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Abstract

This paper addresses the following questions pertaining

to the intrinsic dimensionality of any given image represen-

tation: (i) estimate its intrinsic dimensionality, (ii) develop

a deep neural network based non-linear mapping, dubbed

DeepMDS, that transforms the ambient representation to

the minimal intrinsic space, and (iii) validate the verac-

ity of the mapping through image matching in the intrinsic

space. Experiments on benchmark image datasets (LFW,

IJB-C and ImageNet-100) reveal that the intrinsic dimen-

sionality of deep neural network representations is signif-

icantly lower than the dimensionality of the ambient fea-

tures. For instance, SphereFace’s [26] 512-dim face repre-

sentation and ResNet’s [16] 512-dim image representation

have an intrinsic dimensionality of 16 and 19 respectively.

Further, the DeepMDS mapping is able to obtain a repre-

sentation of significantly lower dimensionality while main-

taining discriminative ability to a large extent, 59.75% TAR

@ 0.1% FAR in 16-dim vs 71.26% TAR in 512-dim on IJB-

C [29] and a Top-1 accuracy of 77.0% at 19-dim vs 83.4%

at 512-dim on ImageNet-100.

1. Introduction

An image representation is an embedding function that

transforms the raw pixel representation of the image to a

point in a high-dimensional vector space. Learning or es-

timating such a mapping is motivated by two goals: (a)

the compactness of the representation, and (2) the effective-

ness of the mapping for the task at hand. While the latter

topic has received substantial attention, ranging from PCA

based Eigenfaces [42] to deep neural network (DNN) based

feature representations, there has been relatively little fo-

cus on the dimensionality of the representation itself. The

dimensionality of image representations has ranged from

hundreds to thousands of dimensions. For instance, cur-

rent state-of-the-art image representations have 128, 512,

1024 and 4096 dimensions for FaceNet [35], ResNet [16],

SphereFace [26] and VGG [36], respectively. The choice

of dimensionality is often determined by practical consid-

erations, such as, ease of learning the embedding function

[38], constraints on system memory, etc. instead of the ef-

fective dimensionality necessary for image representation.

This naturally raises the following fundamental but related

questions, How compact can the representation be without

any loss in recognition performance? In other words, what

is the intrinsic dimensionality of the representation? And,

how can one obtain such a compact representation? Ad-

dressing these questions is the primary goal of this paper.

The intrinsic dimensionality (ID) of a representation

refers to the minimum number of parameters (or degrees of

freedom) necessary to capture the entire information present

in the representation [4]. Equivalently, it refers to the di-

mensionality of the m-dimensional manifold M embedded

within the d-dimensional ambient (representation) space P
where m ≤ d. This notion of intrinsic dimensionality is

notably different from common linear dimensionality esti-

mates obtained through e.g., principal component analysis

(PCA). This linear dimension corresponds to the best linear

subspace necessary to retain a desired fraction of the vari-

ations in the data. In principle, linear dimensionality can

be as large as the ambient dimension if the variation fac-

tors are highly entangled with each other. An illustration of

these concepts is provided in Fig. 1.

The ability to estimate the intrinsic dimensionality of a

given image representation is useful in a number of ways.

At a fundamental level, the ID determines the true capac-

ity and complexity of variations in the data captured by the

representation, through the embedding function. In fact,

the ID can be used to gauge the information content in the

representation, due to its linear relation with Shannon en-

tropy [41, 9]. Also, it provides an estimate of the amount

of redundancy built into the representation which relates to

its generalization capability. On a practical level, knowl-

edge of the ID is crucial for devising optimal unsupervised

strategies to obtain image features that are minimally re-

dundant, while retaining its full ability to categorize images

into different classes. Recognition in the intrinsic space can

provide significant savings, both in memory requirements

as well as processing time, across downstream tasks like

large-scale face matching in the encrypted domain [5], im-
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Figure 1: Overview: This paper studies the manifold of feature vectors of images I obtained from a given representation model. (a) We estimate the

intrinsic dimensionality (ID) of the ambient space P and propose DeepMDS, an unsupervised method, to map P to a low-dimensional intrinsic space M. (b)

Illustration of the ambient space P and intrinsic manifold M of a face representation. Here, while the ambient and linear dimension of the representation is

three, its ID is only two. (b) Heatmaps of similarity scores between face pairs of 10 classes with 10 images per class for a representation with ID of 10-dim.

The similarity is computed in four different spaces, the 512-dim ambient space P , 10-dim space of linear dimensionality (PCA), 10-dim intrinsic space

M estimated by Isomap [40] and by our DeepMDS model. The class separability, as shown by the diagonal blocks, is better maintained by DeepMDS.

age matching and retrieval, etc. Lastly, gap between the am-

bient and intrinsic dimensionalities of a representation can

serve as a useful indicator to drive the development of algo-

rithms that can directly learn highly compact embeddings.

Estimating the ID of given data representation however

is a challenging task. Such estimates are crucially depen-

dent on the density variations in the representation, which

in itself is difficult to estimate as images often lie on a topo-

logically complex curved manifold [39]. More importantly,

given an estimate of ID, how do we verify that it truly rep-

resents the dimensionality of the complex high-dimensional

representation space? An indirect validation of the ID is

possible through a mapping that transforms the ambient rep-

resentation space to the intrinsic representation space while

preserving its discriminative ability. However, there is no

certainty that such a mapping can be found efficiently. In

practice, finding such mappings can be considerably harder

than estimating the ID itself.

We overcome both of these challenges by (1) adopting

a topological dimensionality estimation technique based on

the geodesic distance between points on the manifold, and

(2) relying on the ability of DNNs to approximate the com-

plex mapping function from the ambient space to the intrin-

sic space. The latter enables validation of the ID estimates

through image matching experiments on the corresponding

low-dimensional intrinsic representation of feature vectors.

The key contributions and findings of this paper are:

– The first attempt to estimate the intrinsic dimensionality

of DNN based image representations.

– An unsupervised DNN based dimensionality reduction

method under the framework of multidimensional scaling,

called DeepMDS.

– Numerical experiments yield an ID estimate of, 12 and

16 for FaceNet [35] and SphereFace [26] face representa-

tions, respectively, and 19 for ResNet-34 [16] image repre-

sentation. The estimates are significantly lower than their

respective ambient dimensionalities, 128-dim for FaceNet

and 512-dim for the others.

– DeepMDS mapping is significantly better than other di-

mensionality reduction approaches in terms of its discrimi-

native capability.

2. Related Work

Image Representation: The quest to develop image rep-

resentations that are simultaneously robust and discrimina-

tive have led to extensive research on this topic. Amongst

the earliest learning based approaches, Turk and Pentland

proposed Eigenfaces [42] that relied on principal compo-

nent analysis (PCA) of data. Later on, integrated and high-

dimensional spatially local features became prevalent for

image recognition, notable examples include local binary

patterns (LBP) [1], scale-invariant feature transform (SIFT)

[28] and histogram of oriented gradients (HoG) [10]. In

contrast to these hand-designed representations, the past
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decade has witnessed the development of end-to-end rep-

resentation learning systems. Convolutional neural network

based features now typify the state-of-the-art image repre-

sentations [16, 37, 26]. All of these representations are how-

ever characterized by features that range from hundreds to

thousands of dimensions. While more compact representa-

tions are desirable, difficulties with optimizing DNNs with

narrow bottlenecks [38] have proven to be the primary bar-

rier towards realizing this goal.

Intrinsic Dimensionality: Existing approaches for esti-

mating intrinsic dimensionality can be broadly classified

into two groups: projection methods and geometric meth-

ods. The projection methods [11, 6, 43] determine the di-

mensionality by principal component analysis on local sub-

regions of the data and estimating the number of dominant

eigenvalues. These approaches have classically been used

in the context of modeling facial appearance under differ-

ent illumination conditions [12] and object recognition with

varying pose [30]. While they serve as an efficient heuris-

tic, they do not provide reliable estimates of intrinsic di-

mension. Geometric methods [31, 14, 7, 21, 17, 24] on the

other hand model the intrinsic topological geometry of the

data and are based on the assumption that the volume of a

m-dimensional set scales with its size ǫ as ǫm and hence the

number of neighbors less than ǫ also behaves the same way.

Our approach in this paper is based on the topological no-

tion of correlation dimension [14, 7], the most popular type

of fractal dimensions. The correlation dimension implicitly

uses nearest-neighbor distance, typically based on the Eu-

clidean distance. However, Granata et.al. [13] observe that

leveraging the manifold structure of the data, in the form

of geodesic distances induced by a neighborhood graph of

the data, provides more realistic estimates of the ID. Build-

ing upon this observation we base our ID estimates on the

geodesic distance between points. We believe that estimat-

ing the intrinsic dimensionality would serve as the first step

towards understanding the bound on the minimal required

dimensionality for representing images and aid in the de-

velopment of novel algorithms that can achieve this limit.

Dimensionality Reduction: There is a tremendous body

of work on the topic of estimating low-dimensional approx-

imations of data manifolds lying in high-dimensional space.

These include linear approaches such as Principal Compo-

nent Analysis [20], Multidimensional Scaling (MDS) [23]

and Laplacian Eigenmaps [2] and their corresponding non-

linear spectral extensions, Locally Linear Embedding [32],

Isomap [40] and Diffusion Maps [8]. Another class of di-

mensionality reduction algorithms leverage the ability of

deep neural networks to learn complex non-linear mappings

of data including deep autoencoders [18], denoising autoen-

coders [44, 45] and learning invariant mappings either with

the contrastive loss [15] or with the triplet loss [35]. While

the autoencoders can learn a compact representation of data,

such a representation is not explicitly designed to retain dis-

criminative ability. Both the contrastive loss and the triplet

loss have a number of limitations; (1) require similarity and

dissimilarity labels from some source and cannot be trained

in a purely unsupervised setting, (2) require an additional

hyper-parameter, maximum margin of separation, which is

difficult to pre-determine, especially for an arbitrary repre-

sentation, and (3) do not maintain the manifold structure

in the low-dimensional space. In this paper, we too lever-

age DNNs to approximate the non-linear mapping from the

ambient to the intrinsic space. However, we consider an un-

supervised setting (i.e., no similarity or dissimilarity labels)

and cast the learning problem within the framework of MDS

i.e., preserving the ambient graph induced geodesic distance

between points in the intrinsic space.

3. Approach

Our goal in this paper is to compress a given image repre-

sentation space. We achieve this in two stages1: (1) estimate

the intrinsic dimensionality of the ambient image represen-

tation, and (2) learn the DeepMDS model to map the ambi-

ent representation space P ∈ R
d to the intrinsic representa-

tion space M ∈ R
m (m ≤ d). The ID estimates are based

on the one presented by [13] which relies on two key ideas,

(1) using graph induced geodesic distances to estimate the

correlation dimension of the image representation topology,

and (2) the similarity of the distribution of geodesic dis-

tances across different topological structures with the same

intrinsic dimensionality. The DeepMDS model is optimized

to preserve the interpoint geodesic distances between the

feature vectors in the ambient and intrinsic space, and is

trained in a stage-wise manner that progressively reduces

the dimensionality of the representation. Basing the pro-

jection method on DNNs, instead of spectral approaches

like Isomap, addresses the scalability and out-of-sample-

extension problems suffered by spectral methods. Specif-

ically, DeepMDS is trained in a stochastic fashion, which

allows it to scale. Furthermore, once trained, DeepMDS

provides a mapping function in the form of a feed-forward

network that maps the ambient feature vector to its corre-

sponding intrinsic feature vector. Such as map can easily be

applied to new test data.

3.1. Estimating Intrinsic Dimension

We define the notion of intrinsic dimension through the

classical concept of topological dimension of the support

of a distribution. This is a generalization of the concept

1Traditional single-stage dimensionality reduction methods use visual

aids to arrive at the final ID and intrinsic space, e.g., plotting the projection

error against the ID values and looking for a “knee” in the curve.
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Figure 2: Intrinsic Dimension: Our approach is based on two observations: (a) Graph induced geodesic distance between images is able to capture the

topology of the image representation manifold more reliably. As an illustration, we show the graph edges for the surface of a unitary hypersphere and a face

manifold of ID two, embedded within a 3-dim space. (b) The distribution of the geodesic distances (for distance rmax − 2σ ≤ r ≤ rmax, where rmax is

the distance at the mode) has been empirically observed [13] to be similar across different topological structures with the same intrinsic dimensionality. The

plot shows the distance distribution for a face representation, unitary hypersphere and a Gaussian distribution of ID two embedded within 3-dim space.

of dimension of a linear space 2 to a non-linear manifold.

Methods for estimating the topological dimension are all

based on the assumption that the behavior of the number

of neighbors of a given point on an m-dimensional mani-

fold embedded within a d-dimensional space scales with its

size ǫ as ǫm. In other words, the density of points within

an ǫ-ball (ǫ → 0) in the ambient space is independent of

the ambient dimension d and varies only according to its

intrinsic dimensionality m. Given a collection of points

X = {x1, . . . ,xn}, where xi ∈ R
d, the cumulative distri-

bution of the pairwise distances C(r) between the n points

can be estimated as,

C(r) =
2

n(n− 1)

n
∑

i<j=1

H(r − ‖xi − xj‖) =

∫ r

0

p(r)dr (1)

where H(·) is the Heaviside function and p(r) is the prob-

ability distribution of the pairwise distances. In this paper,

we choose the correlation dimension [14], a particular type

of topological dimension, to represent the intrinsic dimen-

sion of the image representation. It is is defined as,

m = lim
r→0

lnC(r)

ln r
=⇒ lim

r→0
C(r) ∝ rm (2)

Therefore, the intrinsic dimension is crucially dependent on

the accuracy with which the probability distribution can be

estimated at very small length-scales (distances), i.e., r →
0. Significant efforts have been devoted to estimating the

intrinsic dimension through line fitting in the lnC(r) vs ln r
space around the region where r → 0 i.e.,

m = lim
(r2−r1)→0

lnC(r2)− lnC(r1)

ln r2 − ln r1
(3)

= lim
r→0

d lnC(r)

d ln r
= lim

r→0

p(r)

C(r)
r = lim

r→0
m(r)

The main drawback with this approach is the need for re-

2Linear dimension is the minimum number of independent vectors nec-

essary to represent any given point in this space as a linear combination.

liable estimates of p(r) at very small length scales, which

is precisely where the estimates are most unreliable when

data is limited, especially in very high-dimensional spaces.

Granata et al. [13] present an elegant solution to this prob-

lem through three observations, (i) estimates of m(r) can

be stable even as r → 0 if the distance between points is

computed as the graph induced shortest path between points

instead of the euclidean distance, as is commonly the case,

(ii) the probability distribution p(r) at intermediate length-

scales around the mode of p(r) i.e., (rmax − 2σ) ≤ r ≤
rmax can be conveniently used to obtain reliable estimates

of ID, and (iii) the distributions p(r) of different topological

geometries are similar to each other as long as the intrinsic

dimensionality is the same, or in other words the distribu-

tion p(r) depends only on the intrinsic dimensionality and

not on the geometric support of the manifolds.

Figure 2 provides an illustration of these observations.

Consider two different manifolds, faces and the surface of

a (m + 1)-dimensional unitary hypersphere (henceforth re-

ferred to as m-hypersphere Sm), with intrinsic dimension-

ality of m = 2 but embedded within 3-dim Euclidean

space. Beyond the nearest neighbor, the distance r be-

tween any pair of points in the manifold is computed as the

shortest path between the points as induced by the graph

connecting all the points in the representation. Figure 2b

shows the distribution of log p(r)
p(rmax)

vs log r
rmax

in the

range rmax−2σ ≤ r ≤ rmax, where σ is the standard devi-

ation of p(r) and rmax = argmax
r

p(r) corresponds to the

radius of the mode of p(r). Interestingly, different topolog-

ical geometries, namely, a face representation of ID two, a

2-hypersphere and a 2-dim Gaussian, all embedded within

3-dim Euclidean space have almost identical distributions.

More generally, the distribution of log p(r)
p(rmax)

vs log r
rmax

in the range rmax−2σ ≤ r ≤ rmax is empirically observed

to depend only on the intrinsic dimensionality, rather than

the geometrical support of the manifold.

The intrinsic dimensionality of the representation mani-
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Figure 3: DeepMDS Mapping: A DNN based non-linear mapping is learned to transform the ambient space to a plausible intrinsic space. The network

is optimized to preserve distances between pairs of points in the ambient and intrinsic space.

fold can thus be estimated by comparing the empirical dis-

tribution of the pairwise distances p̂M(r) on the manifold to

that of a known distribution, such as the m-hypersphere in

the range rmax − σ ≤ r ≤ rmax (see supplementary mate-

rial for Gaussian example). The distribution of the geodesic

distance pSm(r) of m-hypersphere can be analytically ex-

pressed as, pSm(r) = c sinm−1(r), where c is a constant

and m is the ID. Given p̂M(r), we minimize the Root Mean

Squared Error (RMSE) between the distributions as,

min
c,m

∫ rmax

rmax−2σ

‖log p̂M(r)− log(c)− (m− 1) log (sin[r])‖2

which upon simplification yields,

min
m

∫ rmax

rmax−2σ

∥

∥

∥

∥

log
p̂M(r)

p̂M(rmax)
− (m− 1) log

(

sin

[

πr

2rmax

])∥

∥

∥

∥

2

The above optimization problem can be solved via a least-

squares fit after estimating the standard deviation, σ, of p(r)
(see supplementary for details). Such a procedure could, in

principle, result in a fractional estimate of dimension. If one

only requires integer solutions, the optimal value of m can

be estimated by rounding-off the least squares fit solution.

3.2. Estimating Intrinsic Space

The intrinsic dimensionality estimates obtained in the

previous subsection alludes to the existence of a mapping,

that can transform the ambient representation to the intrinsic

space, but does not provide any solutions to find said map-

ping. The mapping itself could potentially be very complex

and our goal of estimating it is practically challenging.

We base our solution to estimate a mapping from the

ambient to the intrinsic space on Multidimensional scaling

(MDS) [23], a classical mapping technique that attempts

to preserve the distances (similarities) between points af-

ter embedding them in a low-dimensional space. Given

data points X = {x1, . . . ,xn} in the ambient space and

Y = {y1, . . . ,yn} the corresponding points in the intrinsic

low-dimensional space, the MDS problem is formulated as,

min
∑

i<j

(dH(xi,xj)− dL(yi,yj))
2

(4)

where dH(·) and dL(·) are distance (similarity) metrics

in the ambient and intrinsic space, respectively. Differ-

ent choices of the metric, leads to different dimension-

ality reduction algorithms. For instance, classical metric

MDS is based on Euclidean distance between the points

while using the geodesic distance induced by a neighbor-

hood graph leads to Isomap [40]. Similarly, many different

distance metrics have been proposed corresponding to non-

linear mappings between the ambient space and the intrinsic

space. A majority of these approaches are based on spec-

tral decompositions and suffer many drawbacks, (i) compu-

tational complexity scales as O(n3) for n data points, (ii)

ambiguity in the choice of the correct non-linear function,

and (iii) collapsed embeddings on more complex data [15].

To overcome these limitations, we employ a DNN to ap-

proximate the non-linear mapping that transforms the am-

bient representation, x, to the intrinsic space, y by a para-

metric function y = f(x;θ) with parameters θ. We learn

the parameters of the mapping within the MDS framework,

min
θ

n
∑

i=1

n
∑

i=1

[dH(xi,xj)− dL(f(xi;θ), f(xj ;θ))]
2 + λ‖θ‖22

where the second term is a regularizer with a hyperparam-

eter λ. Figure 3 shows an illustration of the DNN based

mapping.

In practice, directly learning the mapping from the am-

bient to the intrinsic space is very challenging, especially

for disentangling a complex manifold under high levels of

compression. We adopt a curriculum learning [3] approach

to overcome this challenge and progressively reduce the di-

mensionality of the mapping in multiple stages. We start

with easier sub-tasks and progressively increase the diffi-

culty of the tasks. For example, a direct mapping from

R
512 → R

15 is instead decomposed into multiple mapping

functions R
512 → R

256 → R
128 → R

64 → R
32 → R

15.

We formulate the learning problem for L mapping functions
(

yl = fl(x;θ)
)

as:

min
θ1,...,θL

n
∑

i=1

n
∑

j=1

L
∑

l=1

αl

[

dH(xi,xj)− dL(y
l
i,y

l
j)
]

2

+ λ‖θl‖
2

2
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where θl are the parameters of the l-th mapping. Appropri-

ately scheduling the αl weights enables us to set it up as a

curriculum learning problem.

4. Experiments

In this section, first we will estimate the intrinsic di-

mensionality of multiple image representations over mul-

tiple datasets of varying complexity. Then, we will evalu-

ate the efficacy of the proposed DeepMDS model in finding

the mapping from the ambient to the intrinsic space while

maintaining its discriminative ability.

4.1. Datasets

We choose two different domains of classification prob-

lems for our experiments, face verification and image clas-

sification. We consider two different face datasets for the

former and the ImageNet ILSVRC-2012 for the latter. Re-

call that DeepMDS is an unsupervised method, so category

information associated with the objects or faces is neither

used for intrinsic dimensionality estimation nor for learning

the mapping from the ambient to intrinsic space.

LFW [19]: 13,233 face images of 5,749 subjects, down-

loaded from the web. These images exhibit limited varia-

tions in pose, illumination, and expression, since only faces

that could be detected by the Viola-Jones face detector [46]

were included in the dataset.

IJB-C [29]: IARPA Janus Benchmark-C (IJB-C) dataset

consists of 3,531 subjects with a total of 31,334 (21,294

face and 10,040 non-face) still images and 11,779 videos

(117,542 frames), an average of 39 images per subject. This

dataset emphasizes faces with full pose variations, occlu-

sions and diversity of subject occupation and geographic

origin. Images in this dataset are labeled with ground truth

bounding boxes and other covariate meta-data such as oc-

clusions, facial hair and skin tone.

ImageNet [34]: The ImageNet ILSVRC-2012 classifica-

tion dataset consists of 1000 classes, with 1.28 million im-

ages for training and 50K images for validation. We use

a subset of this dataset by randomly selecting 100 classes

with the largest number of images, for a total of 130K train-

ing images and 5K testing images.

4.2. Representation Models

For the face-verification task, we consider multiple

publicly available state-of-the-art face embedding models,

namely, 128-dim FaceNet [35] representation and 512-dim

SphereFace [26] representation. In addition, we also evalu-

ate a 512-dim variant of FaceNet3 that outperforms the 128-

dim version. All of these representations are learned from

the CASIA WebFace [47] dataset, consisting of 494,414 im-

ages across 10,575 subjects. For image classification on the

3https://github.com/davidsandberg/facenet
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Figure 4: Intrinsic Dimensionality: (a) Geodesic distance

distribution, and (b) global minimum of RMSE.

ImageNet dataset, we choose a pre-trained 34 layer version

of the ResNet [16] architecture.

4.3. Baseline Methods

Intrinsic Dimensionality: We select two different algo-

rithms for estimating the intrinsic dimensionality of a given

representation, a classical k-nearest neighbor based esti-

mator [31] and “Intrinsic Dimensionality Estimation Algo-

rithm” (IDEA) [33].

Dimensionality Reduction: We compare DeepMDS

against three dimensionality reduction algorithms, principal

component analysis (PCA) for linear dimensionality reduc-

tion, Isomap [40] and denoising autoencoders [45] (DAE).

4.4. Intrinsic Dimensions

Implementation Details: The ID estimates for all the

methods we evaluate are dependent on the number of neigh-

bors k. For the baselines, k is used to compute the param-

eters of the probability density. For our method, k parame-

terizes the construction of the neighborhood graph. For the

latter, the choice of k is constrained by three factors; (1) k

should be small enough to avoid shortcuts between points

that are close to each other in the Euclidean space, but are

potentially far away in the corresponding intrinsic manifold

due to highly complicated local curvatures. (2) On the other

hand, k should also be large enough to result in a connected

graph i.e., there are no isolated data samples., and (3) k that

best matches the geodesic distance distribution of a hyper-

sphere of the same ID i.e., k that minimizes the RMSE.

Figure 4a shows the distance distributions for SphereFace

with k = 15, a 16-hypersphere and a 16-dim Gaussian.

The close similarity of the pairwise distance distributions

of these manifolds in the graph induced geodesic distance

space suggests that the ID of SphereFace (512-dim ambi-

ent space) is 16. Figure 4b shows the optimal RMSE for

SphereFace4 at different values of m. For all the approaches

we select the k-nearest neighbors using cosine similarity for

SphereFace, Euclidean distance for ResNet and arc-length,

4Similar curves for other representations and datasets can be found in

the supplementary material.
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Table 1: Intrinsic Dimensionality: Graph Distance [13]

Representation dataset
k

4 7 9 15

FaceNet-128
LFW 10* 13 11 18

IJB-C 10 10 10 11*

FaceNet-512
LFW 10* 11 11 17

IJB-C 11 11 12 12*

SphereFace
LFW 10* 11 13 9

IJB-C 14 14 16 16*

ResNet-34 ImageNet-100 16 18 19* 23

d(x1,x2) = cos−1
(

x
T

1
x2

‖x1‖‖x2‖

)

, for FaceNet features, as

the latter are normalized to reside on the surface of a uni-

tary hypersphere. Finally, for simplicity, we round the ID

estimates to the nearest integer for all the methods.

Experimental Results: Table 1 reports the ID estimates

from the graph method for different values of k5 and for dif-

ferent representation models across different datasets. Due

to lack of space we report the ID estimates of the baselines

in the supplementary material. We make a number of obser-

vations from our results: (1) Surprisingly, the ID estimates

across all the datasets, feature representations and ID meth-

ods are significantly lower than the dimensionality of the

ambient space, between 10 and 20, suggesting that image

representations could, in principle, be almost 10× to 50×
more compact. (2) Both6 the k-NN based estimator [31]

and the IDEA estimator [33] are less sensitive to the num-

ber of nearest neighbors in comparison to the graph distance

based method [13], but are known to underestimate ID for

sets with high intrinsic dimensionality [43].

4.5. Dimensionality Reduction

Given the estimates of the dimensionality of the intrin-

sic space, we learn the mapping from the ambient space

to a plausible intrinsic space with the goal of retaining the

discriminative ability of the representation. The true intrin-

sic representation (ID and space) is unknown and therefore

not feasible to validate directly. However, verifying its dis-

criminate power can serve to indirectly validate both the ID

estimate and the learned intrinsic space.

Implementation Details: We first extract image features

through the representations i.e., FaceNet-128, FaceNet-

512 and SphereFace for face images and ResNet-34 for

ImageNet-100. The architecture of the proposed DeepMDS

model is based on the idea of skip connection laden residual

units [16]. We train the mapping from the ambient to intrin-

sic space in multiple stages with each stage comprising of

two residual units. Once the individual stages are trained,

all the L projection models are jointly fine-tuned to main-

tain the pairwise distances in the intrinsic space. We adopt a

5* denotes final ID estimate that satisfies all constraints on k.
6Reported in supplementary material due to space constraints.

Table 2: LFW Face Verification for SphereFace Embedding

Dimension
Dimension Reduction method

PCA Isomap DAE DeepMDS

512 96.74%

256 96.75% 92.88% 77.80% 96.73%

128 96.80% 93.18% 32.95% 96.44%

64 91.71% 95.00% 32.04% 96.50%

32 66.38% 95.31% 11.71% 96.31%

16 32.67% 89.47% 27.53% 95.95%

10 (ID) 16.04% 77.31% 6.73% 92.33%

similar network structure (residual units) and training strat-

egy (stagewise training and fine-tuning) for the stacked de-

noising autoencoder baseline. From an optimization per-

spective, training the autoencoder is more computationally

efficient than the DeepMDS model, O(n) vs O(n2).
The parameters of the network are learned using the

Adam [22] optimizer with a learning rate of 3 × 10−4 and

the regularization parameter λ = 3 × 10−4. We observed

that using the cosine-annealing scheduler [27] was critical

to learning an effective mapping. To facilitate classification

on ImageNet in the intrinsic space, after learning the pro-

jection, we separately learn a linear as well as a k-nearest

neighbor (k-NN) classifier on the projected feature vectors

of the training set.

Experimental Results: We evaluate the efficacy of the

learned projections, namely PCA, Isomap and DeepMDS,

in the learned intrinsic space and compare their respective

performance in the ambient space. Face representations are

evaluated in terms of verification (TAR @ FAR) perfor-

mance and classification on ImageNet-100 in terms of accu-

racy (Top-1 and Top-5). Given the ID estimate, designing

an appropriate scheme for mapping the intrinsic manifold

is much more challenging than the ID estimation itself. To

show how dimensionality of the intrinsic space influences

the performance of image representations, we evaluate and

compare their performance at multiple intermediate spaces.

Face verification is performed on the IJB-C dataset fol-

lowing its verification protocol and on the LFW dataset

following the BLUFR [25] protocol. Due to space con-

straints we only show results on the DeepMDS model here,

corresponding results for the baseline dimensionality re-

duction methods can be found in the supplementary mate-

rial. Figure 5 shows the ROC curves for the IJB-C dataset

and the precision-recall curves for a image retrieval task

on ImageNet-100. Table 2 reports the verification rate at

FAR of 0.1% on the LFW dataset. Similarly, Table 3 shows

the Top-1 and Top-5 accuracy on ImageNet-100 for a pre-

trained ResNet-34 representation via a parametric (linear)

as well as a non-parametric (k-NN) classifier.

We make the following observations from these results:

(1) for all the tasks the performance of the DeepMDS fea-

tures up to 32 dimensions (for faces) is comparable to the

original 128-dim and 512-dim features. The 10-dim space
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(c) SphereFace (d) Image Retrieval

Figure 5: Face Verification on IJB-C [29] (TAR @ 0.1% FAR in legend) for the (a) FaceNet-128, (b) FaceNet-512 and (c) SphereFace embeddings and

(d) Image retrieval on ImageNet-100 for the ambient 512-dim ResNet-34 representation, the intrinsic 19-dim space obtained from DAE and DeepMDS.

Table 3: ImageNet-100 Classification (%) for ResNet-34

Classifier Method
Dimension

512 256 128 64 32 19 (ID)

Top-1

Linear
DAE 80.0 80.9 73.2 70.0 63.1 50.2

DeepMDS 80.0 79.4 76.1 71.4 70.2 68.0

k-NN
DAE 83.4 81.3 79.1 76.4 76.7 73.4

DeepMDS 83.4 80.9 78.7 77.8 77.1 77.0

Top-5 Linear
DAE 96.0 95.5 90.2 88.0 84.2 76.5

DeepMDS 96.0 95.3 93.1 85.2 85.2 84.8

of DeepMDS on LFW, consisting largely of frontal face im-

ages with minimal pose variations and facial occlusions,

achieves a TAR of 92.33% at 0.1% FAR, a loss of about

4.5% compared to the ambient space. The 12-dim space

of DeepMDS on IJB-C, with full pose variations, occlu-

sions and diveristy of subject, achieves a TAR of 62.25%

at 0.1% FAR, compared to 69.32% in the ambient space.

(2) the proposed DeepMDS model is able to learn a low-

dimensional space up to the ID with a performance penalty

of 5%-10% for compression factors of 30× to 40× for 512-

dim representations, underscoring the fact that learning a

mapping from ambient to intrinsic space is more challeng-

ing than estimating the ID itself. (3) In both tasks, we

observe that the DeepMDS model is able to retain signifi-

cantly more discriminative ability compared to the baseline

approaches even at high levels of compression. Although

DAE achieves comparative results on ImageNet-100 classi-

fication, DeepMDS significantly outperforms DAE for im-

age retrieval tasks. While Isomap is more competitive than

the other baselines it suffers from some drawbacks: (i) Due

to its iterative nature, it does not provide an explicit map-

ping function for new (unseen) data samples, while the au-

toencoder and DeepMDS models can map such data sam-

ples. Therefore, Isomap cannot be utilized to evaluate clas-

sification accuracy on the validation/test set of ImageNet-

100 dataset, and (ii) Computational complexity of Isomap is

O(n3) and hence does not scale well to large datasets (IJB-

C, ImageNet) and needs approximations, such as Nyström

approximation [39], for tractability.

Ablation Study: Here we demonstrate the efficacy of

the stagewise learning process for training the DeepMDS

model. All models have the same capacity. We con-

Table 4: DeepMDS Training Methods (TAR @ 0.1% FAR)

Method Direct Direct+IS Stagewise + Finetune Stagewise

TAR 80.25 86.15 90.42 92.33

sider four variants: (1) Direct mapping from the am-

bient to intrinsic space, (2) Direct+IS: direct mapping

from ambient to intrinsic space with intermediate super-

vision at each stage i.e., optimize aggregate intermediate

losses, (3) Stagewise learning of the mapping, and (4)

Stagewise+Fine-Tune: the projection model trained stage-

wise and then fine-tuned. Table 4 compares the results of

these variations on the LFW dataset (BLUFR protocol).

Our results suggest that stagewise learning of the non-linear

projection models is more effective at progressively disen-

tangling the ambient representation. Similar trend was ob-

served on larger datasets (IJB-C and ImageNet). In fact,

stagewise training with fine-tuning was critical in learning

an effective projection, both for DeepMDS as well as DAE.

5. Concluding Remarks

This paper addressed two questions, given a DNN based

image representation, what is the minimum degrees of free-

dom in the representation i.e., its intrinsic dimension and

can we find a mapping between the ambient and intrin-

sic space while maintaining the discriminative capability of

the representation? Contributions of the paper include, (i)

a graph induced geodesic distance based approach to es-

timate the intrinsic dimension, and (ii) DeepMDS, a non-

linear projection to transform the ambient space to the in-

trinsic space. Experiments on multiple DNN based image

representations yielded ID estimates of 9 to 20, which are

significantly lower than the ambient dimension (10× to 40

×). The DeepMDS model was able to learn a projection

from ambient to the intrinsic space while preserving its dis-

criminative ability, to a large extent, on the LFW, IJB-C and

ImageNet-100 datasets. Our findings in this paper suggest

that image representations could be significantly more com-

pact and call for the development of algorithms that can di-

rectly learn more compact image representations.
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