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Abstract

Prior highly-tuned human parsing models tend to fit to-

wards each dataset in a specific domain or with discrepant

label granularity, and can hardly be adapted to other hu-

man parsing tasks without extensive re-training. In this

paper, we aim to learn a single universal human parsing

model that can tackle all kinds of human parsing needs

by unifying label annotations from different domains or at

various levels of granularity. This poses many fundamen-

tal learning challenges, e.g. discovering underlying seman-

tic structures among different label granularity, performing

proper transfer learning across different image domains,

and identifying and utilizing label redundancies across re-

lated tasks.

To address these challenges, we propose a new univer-

sal human parsing agent, named “Graphonomy”, which in-

corporates hierarchical graph transfer learning upon the

conventional parsing network to encode the underlying la-

bel semantic structures and propagate relevant semantic

information. In particular, Graphonomy first learns and

propagates compact high-level graph representation among

the labels within one dataset via Intra-Graph Reasoning,

and then transfers semantic information across multiple

datasets via Inter-Graph Transfer. Various graph trans-

fer dependencies (e.g., similarity, linguistic knowledge) be-

tween different datasets are analyzed and encoded to en-

hance graph transfer capability. By distilling universal se-

mantic graph representation to each specific task, Graphon-

omy is able to predict all levels of parsing labels in one sys-

tem without piling up the complexity. Experimental results

show Graphonomy effectively achieves the state-of-the-art

results on three human parsing benchmarks as well as ad-

vantageous universal human parsing performance.

1. Introduction

Human visual systems are capable of accomplishing

holistic human understanding at a single glance on a per-
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Figure 1. With huge different granularity and quantity of semantic

labels, human parsing is isolated into multiple level tasks that hin-

der the model generation capability and data annotation utilization.

For example, the head region on a dataset is further annotated into

several fine-grained concepts on another dataset, such as hat, hair

and face. However, different semantic parts still have some intrin-

sic and hierarchical relations (e.g., Head includes the face. Face is

next to hair), which can be encoding as intra-graph and inter-graph

connections for better information propagation. To alleviate the

label discrepancy issue and take advantage of their semantic cor-

relations, we introduce a universal human parsing agent, named as

“Graphonomy”, which models the global semantic coherency in

multiple domains via graph transfer learning to achieve multiple

levels of human parsing tasks.

son image, e.g., separating the person from the background,

understanding the pose, and recognizing the clothes the per-

son wears. Nevertheless, recent research efforts on human

understanding have been devoted to developing numerous

highly-specific and distinct models for each individual ap-

plication, e.g. foreground human segmentation task [8, 15],

coarse clothes segmentation task [25, 28] and fine-grained

human part/clothes parsing task [14, 39]. Despite the com-

mon underlying human structure and shared intrinsic se-
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mantic information (e.g. upper-clothes can be interpreted

as coat or shirt), these highly-tuned networks have sacri-

ficed the generalization capability by only fitting towards

each dataset domain and discrepant label granularity. It is

difficult to directly adapt the model trained on one dataset

to another related task, and thus requires redundant heavy

data annotation and extensive computation to train each spe-

cific model. To address these realistic challenges and avoid

training redundant models for correlated tasks, we make the

first attempt to investigate a single universal human parsing

agent that tackles human parsing tasks at different coarse to

fine-grained levels, as illustrated in Fig. 1.

The most straightforward solution to universal human

parsing would be posing it as a multi-task learning prob-

lem, and integrating multiple segmentation branches upon

one shared backbone network [2, 14, 22, 25, 28]. This line

of research only considers the brute-force feature-level in-

formation sharing while disregarding the underlying com-

mon semantic knowledge, such as label hierarchy, label vi-

sual similarity, and linguistic/context correlations. More

recently, some techniques are explored to capture the hu-

man structure information by resorting to complex graphi-

cal models (e.g., Conditional Random Fields (CRFs)) [2],

self-supervised loss [14] or human pose priors [9, 12, 23].

However, they did not explicitly model the semantic corre-

lations of different body parts and clothing accessories, and

still show unsatisfactory results for rare fine-grained labels.

One key factor of designing a universal human parsing

agent is to have proper transfer learning and knowledge in-

tegration among different human parsing tasks, as the la-

bel discrepancy across different datasets [6, 13, 14, 39]

largely hinders direct data and model unification. In this

paper, we achieve this goal by explicitly incorporating hu-

man knowledge and label taxonomy into intermediate graph

representation learning beyond local convolutions, called

“Graphonomy” (graph taxonomy). Our Graphonomy learns

the global and common semantic coherency in multiple do-

mains via graph transfer learning to solve multiple levels of

human parsing tasks and enforce their mutual benefits upon

each other.

Taking advantage of geometric deep learning [19, 20],

our Graphonomy simply integrates two cooperative mod-

ules for graph transfer learning. First, we introduce Intra-

Graph Reasoning to progressively refine graph representa-

tions within the same graph structure, in which each graph

node is responsible for segmenting out regions of one se-

mantic part in a dataset. Specifically, we first project the

extracted image features into a graph, where pixels with

similar features are assigned to the same semantic vertex.

We elaborately design the adjacency matrix to encode the

semantic relations, constrained by the connection of human

body structure, as shown in Fig. 3. After the message prop-

agation via graph convolutions, the updated vertexes are re-

projected to make the visual feature maps more discrimina-

tive for pixel-level classification.

Additionally, we build an Inter-Graph Transfer module

to attentively distill related semantics from the graph in one

domain/task to the one in another domain, which bridges

the semantic labels from different datasets, and effectively

utilize the annotations at multiple levels. To enhance graph

transfer capability, we make the first effort to exploit vari-

ous graph transfer dependencies among different datasets.

We encode the relationships between two semantic vertexes

from different graphs by computing their feature similarity

as well as the semantic similarity encapsulated with linguis-

tic knowledge.

We conduct experiments on three human parsing bench-

marks that contain diverse semantic body parts and clothes.

The experimental results show that by seamlessly propagat-

ing information via Intra-Graph Reasoning and Inter-Graph

Transfer, our Graphonomy is able to associate and distill

high-level semantic graph representation constructed from

different datasets, which effectively improves multiple lev-

els of human parsing tasks.

Our contributions are summarized in the following as-

pects. 1) We make the first attempts to tackle all levels of

human parsing tasks using a single universal model. In par-

ticular, we introduce Graphonomy, a new Universal Human

Parsing agent that incorporates hierarchical graph transfer

learning upon the conventional parsing network to predict

all labels in one system without piling up the complexity.

2) We explore various graph transfer dependencies to enrich

graph transfer capability, which enables our Graphonomy to

distill universal semantic graph representation and enhance

individualized representation for each label graph. 3) We

demonstrate the effectiveness of Graphonomy on universal

human parsing, showing that it achieves the state-of-the-art

results on three human parsing datasets.

2. Related Work

Human Parsing. Human parsing has recently attracted

a huge amount of interests and achieved great progress

with the advance of deep convolutional neural networks

and large-scale datasets. Most of the prior works focus on

developing new structures and auxiliary information guid-

ance to improve general feature representation, such as di-

lated convolution [2, 38], LSTM structure [24, 26, 27],

encoder-decoder architecture [3], and human pose con-

straints [12, 23, 36]. Although these methods show promis-

ing results on each human parsing dataset, they directly use

one flat prediction layer to classify all labels, which disre-

gards the intrinsic semantic correlations across concepts and

utilize the annotations in an inefficient way. Moreover, the

trained model cannot be directly applied to another related

task without heavy fine-tuning. In this paper, we investi-

gate universal human parsing via graph transfer learning,

7451



where each graph encodes a set of concepts in the taxon-

omy, and all graphs constructed from different datasets are

connected following the transfer dependencies to enforce

semantic feature propagation.

Multi-task Learning. Aiming at developing systems

that can provide multiple outputs simultaneously for an

input, multi-task learning has experienced great progress

[8, 10, 13, 23, 36, 37]. For example, Gong et al. [13] jointly

optimized semantic part segmentation and instance-aware

edge detection in an end-to-end way and makes these two

correlated tasks mutually beneficial. Xiao et al. [37] in-

troduced a multi-task network and training strategy to han-

dle heterogeneous annotations for unified perceptual scene

parsing. However, these approaches simply create several

branches for different tasks respectively, without exploring

explicit relationships among the correlated tasks. In con-

trast to the existing multi-task learning pipelines, we ex-

plicitly model the relations among different label sets and

extract a unified structure for universal human parsing via

graph transfer learning.

Knowledge-guided Graph Reasoning. Many research

efforts recently model domain knowledge as a graph for

mining correlations among labels or objects in images,

which has been proved effective in many tasks [5, 19, 20,

29, 35]. For example, Chen et al. [5] leveraged local region-

based reasoning and global reasoning to facilitate object de-

tection. Liang et al. [29] explicitly constructed a semantic

neuron graph network by incorporating the semantic con-

cept hierarchy. On the other hand, there are some sequential

reasoning models for relationships [4, 21]. In these works,

a fixed graph is usually considered, while our Graphonomy

makes further efforts from external knowledge embedding

to graph representation transfer.

Transfer Learning. Our approach is also related to

transfer learning [32], which bridges different domains or

tasks to mitigate the burden of manual labeling. LSDA [17]

transformed whole-image classification parameters into ob-

ject detection parameters through a domain adaptation pro-

cedure. Hu et al. [18] considered transferring knowledge

learned from bounding box detection to instance segmen-

tation. Our method transfers high-level graph representa-

tions in order to reduce the label discrepancy across differ-

ent datasets.

3. Graphonomy

In order to unify all kinds of label annotations from dif-

ferent resources and tackle different levels of human parsing

needs in one system, we aim at explicitly incorporating hier-

archical graph transfer learning upon the conventional pars-

ing network to compose a universal human parsing model,

named as Graphonomy. Fig. 2 gives an overview of our

proposed framework. Our approach can be embedded in

any modern human parsing system by enhancing its origi-

nal image features via graph transfer learning. We first learn

and propagate compact high-level semantic graph represen-

tation within one dataset via Intra-Graph Reasoning, and

then transfer and fuse the semantic information across mul-

tiple datasets via Inter-Graph Transfer driven by explicit hi-

erarchical semantic label structures.

3.1. Intra­Graph Reasoning

Given local feature tensors from convolution layers, we

introduce Intra-Graph Reasoning to enhance local features,

by leveraging global graph reasoning with external struc-

tured knowledge. To construct the graph, we first summa-

rize the extracted image features into high-level representa-

tions of graph nodes. The visual features that are correlated

to a specific semantic part (e.g., face) are aggregated to de-

pict the characteristic of its corresponding graph node.

Firstly, We define an undirected graph as G = (V,E)
where V denotes the vertices, E denotes the edges, and

N = |V |. Formally, we use the feature maps X ∈
R

H×W×C as the module inputs, where H , W and C are

height, width and channel number of the feature maps. We

first produce high-level graph representation Z ∈ R
N×D

of all N vertices, where D is the desired feature dimension

for each v ∈ V , and the number of nodes N typically corre-

sponds to the number of target part labels of a dataset. Thus,

the projection can be formulated as the function φ:

Z = φ(X,W ), (1)

where W is the trainable transformation matrix for convert-

ing each image feature xi ∈ X into the dimension D.

Based on the high-level graph feature Z, we leverage se-

mantic constraints from the human body structured knowl-

edge to evolve global representations by graph reasoning.

We introduce the connections between the human body

parts to encode the relationship between two nodes, as

shown in Fig 3. For example, hair usually appears with

the face so these two nodes are linked. While the hat node

and the leg node are disconnected because they have noth-

ing related.

Following Graph Convolution [19], we perform graph

propagation over representations Z of all part nodes with

matrix multiplication, resulting in the evolved features Ze:

Ze = σ(AeZW e), (2)

where W e ∈ R
D×D is a trainable weight matrix and σ is a

nonlinear function. The node adjacency weight av→v′ ∈ Ae

is defined according the edge connections in (v, v′) ∈ E,

which is a normalized symmetric adjacency matrix. To suf-

ficiently propagate the global information, we employ such

graph convolution multiple times (3 times in practice).

Finally, the evolved global context can be used to fur-

ther boost the capability of image representation. Similar
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Figure 2. Illustration of our Graphonomy that tackles universal human parsing via graph transfer learning to achieve multiple levels of

human parsing tasks and better annotation utilization. The image features extracted by deep convolutional networks are projected into

a high-level graph representation with semantic nodes and edges defined according to the body structure. The global information is

propagated via Intra-Graph Reasoning and re-projected to enhance the discriminability of visual features. Further, we transfer and fuse the

semantic graph representations via Inter-Graph Transfer driven by hierarchical label correlation to alleviate the label discrepancy across

different datasets. During training, our Graphonomy takes advantage of annotated data with different granularity. For inference, our

universal human parsing agent generates different levels of human parsing results taking an arbitrary image as input.

Figure 3. Examples of the definite connections between each two

human body parts, which is the foundation to encode the rela-

tions between two semantic nodes in the graph for reasoning. Two

nodes are defined related if they are connected by a white line.

to the projection operation (Eq. 1), we again use another

transformation matrix to re-project the graph nodes to im-

ages features. We apply residual connection [16] to fur-

ther enhance visual representation with the original feature

maps X . As a result, The image features are updated by the

weighted mappings from each graph node that represents

different characteristics of semantic parts.

3.2. Inter­Graph Transfer

To attentively distill relevant semantics from one source

graph to another target graph, we introduce Inter-Graph

Transfer to bridge all semantic labels from different

datasets. Although different levels of human parsing tasks

have diverse distinct part labels, there are explicit hierarchi-

cal correlations among them to be exploited. For example,

torso label in a dataset includes upper-clothes and pants in

another dataset, and the upper-clothes label can be com-

posed of more fine-grained categories (e.g., coat, T-shirt

and sweater) in the third dataset, as shown in Fig. 1. We

make efforts to explore various graph transfer dependencies

between different label sets, including feature-level simi-

larity, handcraft relationship, and learnable weight matrix.

Moreover, considering that the complex relationships be-

tween different semantic labels are arduous to capture from

limited training data, we employ semantic similarity that is

encapsulated with linguistic knowledge from word embed-

ding [34] to preserve the semantic consistency in a scene.

We encode these different types of relationships into the

network to enhance the graph transfer capability.

Let Gs = (Vs, Es) denotes a source graph and Gt =
(Vt, Et) denotes a target graph, where Gs and Gt may have

different structures and characteristics. We can represent a

graph as a matrix Z ∈ R
N×D, where N = |V | and D is

the dimension of each vertex v ∈ V . The graph transformer

can be formulated as:

Zt = Zt + σ(AtrZsWtr), (3)

where Atr ∈ R
Nt×Ns is a transfer matrix for mapping the

graph representation from Zs to Zt. Wtr ∈ R
Ds×Dt is

a trainable weight matrix. We seek to find a better graph

transfer dependency Atr = ai,j, i=[1,Nt], j=[1,Ns], where

ai,j means the transfer weight from the jth semantic node

of source graph to the ith semantic node of target graph. We

consider and compare four schemes for the transfer matrix.

Handcraft relation. Considering the inherent correla-

tion between two semantic parts, we first define the relation

matrix as a hard weight, i.e., {0, 1}. When two nodes have

a subordinate relationship, the value of edge between them

is 1, else is 0. For example, hair is a part of head, so the

edge value between hair node of the target graph and the

head node of the source graph is 1.

Learnable matrix. In this way, we randomly initialize
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the transfer matrix Atr, which can be learned with the whole

network during training.

Feature similarity. The transfer matrix can also be

dynamically established by computing the similarity be-

tween the source graph nodes and target graph nodes, which

have encoded high-level semantic information. The transfer

weight ai,j can be calculated as:

ai,j =
exp(sim(vsi , v

t
j))∑

j exp(sim(vsi , v
t
j))

, (4)

where sim(x, y) is the cosine similarity between x and y.

vsi is the features of the ith target node, and vtj is the features

of the jth source node.

Semantic similarity. Besides the visual information, we

further explore the linguistic knowledge to construct the

transfer matrix. We use the word2vec model [34] to map

the semantic word of labels to a word embedding vector.

Then we compute the similarity between the nodes of the

source graph Vs and the nodes of the target graph Vt, which

can be formulated as:

ai,j =
exp(sij)∑
j exp(sij)

, (5)

where sij means the cosine similarity between the word em-

bedding vectors of ith target node and jth source node.

With the well-defined transfer matrix, the target graph

features and source graph knowledge can be combined and

propagated again by graph reasoning, the same as the Eq. 3.

Furthermore, the direction of the transfer is flexible, that

is, two graphs can be jointly transferred from each other.

Accordingly, the hierarchical information of different label

sets can be associated and propagated via the cooperation

of Intra-Graph Reasoning and Inter-Graph Transfer, which

enables the whole network to generate more discriminative

features to perform fine-grained pixel-wise classification.

3.3. Universal Human Parsing

As shown in Fig. 2, apart from improving the perfor-

mance of one model by utilizing the information transferred

from other graphs, our Graphonomy can also be naturally

used to train a universal human parsing task for combining

diverse parsing datasets. As different datasets have large la-

bel discrepancy, previous parsing works must tune highly-

specific models for each dataset or perform multi-task learn-

ing with several independent branches where each of them

handles one level of the tasks. By contrast, with the pro-

posed Intra-Graph Reasoning and Inter-Graph Transfer, our

Graphonomy is able to alleviate the label discrepancy is-

sues and stabilize the parameter optimization during joint

training in an end-to-end way.

Another merit of our Graphonomy is the ability to ex-

tend the model capacity in an online way. Benefiting from

the usage of graph transfer learning and joint training strat-

egy, we can dynamically add and prune semantic labels for

different purposes (e.g., adding more dataset) while keeping

the network structure and previously learned parameters.

4. Experiments

In this section, we first introduce implementation details

and related datasets. Then, we report quantitative compar-

isons with several state-of-the-art methods. Furthermore,

we conduct ablation studies to validate the effectiveness of

each main component of our Graphonomy and present some

qualitative results for the perceptual comparison.

4.1. Experimental Settings

Implementation Details We use the basic structure and

network settings provided by DeepLab v3+ [3]. Following

[3], we employ the Xception [7] pre-trained on COCO [31]

as our network backbone and output stride = 16. The

number of nodes in the graph is set according to the num-

ber of categories of the datasets, i.e., N = 7 for Pascal-

Person-Part dataset, N = 18 for ATR dataset, N = 20
for CIHP dataset. The feature dimension D of each seman-

tic node is 128. The Intra-Graph Reasoning module has

three graph convolution layers with ReLU activate function.

For Inter-Graph Transfer, we use the pre-trained model on

source dataset and randomly initialize the weight of the tar-

get graph. Then we perform end-to-end joint training for

the whole network on the target dataset.

During training, the 512x512 inputs are randomly re-

sized between 0.5 and 2, cropped and flipped from the im-

ages. The initial learning rate is 0.007. Following [3], we

employ a “ploy” learning rate policy. We adopt SGD opti-

mizer with momentum = 0.9 and weight decay of 5e− 4.

To stabilize the predictions, we perform inference by aver-

aging results of left-right flipped images and multi-scale in-

puts with the scale from 0.50 to 1.75 in increments of 0.25.

Our method is implemented by extending the Pytorch

framework [33] and we reproduce DeepLab v3+ [3] follow-

ing all the settings in its paper. All networks are trained

on four TITAN XP GPUs. Due to the GPU memory limi-

tation, the batch size is set to be 12. For each dataset, we

train all models at the same settings for 100 epochs for the

good convergence. To stabilize the inference, the resolu-

tion of every input is consistent with the original image.

The code and models are available at https://github.

com/Gaoyiminggithub/Graphonomy.

Dataset and Evaluation Metric We evaluate the perfor-

mance of our Graphonomy on three human parsing datasets

with different label definition and annotations, including

PASCAL-Person-Part dataset [6], ATR dataset [28], and

Crowd Instance-Level Human Parsing (CIHP) dataset [13].

The part labels among them are hierarchically correlated

and the label granularity is from coarse to fine. Referring
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Method Mean IoU(%)

LIP [14] 59.36

Structure-evolving LSTM [24] 63.57

DeepLab v2 [2] 64.94

Li et al. [22] 66.3

Fang et al. [12] 67.60

PGN [13] 68.4

RefineNet [30] 68.6

Bilinski et al. [1] 68.6

DeepLab v3+ [3] 67.84

Multi-task Learning 68.13

Graphonomy (CIHP) 71.14

Graphonomy (Universal Human Parsing) 69.12

Table 1. Comparison of human parsing performance with several

state-of-the-art methods on PASCAL-Person-Part dataset [6].

Method Overall accuracy (%) F-1 score (%)

LG-LSTM [27] 97.66 86.94

Graph LSTM [26] 98.14 89.75

Structure-evolving LSTM [24] 98.30 90.85

DeepLab v3+ [3] 97.30 84.50

Multi-task Learning 97.40 90.16

Graphonomy (PASCAL) 98.32 90.89

Graphonomy (Universal Human Parsing) 97.69 90.16

Table 2. Human parsing results on ATR dataset [28].

Method Mean accuracy(%) Mean IoU(%)

PGN [13] 64.22 55.80

DeepLab v3+ [3] 65.06 57.13

Multi-task Learning 65.27 57.35

Graphonomy (PASCAL) 66.65 58.58

Graphonomy (Universal Human Parsing) 65.73 57.78

Table 3. Performance comparison with state-of-the-art methods on

CIHP dataset [13].

to their dataset papers, we use the evaluation metrics in-

cluding accuracy, the standard intersection over union (IoU)

criterion, and average F-1 score.

4.2. Comparison with state­of­the­arts

PASCAL-Person-Part dataset [6] is a set of additional

annotations for PASCAL-VOC-2010 [11]. It goes beyond

the original PASCAL object detection task by providing

pixel-wise labels for six human body parts, i.e., head, torso,

upper-arms, lower-arms, upper-legs, lower-legs. There are

3,535 annotated images in the dataset, which is split into

separate training set containing 1,717 images and test set

containing 1,818 images.

We report the human parsing results compared with the

state-of-the-art methods in Table 1. “Graphonomy (CIHP)”

is the method that transfers the semantic graph constructed

on the CIHP dataset to enhance the graph representation

on the PASCAL-Person-Part dataset. Some previous meth-

ods achieve high performance with over 68% Mean IoU,

thanks to the wiper or deeper architecture [1, 30], and multi-

task learning [13]. Although our basic network (DeepLab

v3+ [3]) is not the best, the performance is improved by our

graph transfer leaning, which explicitly incorporates human

knowledge and label taxonomy into intermediate graph rep-

resentation, then propagates and updates the global infor-

mation driven by hierarchical label correlation.

ATR dataset [28] aims to predict every pixel with 18 la-

bels: face, sunglass, hat, scarf, hair, upper-clothes, left-

arm, right-arm, belt, pants, left-leg, right-leg, skirt, left-

shoe, right-shoe, bag and dress. Totally, 17,700 images are

included in the dataset, with 16,000 for training, 1,000 for

testing and 700 for validation.

We report the human parsing results on ATR dataset

compared with the state-of-the-art methods in Table 2.

“Graphonomy (PASCAL)” denotes the method that trans-

fer the high-level graph representation on PASCAL-Person-

Part dataset to enrich the semantic information. Some pre-

vious works [24, 26, 27] use the LSTM architecture to im-

prove the performance. Instead, we use the graph struc-

ture to propagate and update the high-level information.

The advanced results demonstrate that our Graphonomy has

stronger capability to learn and enhance the feature repre-

sentations.

CIHP dataset [13] is a new large-scale benchmark for

human parsing task, including 38,280 images with pixel-

wise annotations on 19 semantic part labels. The images are

collected from the real-world scenarios, containing persons

appearing with challenging poses and viewpoints, heavy oc-

clusions, and in a wide range of resolutions. Following the

benchmark, we use 28,280 images for training, 5,000 im-

ages for validation and 5,000 images for testing.

The human parsing results evaluated on CIHP dataset is

reported in Table 3. The previous work [13] achieve high

performance with 55% Mean IoU in this challenging dataset

by using multi-task learning. Our Graphonomy (PASCAL)

improves the results up to 58.58%, which demonstrates its

superiority and capability to takes full advantages of seman-

tic information to boost the human parsing performance.

4.3. Universal Human Parsing

To sufficiently utilize all human parsing resources and

unify label annotations from different domains or at various

levels of granularity, we train a universal human parsing

model to unify all kinds of label annotations from differ-

ent resources and tackle different levels of human parsing,

which is denoted as “Graphonomy (Universal Human Pars-

ing)”. We combine all training samples from three datasets

and select images from the same dataset to construct one

batch at each step. As reported in Table 1, 2, 3, our method

achieves favorable performance on all datasets. We also

compare our Graphonomy with multi-task learning method

by appending three parallel branches upon the backbone

with each branch predicting the labels of one dataset respec-

tively. Superior to multi-task learning, our Graphonomy is

able to distill universal semantic graph representation and

enhance individualized representation for each label graph.
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# Basic network [3] Adjacency matrix Ae Intra-Graph Reasoning Pre-trained on CIHP
Inter-Graph Transfer

Mean IoU(%)
Handcraft relation Learnable matrix Feature similarity Semantic similarity

1 X - - - - - - - 67.84

2 X - X - - - - - 67.89

3 X X X - - - - - 68.34

4 X - - X - - - - 70.33

5 X X X X - - - - 70.47

6 X X X X X - - - 70.22

7 X X X X - X - - 70.94

8 X X X X - - X - 71.05

9 X X X X - - - X 70.95

10 X X X X - - X X 71.14

11 X X X X - X X X 70.87

12 X X X X X X X X 70.69

Table 4. Ablation experiments on on PASCAL-Person-Part dataset [6].

training data Fine-tune Graphonomy

50% 68.45 70.03

80% 70.02 70.26

100% 70.33 71.14

Table 5. Evaluation results of our Graphonomy when training on

different number of data on PASCAL-Person-Part dataset [6], in

terms of Mean IoU(%).

Figure 4. Examples of different levels of human parsing results

generated by our universal human parsing agent, Graphonomy.

We also present the qualitative universal human parsing

results in Fig. 4. Our Graphonomy is able to generate pre-

cise and fine-grained results for different levels of human

parsing tasks by distilling universal semantic graph repre-

sentation to each specific task, which further verifies the ra-

tionality of our Graphonomy based on the assumption that

incorporating hierarchical graph transfer learning upon the

deep convolutional networks can capture the critical infor-

mation across the datasets to achieve good capability in uni-

versal human parsing.

4.4. Ablation Studies

We further discuss and validate the effectiveness of the

main components of our Graphonomy on PASCAL-Person-

Part dataset [6].

Intra-Graph Reasoning. As reported in Table 4, by en-

coding human body structure information to enhance the

semantic graph representation and propagation, our Intra-

Graph Reasoning acquires 0.50% improvements compared

with the basic network (#1 vs #3). To validate the signifi-

cance of adjacency matrix Ae, which is defined according

to the connectivity between human body parts and enables

the semantic messages propagation, we compare our meth-

ods with and without Ae (#2 vs #3). The comparison result

shows that the human prior knowledge makes a larger con-

tribution than the extra network parameters brought by the

graph convolutions.

Inter-Graph Transfer. To utilize the annotated data

from other datasets, previous human parsing methods must

be pre-trained on the other dataset and fine-tuned on the

evaluation dataset, as the #4 result in Table 4. Our Graphon-

omy provides a Inter-Graph Transfer module for better

cross-domain information sharing. We further compare the

results of difference graph transfer dependencies introduced

in Section 3.2, to find out the best transfer matrix to en-

hance graph representations. Interestingly, it is observed

that transferring according to handcraft relation (#6) dimin-

ishes the performance and the feature similarity (#8) is the

most powerful dependency. It is reasonable that the label

discrepancy of multiple levels of human parsing tasks can-

not be solved by simply defining the relation manually and

the hierarchical relationship encoded by the feature similar-

ity and semantic similarity is more reliable for information

transferring. Moreover, we compare the results of different

combinations of the transfer methods, which bring in a little

more improvement. In our Graphonomy, we combine fea-

ture similarity and semantic similarity for the Inter-Graph

Transfer, as more combinations cannot contribute to more

improvements.

Different number of traning data. Exploiting the in-

trinsic relations of semantic labels and incorporating hierar-

chical graph transfer learning upon the conventional human

parsing network, our Graphonomy not noly tackle multiple

levels of human praing tasks, but also alleviate the need of

heavy annotated traning data to achieve the desired perfor-

mance. We conduct extensive experiments on transferring
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Figure 5. Visualized comparison of human parsing results on PASCAL-Person-Part dataset [6] (Left) and CIHP dataset [13] (Right).

the model pre-trained on CIHP dataset to PASCAL-Person-

Part dataset. We use different annotated data in training set

by random sampling for training and evaluate the models on

the whole test set. As summarized in Table 5, simply fine-

tuning the pre-trained model without our proposed Inter-

Graph Transfer obtains 70.33% mean IoU with all training

data. However, our complete Graphonomy architecture uses

only 50% of the training data and achieves comparable per-

formance. With 100% training data, our approach can even

outperforms the fine-tuning baseline for 0.81% in average

IoU. This superior performance confirms the effectiveness

of our Graphonomy that seamlessly bridges all semantic la-

bels from different datasets and attains the best utilization

of data annotations.

4.5. Qualitative Results

The qualitative results on the PASCAL-Person-Part

dataset [6] and the CIHP dataset [13] are visualized in

Fig. 5. As can be observed, our approach outputs more

semantically meaningful and precise predictions than other

two methods despite the existence of large appearance and

position variations. Taking (b) and (e) for example, when

parsing the clothes, other methods are suffered from strange

fashion style and the big logo on the clothes, which leads

to incorrect predictions for some small regions. However,

thanks to the effective semantic information propagation by

graph reasoning and transferring, our Graphonomy success-

fully segments out the large clothes regions. More superi-

orly, with the help of the compact high-level graph represen-

tation integrated from different sources, our method gener-

ates more robust results and gets rid of the disturbance from

the occlusion and background, like (c) and (d). Besides,

we also present some failure cases (g) and (h), and find that

the overlapped parts and the very small persons cannot be

predicted precisely, which indicates more knowledge is de-

sired to be incorporated into our graph structure to tackle

the challenging cases.

5. Conclusion

In this work, we move forward to resolve all levels of

human parsing tasks using a universal model to alleviate

the label discrepancy and utilize the data annotation. We

proposed a new universal human parsing agent, named as

Graphonomy, that incorporates hierarchical graph transfer

learning upon the conventional parsing network to predict

all labels in one system without piling up the complexity.

The solid and consistent human parsing improvements of

our Graphonomy on all datasets demonstrates the superi-

ority of our proposed method. The advantageous univer-

sal human parsing performance further confirms that our

Graphonomy is strong enough to unify all kinds of label an-

notations from different resources and tackle different lev-

els of human parsing needs. In future, we plan to generalize

Graphonomy to more general semantic segmentation tasks

and investigate how to embed more complex semantic rela-

tionships naturally into the network design.
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