLab-v2 [4] with ResNnet-

101 [19] as the backbone network. The training images are

resized to 1280×720. We follow the exact the same training

policy as in the AdaptSegNet.

4.1.2 Experimental Results

Intermediate Domain Images: To verify the ability of our

DLOW model to generate intermediate domain images, in

the inference phase, we fix the input source image, and

vary the domainness variable from 0 to 1. A few exam-

ples are shown in Fig 5. It can be observed that the styles

of translated images gradually shift from the synthetic style

of GTA5 to the real style of Cityscapes, which demonstrates

the DLOW model is capable of modeling the domain flow to

bridge the source and target domains as expected. Enlarged

images and more discussion are provided in Supplementary.

Cross-Domain Semantic Segmentation: We further eval-

uate the usefulness of intermediate domain images in two

settings. In the first setting, we compare with the Cy-

cleGAN model [64], which is used in the CycADA ap-

proach [21] for performing pixel-level domain adaptation.

The difference between CycleGAN and our DLOW model

is that CycleGAN transfers source images to mimic only

the target style, while our DLOW model transfers source

images into random styles flowing from the source domain

to the target domain. We first obtain a translated version of

the GTA5 dataset with each model. Then, we respectively

use the two transalated GTA5 datasets to train DeepLab-v2

models, which are evaluated on the Cityscapes dataset for

semantic segmentation. We also include the “NonAdapt”

baseline which uses the original GTA5 images as training

data, as well as a special case of our approach, “DLOW(z =
1)”, where we set z = 1 for all source images when making

image translation using the learnt DLOW model.

The results are shown in Table 1. We observe that all

pixel-level adaptation methods outperform the “NonAdapt”

baseline, which verifies that image translation is helpful

for training models for cross-domain semantic segmenta-

tion. Moreover, “DLOW(z = 1)” is a special case of our

model that directly translates source images into the target

domain, which non-surprisingly gives comparable result as
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(a) z = 0 (b) z = 0.3 (c) z = 0.6 (d) z = 0.8 (e) z = 1

Figure 5: Examples of intermediate domain images from GTA5 to Cityscapes. As the domainness variable increases from 0

to 1, the styles of the translated images shift from the synthetic GTA5 style to the realistic Cityscapes style gradually.
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CycleGAN[21] 81.7 27.0 81.7 30.3 12.2 28.2 25.5 27.4 82.2 27.0 77.0 55.9 20.5 82.8 30.8 38.4 0.0 18.8 32.3 41.0

DLOW(z = 1) 88.5 33.7 80.7 26.9 15.7 27.3 27.7 28.3 80.9 26.6 74.1 52.6 25.1 76.8 30.5 27.2 0.0 15.7 36.0 40.7

DLOW 87.1 33.5 80.5 24.5 13.2 29.8 29.5 26.6 82.6 26.7 81.8 55.9 25.3 78.0 33.5 38.7 0.0 22.9 34.5 42.3

Table 1: Results of semantic segmentation on the CityScapes dataset based on DeepLab-v2 model with ResNet-101 backbone

using the images translated with different models. The results are reported on mIoU over 19 categories. The best result is

denoted in bold.

Cityscapes KITTI WildDash BDD100K

Original [54] 42.4 30.7 18.9 37.0

DLOW 44.8 36.6 24.9 39.1

Table 2: Comparison of the performance of AdaptSeg-

Net [54] when using original source images and interme-

diate domain images translated with our DLOW model for

semantic segmention under domain adaptation (1st column)

and domain generalization (2nd to 4th columns) scenarios.

The results are reported on mIoU over 19 categories. The

best result is denoted in bold.

the CycADA-pixel method (40.7% v.s. 41.0%). By fur-

ther using intermediate domain images, our DLOW model

is able to improve the result from 40.7% to 42.3%, which

demonstrates that intermediate domain images are helpful

for learning a more robust domain-invariant model.

In the second setting, we further use intermediate do-

main images to improve the feature-level domain adpata-

tion model. We conduct experiments based on the Adapt-

SegNet method [54], which is open source and has re-

ported the state-of-the-art result for GTA5→CityScapes. It

consists of multiple levels of adversarial training, and we

augment each level with the loss weight discussed in Sec-

tion 3.5. The results are reported in Table 2. The “Origi-

nal” method denotes the AdaptSegNet model that is trained

using GTA5 as the source domain, for which the results

are obtained using their released pretrained model. The

“DLOW” method is AdaptSegNet trained using translated

dataset with our DLOW model. From the first column, we

observe that the intermediate domain images are able to

improve the AdaptSegNet model by 2.5% from 42.3% to

44.8%. More interestingly, we show that the AdaptSegNet

model with DLOW translated images also exhibits excellent

domain generalization ability when being applied to unseen

domains, which achieves significantly better results than the

original AdaptSegNet model on the KITTI, WildDash and

BDD100K datasets as reported in the second to the fourth

columns, respectively. This shows that intermediate domain

images are useful to improve the model’s cross-domain gen-

eralization ability.

4.2. Style Generalization

We conduct the style generalization experiment on the

Photo to Artworks dataset[64], which consists of real pho-

tographs (6, 853 images) and artworks from Monet(1, 074
images), Cezanne(584 images), Van Gogh(401 images) and

Ukiyo-e(1, 433 images). We use the real photographs as the

source domain, and the remaining as four target domains.

As discussed in Section 3.6, The domainness variable in this

experiment is expanded as a 4-dim vector [z1, z2, z3, z4]
′

meeting the condition
∑4

i=1 zi = 1. Also, z1, z2, z3 and

z4 corresponds to Monet, Van Gogh, Ukiyo-e and Cezanne,

respectively. Each element zi can be seen as how much

each style contributes to the final mixture style. In every 5

steps of the training, we set the domainness variable z as

[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] and uniformly

distributed random variable. The qualitative results of the

style generalization are shown in Fig 6. From the qualita-

tive results, it is shown that our DLOW model can translate
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Figure 6: Examples of style generalization. Results with red rectangles at four corners are images translated into the four

target domains, and those with green rectangles in between are images translated into intermediate domains. The results

show that our DLOW model generalizes well across styles, and produces new images styles smoothly.

the photo image to corresponding artworks with different

styles. When varying the values of domainness vector, we

can also successfully produce new styles related to differ-

ent painting styles, which demonstrates the good general-

ization ability of our model to unseen domains. Note, dif-

ferent from [63, 26], we do not need any reference image

in the test phase, and the domainness vector can be changed

instantly to generate different new styles of images. We

provide more examples in Supplementary.

Quantitative Results: To verify the effectiveness of our

model for style generalization, we conduct an user study on

Amazon Mechanical Turk (AMT) to compare with the ex-

isting methods FadNet [32] and MUNIT [27]. Two cases

are considered, style transfer to Van Gogh, and style gen-

eralization to mixed Van Gogh and Ukiyo-e. For FadNet,

domain labels are treated as attributes. For MUNIT, we mix

Van Gogh and Ukiyo-e as the target domain. The data for

each trial is gathered from 10 participants and there are 100

trials in total for each case. For the first case, participants

are shown the example Van Gogh style painting and are re-

quired to choose the image whose style is more similar to

the example. For the second case, participants are shown

the example Van Gogh and Ukiyo-e style painting and are

required to choose the image with a style that is more like

the mixed style of the two example paintings. The user pref-

erence is summarized in Table 3, which shows that DLOW

outperforms FadNet and MUNIT on both tasks. Qualita-

tive comparison between different methods is provided in

Supplementary due to the space limitation.

FadNet[32] / DLOW MUNIT[27] / DLOW

Van Gogh 1.4% / 98.6% 21.4% / 78.6%

Van Gogh + Ukiyo-e 1.6% / 98.4% 15.3% / 84.7%

Table 3: User preference for style transfer and generaliza-

tion. It is shown that more users prefer our translated results

on both of the style transfer and generalization tasks com-

pared with the existing methods FadNet and MUNIT.

5. Conclusion

In this paper, we have presented the DLOW model to

generate intermediate domains for bridging different do-

mains. The model takes a domainness variable z (or do-

mainness vector z) as the conditional input, and transfers

images into the intermediate domain controlled by z or z.

We demonstrate the benefits of our DLOW model in two

scenarios. Firstly, for the cross-domain semantic segmenta-

tion task, our DLOW model can improve the performance

of the pixel-level domain adaptation by taking the translated

images in intermediate domains as training data. Secondly,

our DLOW model also exhibits excellent style generaliza-

tion ability for image translation and we are able to transfer

images into a new style that is unseen in the training data.

Extensive experiments on benchmark datasets have verified

the effectiveness of our proposed model.
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Wasserstein gan. arXiv:1701.07875, 2017. 4

[3] Mahsa Baktashmotlagh, Mehrtash T Harandi, Brian C

Lovell, and Mathieu Salzmann. Unsupervised domain adap-

tation by domain invariant projection. In ICCV, 2013. 2

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE transactions on pattern

analysis and machine intelligence, 40(4):834–848, 2018. 6

[5] Yuhua Chen, Wen Li, Xiaoran Chen, and Luc Van Gool.

Learning semantic segmentation from synthetic data: A

geometrically guided input-output adaptation approach.

arXiv:1812.05040, 2018. 2

[6] Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and

Luc Van Gool. Domain adaptive faster r-cnn for object de-

tection in the wild. In CVPR, 2018. 2

[7] Yuhua Chen, Wen Li, and Luc Van Gool. Road: Reality ori-

ented adaptation for semantic segmentation of urban scenes.

In CVPR, 2018. 2, 6

[8] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,

Sunghun Kim, and Jaegul Choo. StarGAN: Unified gener-

ative adversarial networks for multi-domain image-to-image

translation. In CVPR, 2018. 1, 2, 3

[9] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In CVPR,

2016. 6

[10] Zhen Cui, Wen Li, Dong Xu, Shiguang Shan, Xilin Chen,

and Xuelong Li. Flowing on riemannian manifold: Domain

adaptation by shifting covariance. IEEE transactions on cy-

bernetics, 44(12):2264–2273, 2014. 2, 3

[11] Aysegul Dundar, Ming-Yu Liu, Ting-Chun Wang, John

Zedlewski, and Jan Kautz. Domain stylization: A strong,

simple baseline for synthetic to real image domain adapta-

tion. arXiv:1807.09384, 2018. 2

[12] Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne

Tuytelaars. Unsupervised visual domain adaptation using

subspace alignment. In ICCV, 2013. 2

[13] Yaroslav Ganin and Victor S. Lempitsky. Unsupervised do-

main adaptation by backpropagation. In ICML, 2015. 2, 3

[14] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In CVPR, 2012. 6

[15] Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang,

and David Balduzzi. Domain generalization for object recog-

nition with multi-task autoencoders. In ICCV, 2015. 1, 2

[16] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman.

Geodesic flow kernel for unsupervised domain adaptation.

In CVPR, 2012. 2, 3

[17] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

2

[18] Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Do-

main adaptation for object recognition: An unsupervised ap-

proach. In ICCV, 2011. 2, 3

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 6

[20] Zhenliang He, Wangmeng Zuo, Meina Kan, Shiguang Shan,

and Xilin Chen. Arbitrary facial attribute editing: Only

change what you want. arXiv:1711.10678, 2017. 2

[21] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,

Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Darrell.

CyCADA: Cycle-consistent adversarial domain adaptation.

In ICML, 2018. 1, 2, 6, 7

[22] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell.

Fcns in the wild: Pixel-level adversarial and constraint-based

adaptation. arXiv:1612.02649, 2016. 2, 6

[23] Weixiang Hong, Zhenzhen Wang, Ming Yang, and Junsong

Yuan. Conditional generative adversarial network for struc-

tured domain adaptation. In CVPR, 2018. 2

[24] Yann N. Dauphin David Lopez-Paz Hongyi Zhang,

Moustapha Cisse. mixup: Beyond empirical risk minimiza-

tion. In ICLR, 2018. 5

[25] Haoshuo Huang, Qixing Huang, and Philipp Krähenbühl.
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