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Abstract

Semi-supervised video object segmentation has made

significant progress on real and challenging videos in re-

cent years. The current paradigm for segmentation meth-

ods and benchmark datasets is to segment objects in video

provided a single annotation in the first frame. However, we

find that segmentation performance across the entire video

varies dramatically when selecting an alternative frame for

annotation. This paper addresses the problem of learn-

ing to suggest the single best frame across the video for

user annotation—this is, in fact, never the first frame of

video. We achieve this by introducing BubbleNets, a novel

deep sorting network that learns to select frames using a

performance-based loss function that enables the conver-

sion of expansive amounts of training examples from al-

ready existing datasets. Using BubbleNets, we are able to

achieve an 11% relative improvement in segmentation per-

formance on the DAVIS benchmark without any changes to

the underlying method of segmentation.

1. Introduction

Video object segmentation (VOS), the dense separation

of objects in video from background, remains a hotly stud-

ied area of video understanding. Motivated by the high cost

of densely-annotated user segmentations in video [5, 38],

our community is developing many new VOS methods that

are regularly evaluated on the benchmark datasets support-

ing VOS research [22, 31, 33, 37, 45]. Compared to unsu-

pervised VOS [12, 21, 29, 44], semi-supervised VOS, the

problem of segmenting objects in video given a single user-

annotated frame, has seen rampant advances, even within

just the past year [2, 4, 7, 8, 9, 16, 17, 25, 28, 30, 35, 46].

The location and appearance of objects in video can

change significantly from frame-to-frame, and, from our

own analysis, we find that using different frames for anno-

tation changes performance dramatically, as shown in Fig-

ure 1. Annotating video data is an arduous process, so it

Frame 12: +69% Frame 20: -53%Frame 1: Baseline

Figure 1. The current paradigm for video object segmentation is

to segment an object annotated in the first frame of video (yellow,

left). However, selecting a different frame for annotation changes

performance across the entire video [for better (green) or worse

(red)]. To best use an annotator’s time, our deep sorting framework

suggests a frame that will improve segmentation performance.

is critical that we improve performance of semi-supervised

VOS methods by providing the best single annotation frame

possible. However, we are not aware of any work that seeks

to learn which frame to annotate for VOS.

To that end, this paper addresses the problem of select-

ing a single video frame for annotation that will lead to

greater performance. Starting from an untouched video, we

select an annotation frame using our deep bubble sorting

framework, which makes relative performance predictions

between pairs of frames using our custom network, Bub-

bleNets. BubbleNets iteratively compares and swaps adja-

cent video frames until the frame with the greatest predicted

performance is ranked highest, at which point, it is selected

for the user to annotate and use for VOS. To train Bub-

bleNets, we use an innovative relative-performance-based

loss that increases the number of training examples by or-

ders of magnitude without increasing frame labeling re-

quirements. Finally, we evaluate BubbleNets annotation

frame selection on multiple VOS datasets and achieve as

much as an 11% relative improvement in combined Jaccard
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measure and region contour accuracy (J+F) over the same

segmentation method given first-frame annotations.

The first contribution of our paper is demonstrating the

utility of alternative annotation frame selection strategies

for VOS. The current paradigm is to annotate an object in

the first frame of video and then automatically segment that

object in the remaining frames. We provide thorough analy-

sis across four datasets and identify simple frame-selection

strategies that are immediately implementable for all VOS

methods and lead to better performance than first-frame se-

lection. To the best of our knowledge, this represents the

first critical investigation of segmentation performance for

different annotation frame selection strategies.

The second contribution of our paper is the deep bubble

sorting framework and corresponding implementation that

improves VOS performance. We are not aware of a sin-

gle paper that investigates selection of the annotated frame

in VOS. The necessary innovation for our network-based

approach is our loss formulation, which allows extensive

training on relatively few initial examples. We provide de-

tails on generating application-specific performance labels

from pre-existing datasets, and our deep sorting formula-

tion is general to all video processes that train on individ-

ual frames and have a measurable performance metric. Us-

ing our custom network architecture and a modified loss

function inspired by our VOS frame-selection analysis, we

achieve the best frame-selection-based segmentation perfor-

mance across all four evaluation datasets.

We provide source code for the current work at

https://github.com/griffbr/BubbleNets

and a video at https://youtu.be/0kNmm8SBnnU.

2. Related Work

2.1. Video Object Segmentation

Multiple benchmarks are available to evaluate VOS

methods, including: SegTrackv2 [22, 37]; DAVIS 2016,

2017, and 2018 [5, 31, 33]; and YouTube-VOS [45]. Mov-

ing away from the single-object hypothesis of DAVIS 2016,

these datasets are increasingly focused on the segmentation

of multiple objects, which increases the need for a user-

provided annotation to specify each object of interest and

has led to the development of more semi-supervised VOS

methods using an annotated frame. With some exceptions

[1, 13, 27, 32], the majority of semi-supervised VOS meth-

ods use an artificial neural network.

The amount of training data available for learning-based

VOS methods has increased dramatically with the introduc-

tion of YouTube-VOS, which contains the most annotated

frames of all current VOS benchmarks. However, due to

the high cost of user annotation [5, 38], YouTube-VOS only

provides annotations for every fifth frame. Operating on the

assumption that every frame should be available to the user

for annotation, we obtain training data from, and base the

majority of our analysis from, DAVIS 2017, which contains

the most training and validation examples of all fully an-

notated datasets and has many challenging video categories

(e.g., occlusions, objects leaving view, appearance change,

and multiple interacting objects).

For our BubbleNets implementation that selects anno-

tated frames for VOS, we segment objects using One-Shot

Video Object Segmentation (OSVOS) [4], which is state-

of-the-art in VOS and has influenced other leading methods

[25, 42]. OSVOS uses a base network trained on ImageNet

[10] to recognize image features, re-trains on DAVIS 2016

to segment objects in video, and then fine-tunes the net-

work for each video using a user-provided annotation. One

unique property of OSVOS is that it does not require tempo-

ral consistency, i.e., the order that OSVOS segments frames

is inconsequential. Conversely, even when segmentation

methods operate sequentially [2, 16, 18, 23, 28, 30, 46], seg-

mentation can propagate forward and backward from anno-

tated frames selected later in a video.

2.2. Active Learning

Active learning (AL) is an area of research enabling

learning algorithms to perform better with less training by

letting them choose their own training data. AL is espe-

cially useful in cases where large portions of data are un-

labeled and manual labeling is expensive [3]. Selecting the

best single annotated frame to train OSVOS represents a

particularly hard problem in AL, starting to learn with no

initial labeled instances, i.e., the cold start problem [26].

Within AL, we are particularly interested in error reduc-

tion. Error reduction is an intuitive sub-field that directly

optimizes the objective of interest and produces more accu-

rate learners with fewer labeled instances than uncertainty

or hypothesis-based AL approaches [34]. However, rather

than going through all video frames and then formally pre-

dicting the expected error reduction associated with any one

annotation frame, BubbleNets simplifies the problem by

only comparing the relative performance of two frames at a

time. By combining our decision framework with a bubble

sort, we iterate this selection process across the entire video

and promote the frame with the best relative performance to

be our selected annotation frame.

Within computer vision, previous AL work includes

measures to reduce costs associated with annotating im-

ages and selecting extra training frames after using an initial

set of user annotations. Cost models predicting annotation

times can be learned using a decision-theoretic approach

[38, 40]. Other work has focused on increasing the effec-

tiveness of crowd-sourced annotations [39]. To improve

tracking performance, active structured prediction has been

used to suggest extra training frames after using an initial

set of user annotations [43]. Within VOS, other work in-
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creases segmentation accuracy by having a user review seg-

mentations and then add annotations on frames with poor

performance [4]. The DAVIS 2018 challenge includes em-

phasis on maximizing segmentation performance with de-

creased user annotation time [5]. In contrast, we are not

estimating annotation costs or selecting extra annotation

frames. To support all semi-supervised VOS methods with-

out increasing user effort, we are selecting a single frame

for annotation that increases performance.

3. BubbleNets

We design an artificial neural network, Bub-

bleNets (BN), that learns to suggest video frames for

annotation that improve video object segmentation (VOS)

performance. To learn performance-based frame selection

on our custom network, we generate our own labeled train-

ing data. Labeled video data are expensive, so we design

our network loss to learn from fewer initial frame labels, as

discussed in Section 3.1. In Section 3.2, we introduce our

deep bubble sorting framework that uses BN performance

predictions to select a single frame for annotation. We

provide details for our BN architecture in Section 3.3. In

Section 3.4, we present our BN implementation for VOS

with complete training and configuration details.

3.1. Predicting Relative Performance

Assume we are given a set of m training videos wherein

each video has n frames with labels corresponding to some

performance metric, y ∈ R, which we leave unspecified

here but define in Section 3.4.1. Our goal is to learn to select

the frame with the greatest performance from each video.

One way to accomplish this task is to use the entire

video as input to a network (e.g., using an LSTM or 3D-

ConvNet [6]) and output the frame index with the greatest

predicted performance; however, this approach only has m

labeled training examples. A second way to formulate this

problem is to use individual frames as input to a network

and output the predicted performance of each frame. Us-

ing this formulation, the frame with the maximum predicted

performance can be selected from each video and there are

m × n labeled training examples. While this is a signifi-

cant improvement over m examples, the second formulation

only provides one training example per frame, which, for

complicated and high annotation-cost processes like video

object segmentation, makes the task of generating enough

data to train a performance-prediction network impractical.

To that end, instead of directly estimating the predicted

performance y of each training frame, BN predicts the rel-

ative difference in performance of two frames being com-

pared (i.e., yi − yj for frames i and j from the same video).

This difference may seem trivial, but it effectively increases

the number of labels and training examples from m × n to

m×
(

n
2

)

≈ mn2

2
.

To further increase the number of unique training exam-

ples and increase BN’s accuracy, we use k random video

reference frames as an additional network input. When pre-

dicting the relative performance between two frames, ad-

ditional consideration can be given to the frame that bet-

ter represents the reference frames. Thus, similar to archi-

tectures that process entire videos, reference frames pro-

vide some context for the video as a whole. We find that

reference frames not only increase BN’s accuracy in prac-

tice but also increase the number of training examples from

m ×
(

n
2

)

to m×
(

n
k+2

)

≈ mn(k+2)

k+2
.

Finally, we define our performance loss function as:

L(W) := |(yi − yj)− f(xi, xj , Xref.,W)| , (1)

where W are the trainable parameters of BN, yi is the per-

formance label associated with the ith video frame, xi is

the image and normalized frame index associated with the

ith video frame, Xref. is the set of k reference images and

frame indices, and f is the predicted relative performance.

For later use, denote the normalized frame index for the ith

frame of an n-frame video as

Ii =
i

n
. (2)

Including I as an input enables BN to also consider tempo-

ral proximity of frames for predicting performance.

3.2. Deep Bubble Sorting

Assume we train BubbleNets to predict the relative per-

formance difference of two frames using the loss function

(1) from Section 3.1. To select the frame with the great-

est performance from a video, we use BN’s relative perfor-

mance predictions within a deep bubble sorting framework,

iteratively comparing and swapping adjacent frames until

we identify the frame with the greatest predicted relative

(and overall) performance.

Our deep bubble sorting framework begins by comparing

the first two video frames. If BN predicts that the preceding

frame has greater relative performance, the order of the two

frames is swapped. Next, the leading frame is compared

(and potentially swapped) with the next adjacent frame, and

this process passes forward until reaching the end of the

video (see Figure 2). The frame ranked highest at the end of

the sort is selected as the predicted best-performing frame.

Normally, bubble sort is deterministic and only needs

one pass through a list to promote the greatest element to

the top; conversely, our deep bubble sorting framework is

stochastic. BN uses k random video reference frames as in-

put for each prediction, and using a different set of reference

frames can change that prediction; thus, a BN comparison

for the same two frames can change. While bubble sort’s re-

dundancy is sub-optimal relative to other comparison sorts

in many applications [20], revisiting previous comparisons
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Figure 2. BubbleNets Framework: Deep sorting compares and

swaps adjacent frames using their predicted relative performance.

is particularly effective given BN’s stochastic nature. Ac-

cordingly, our deep bubble sorting framework makes n for-

ward passes for an n-frame video, which is sufficient for

a complete frame sort and increases the likelihood that the

best-performing frame is promoted to the top.

One way to increase BN’s consistency is to batch each

network prediction over multiple sets of video reference

frames. By summing the predicted relative performance

over the entire batch, we reduce the variability of each

frame comparison. However, two consequences of increas-

ing batch size are: 1) increasing the chance of hitting a local

minimum (i.e., some frame pairs are ordered incorrectly but

never change) and 2) increasing execution time. In Sec-

tion 4, we perform an ablation study to determine the best

batch size for our specific application.

Although BN is not explicitly trained to find the best-

performing frame in a video, our complete deep bubble sort-

ing framework is able to accomplish this task, as shown in

Figure 3. Even in cases where the best performing frames

are not promoted to the top, an important secondary effect

of our deep sorting framework is demoting frames that lead

to poorer performance (e.g., Frame 20 in Figure 1); avoid-

ing such frames is critical for annotation frame selection in

video object segmentation.

3.3. BubbleNets Architecture

Our BubbleNets architecture is shown in Figure 2. The

input has two comparison images, three reference images,

and normalized indices (2) for all five frames. Increas-

ing the number of reference frames, k, increases video-

wide awareness for predicting relative frame performance

but also increases network complexity; in practice, we

find that k = 3 is a good compromise. The input im-

ages are processed using a base Residual Neural Network

Best Possible Sort

BubbleNets Sort

1 10 20 30 40
0.0

0.5

1.0

Initial Video Frame Indices

J
+
F

Figure 3. BubbleNets Prediction Sort of Motorbike Video. The

green bar is the annotated training frame selected by BubbleNets.

(ResNet 50, [15]) that is pre-trained on ImageNet, which

has been shown to be a good initialization for segmenta-

tion [9] and other video tasks [47]. Frame indices and

ResNet features are fed into BN’s performance prediction

layers, which consist of four fully-connected layers with

decreasing numbers of neurons per layer. All performance

prediction layers include the normalized frame indices as

input and use a Leaky ReLU activation function [24]; the

later three prediction layers have 20% dropout for all in-

puts during training [36]. After the performance prediction

layers, our BN architecture ends with one last fully con-

nected neuron that is the output relative performance pre-

diction f(xi, xj , Xref.,W) ∈ R in (1).

3.4. BubbleNets Implementation for
Video Object Segmentation

Assume a user wants to segment an object in video and

provides an annotation of that object in a single frame. Be-

cause annotating video data is time consuming, we use Bub-

bleNets and deep sorting to automatically select the annota-

tion frame for the user that results in the best segmentation

performance possible. We segment objects from the anno-

tated frame in the remainder of the video using One-Shot

Video Object Segmentation (OSVOS) [4].

3.4.1 Generating Performance Labels for Training

Generating performance-based labels to train BN requires

a quantitative measure of performance that is measurable

on any given video frame. For our VOS performance mea-

sure, we choose a combination of region similarity J and

contour accuracy F . Region similarity (also known as in-

tersection over union or Jaccard index [11]) provides an in-

tuitive, scale-invariant evaluation for the number of misla-
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beled foreground pixels with respect to a ground truth an-

notation. Given a foreground mask M and ground truth

annotation G, J = M∩G
M∪G

. Contour accuracy evaluates the

boundary of a segmentation by measuring differences be-

tween the closed set of contours for M and G [31]; F is

also correlated with J [14, Figure 5]. Using J and F , we

define a frame performance label for loss function (1) as

yi :=
1

n

n
∑

j=1

Jj + Fj , (3)

where yi is ith label of an n-frame video and Jj +Fj is the

performance on frame j after using frame i for annotation.

In simple words, yi is the video-wide mean performance

that results from selecting the ith frame for annotation.

We use our performance label (3) to generate BN train-

ing data. To avoid labeling costs for annotating BN-selected

frames and evaluating segmentation performance, we use a

previously annotated VOS dataset. Our ideal dataset con-

tains many examples and is fully-annotated to provide BN

the complete set of video frames for annotation selection.

We give full consideration to the datasets listed in Table 1

[22, 31, 33, 37, 45]. YouTube-VOS contains the most an-

notated frames, but the validation set provides annotations

on only the first video frame and the training set provides

annotations only on every fifth frame. SegTrackv2 has the

most annotated frames per video, but this metric is skewed

by a handful of long videos and the majority of SegTrackv2

videos contain 40 frames or fewer (see Figure 4). Accord-

ingly, we use the DAVIS 2017 training set, which contains

the most examples of the fully annotated datasets.

Using the DAVIS 2017 training set, we train OSVOS for

500 iterations on every frame and find the resulting perfor-

mance label (3). For videos with multiple annotated ob-

jects, performance labels are generated for each object on

every frame. Preprocessing the dataset takes about a week

on a dual-GPU (GTX 1080 Ti) machine but has many ben-

efits. First, BN can train without running OSVOS, which

significantly decreases training time. Second, we know the

ground truth performance of every frame, so we can evalu-

ate the overall deep sorting framework (e.g., seeing which

frames are under- or over-promoted in Figure 3). Finally,

we can compare performance against several simple frame

selection strategies and know the best and worst frame se-

lections possible for each video in the dataset.

3.4.2 Five BubbleNets Configurations and Training

To test the efficacy of new concepts and establish best prac-

tices, we implement five BN configurations for VOS. The

first configuration (BN0) uses the standard BN architecture

in Section 3.3. The second and third configurations are sim-

ilar to BN0 but use No Input Frame Indices (BNNIFI) or No

Table 1. Dataset Metrics. Most of the SegTrackv2 videos and all

of the YT-VOS videos have less than 40 annotated frames.
DAVIS 2017 DAVIS SegTrack YT-VOS

Number of Train Val. ‘16 Val. v2 (1st 1,000)

Objects 144 61 20 24 1,000

Videos 60 30 20 14 607

Annotated Frames 4,209 1,999 1,376 1,066 16,715

Object Annotations 10,238 3,984 1,376 1,515 26,742

Annotated Frames Per Video

Mean 70.2 66.6 68.8 76.1 27.5

Median 71 67.5 67.5 39 30

Range 25–100 34–104 40–104 21–279 8–36

Coef. of Variation 0.22 0.31 0.32 1.03 0.29

0 50 100 150 200 250
Frames Per Video

P
ro

b
ab

il
it

y
M

as
s DAVIS 2017 Train

YT-VOS

SegTrackv2

DAVIS 2016 Val.

DAVIS 2017 Val.

Figure 4. PMF for Annotated Frames Available Per Video.

Reference Frames (BNNRF). The fourth and fifth configu-

rations are similar to BN0 but use loss functions modified

from L (1) to predict Single-frame Performance (BNLSP)

or bias toward middle Frame selection (BNLF).

BNLSP’s single-frame performance loss is defined as:

LSP(W) := |yi − f(xi, Xref.,W)| , (4)

where yi is the single performance label for frame i. Alter-

natively, BNLF’s middle-frame biased loss is defined as:

LF(W) := |(yi − yj)− (di − dj)− f(xi, xj , Xref.,W)| ,
(5)

where di is the distance between frame i and the middle

frame. Using the normalized index from (2), we find di as:

di = λ |Ii − IMF| , (6)

where IMF = 0.5 is the normalized middle frame index and

λ = 0.5 determines the relative emphasis of middle frame

bias in (5). The intuition behind (5) is simple. In addition

to predicting the performance difference between frames i

and j, BNLF will learn to consider distance of each frame

from the middle of the video. Given no predicted perfor-

mance difference, the network will simply fall back on the

frame closest to the middle, which is shown in Section 4 to

be an effective annotation choice. To help BNLF learn the

additional frame-based loss, we remove all network layer

dropout associated with the frame input indices.

All five configurations are trained using the labeled

DAVIS 2017 training data described in Section 3.4.1. To
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Table 2. BubbleNets Configurations.
Input DAVIS 2017

Config. Frame Ref. Loss Total Training Val. Mean

ID Indices Frames Function Iterations Time J F

BN0 Yes Yes L (1) 3,125 5m 11s 59.7 65.5

BNNIFI No Yes L (1) 2,500 3m 52s 58.7 65.0

BNLF Yes Yes LF (5) 8,125 15m 30s 57.8 63.8

BNNRF Yes No L (1) 3,125 2m 20s 55.4 62.3

BNLSP Yes Yes LSP (4) 1,875 2m 32s 55.1 62.3

decrease training time, all DAVIS 2017 training frames are

preprocessed through the ResNet portion of the architec-

ture, which does not change during BN training. We use

a batch size of 1,024 randomly selected videos; each video

uses up to five frames that are randomly selected without re-

placement (e.g., two comparison and three reference). We

add an L1 weight regularization loss with a coefficient of

2×10−6, and use the Adam Optimizer [19] with a 1×10−3

learning rate. The number of training iterations and training

time for each configuration is summarized in Table 2.

We evaluate all models using the original bubble sort-

ing framework, although BNLSP requires two forward net-

work passes per sort comparison and BNNRF is deterministic

without the random reference frames. Tasked with learning

frame-based loss and frame performance differences, BNLF

requires the most training iterations of all BN networks.

BNLSP trains in fewer iterations due to simplified loss, and

both BNLSP and BNNRF train faster due to fewer input im-

ages. As shown in Table 2, the BN0 model outperforms

BNLSP and BNNRF, justifying our claims in Section 3.1 for

using relative frame performance and reference frames.

4. Experimental Results

4.1. Setup

Our primary experiments and analysis use the DAVIS

2017 Validation set. As with the training set in Sec-

tion 3.4.1, we find the segmentation performance for every

possible annotated frame, which enables us to do a complete

analysis that includes the best and worst possible frame se-

lections and simple frame selection strategies. We deter-

mine the effectiveness of each frame selection strategy by

calculating the mean J +F for the resulting segmentations

on the entire dataset; the mean is calculated on a per video-

object basis (e.g., a video with two annotated objects will

contribute to the mean twice). Best and worst frame se-

lections are determined using the combined J + F score

for each video object. The simple frame selection strategies

are selecting the first frame (current VOS standard), mid-

dle frame (found using floor division of video length), last

frame, and a random frame from each video for each object.

Finally, because BN results can vary from using random ref-

erence frames as input, we only use results from the first run

of each configuration (same with random frame selection).

Table 3. Ablation Study on DAVIS 2017 Val. Set: Study of BN

input batch size for bubble sort comparisons and end performance.
Batch Performance (J + F ) Mean Video

Size BN0 BNNIFI BNLF Sort Time

1 124.1 122.9 120.5 3.88 s

3 125.2 122.0 121.6 4.83 s

5 125.2 123.8 121.7 5.32 s

10 125.2 122.0 120.3 6.52 s

20 123.6 123.4 120.7 9.34 s

4.2. Ablation Study

We perform an ablation study to determine the best

batch size for BN predictions. Recall from Section 3.2 that

batches reduce variability by using multiple sets of random

reference frames. As shown in Table 3, a batch size of 5

leads to the best performance for all BN configurations and

is chosen as the standard setting for all remaining results.

The mean video sort times in Table 3 are for BNLF, which

consistently has the highest sort times. As a practical con-

sideration, we emphasize that the frame selection times in

Table 3 are negligible compared to the time it takes a user

to annotate a frame [5].

4.3. DAVIS Validation

Complete annotated frame selection results for the

DAVIS 2016 and 2017 validation sets are provided in Ta-

ble 4. To put these results in perspective, the current dif-

ference in J + F for the two leading VOS methods on the

DAVIS 2016 Val. benchmark is 2.1 [25, 42].

For first frame selection, it is worth acknowledging that

both datasets intend for annotation to take place on the first

frame, which guarantees that objects are visible for anno-

tation (in some videos, objects become occluded or leave

the view). Despite this advantage, middle frame selection

outperforms first frame selection on both datasets overall

and on 3/5 of the videos on DAVIS 2017 Val. In fact, on

both datasets first frame selection is, on average, closer to

the worst possible frame selection than the best. Last frame

selection has the worst performance and, using the coeffi-

cient of variation, the most variable relative performance.

Finally, the best performing annotation frame is never the

first or last frame for any DAVIS validation video.

Middle frame selection has the best performance of all

simple strategies. We believe that the intuition for this is

simple. Because the middle frame has the least cumulative

temporal distance from all other frames, it is on average

more representative of the other frames with respect to an-

notated object positions and poses. Thus, the middle frame

is, on average, the best performing frame for segmentation.

All BN configurations outperform the simple selection

strategies, and BN0 performs best of all BN configurations.

When selecting different frames, BN0 beats middle frame

selection on 3/5 videos and first frame selection on 4/5

videos for DAVIS 2017 Val. By comparing the performance
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Table 4. Dataset Annotated Frame Selection Results.
Annotation Segmentation Performance (J + F )

Frame Coef. of

Selection Mean Median Range Variation

DAVIS 2017 Val.

Best 141.2 143.2 14.9–194.9 0.26

BN0 125.2 128.9 7.6–194.2 0.34

BNNIFI 123.8 129.9 8.7–194.2 0.35

BNLF 121.7 128.0 7.6–194.3 0.38

Middle 119.2 124.0 7.6–193.6 0.41

Random 116.5 119.7 1.6–193.2 0.38

First 113.3 117.2 3.5–192.5 0.39

Last 104.7 110.3 4.4–190.1 0.42

Worst 86.3 88.2 1.6–188.9 0.56

DAVIS 2016 Val.

Best 171.2 176.3 130.6–194.9 0.11

BN0 159.8 168.5 72.6–194.5 0.18

BNNIFI 157.3 165.7 72.6–194.5 0.18

BNLF 155.6 170.5 72.6–193.8 0.21

Middle 155.2 169.5 77.1–193.8 0.21

First 152.8 153.4 115.2–191.7 0.15

Random 147.5 157.3 83.1–194.5 0.25

Last 147.5 153.0 72.0–189.6 0.23

Worst 127.7 141.3 68.3–188.9 0.31
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Figure 5. Frame-Selection Locations in Video: Normalized in-

dices (2) of all BN annotation frame selections on DAVIS ‘17 Val.

of BN0 and BNNIFI, we find that BN0’s use of normalized

frame indices (2) is beneficial for performance.

Finally, it is clear from the frame-selection locations in

Figure 5 that BNLF’s modified loss function (5) successfully

biases selections toward the middle of each video.

4.4. Results on Datasets with Limited Frames

Annotated frame selection results for SegTrackv2 and

YouTube-VOS are provided in Table 5. As emphasized in

Section 3.4.1, the videos in these datasets have a limited

number of frames available for annotation, which limits the

effectiveness of BN frame selection. Because the YouTube-

VOS validation set only provides annotations on the first

frame, we instead evaluate on the first 1,000 objects of the

YouTube-VOS training set, which provides annotations on

every fifth frame. This reduces the number of candidate

annotation frames that BN can compare, sort, and select

to one fifth of that available in a standard application for

the same videos. While all BN configurations outperform

first and last frame selection, BNLF is the only configura-

tion that consistently outperforms all other selection strate-

gies. We postulate that the additional bias of BNLF toward

Table 5. Results on Datasets with Limited Frames Per Video.
Annotation Segmentation Performance (J + F )

Frame Coef. of

Selection Mean Median Range Variation

SegTrackv2

BNLF 134.7 145.9 14.3–184.6 0.32

Middle 134.5 143.5 14.3–182.8 0.32

BNNIFI 134.3 144.2 33.9–178.5 0.30

BN0 130.6 127.3 50.0–183.2 0.30

Last 123.6 130.4 14.3–178.4 0.36

First 122.3 122.5 45.8–181.7 0.31

YT-VOS (1st 1,000)

BNLF 115.5 126.6 0.0–197.3 0.46

Middle 115.0 124.2 0.0–196.2 0.46

BNNIFI 111.8 121.0 0.0–196.3 0.47

BN0 110.4 121.5 0.0–194.1 0.49

First 107.3 114.0 0.0–196.3 0.49

Last 101.2 108.1 0.0–195.4 0.56

Table 6. Cross Evaluation of Benchmark Methods: OSVOS and

OnAVOS DAVIS ‘17 Val. results using identical frame selections.
Segmentation Frame Selection and DAVIS J & F Mean

Method First Middle BNLF BNNIFI BN0

OSVOS 56.6 59.6 60.8 61.9 62.6

OnAVOS 63.9 68.4 68.5 68.4 69.2

Table 7. Frames Per Video and Relative Performance: BN per-

formances relative to first frame on DAVIS 2017 Validation.
Videos from Number of Relative Mean (J + F )

DAVIS 2017 Val. Frames BN0 BNNIFI BNLF

10 Longest 81–104 + 11.8% + 10.9% + 4.0%

All 34–104 + 10.5% + 9.3% + 7.4%

10 Shortest 34–43 + 4.9% + 5.0% + 3.3%

Figure 6. BNLF–Middle Frame Comparison: Two best (left) and

worst (right) BNLF selections relative to the middle frame.

index-based selections made this configuration more robust

to reductions in candidate annotation frames.

4.5. Results on Different Segmentation Methods

Cross evaluation results for different segmentation meth-

ods are provided in Table 6. All BN configurations se-

lect annotation frames that improve the performance of

OnAVOS, despite BN training exclusively on OSVOS-

generated labels. Nonetheless, the label-generating formu-

lation in Section 3.4.1 is general to other semi-supervised

VOS methods; thus, new BN training labels can always be

generated for other methods. Note that first frame results

in Table 6 differ from the online benchmark due to dataset-

specific configurations (e.g., [41]), non-deterministic com-

ponents, and our segmenting and evaluating objects from

multi-object videos separately, which is more challenging.
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Figure 7. Qualitative Comparison on DAVIS 2017 Validation Set: Segmentations from different annotated frame selection strategies.

4.6. Final Considerations for Implementation

Selecting the middle frame for annotation is the best per-

forming simple selection strategy on all datasets and is easy

to implement in practice. However, BNLF is more reliable

than middle frame selection and results in better segmen-

tation performance on all datasets. As shown in Figure 5,

BNLF selects frames close to the middle of each video, but

deviates toward frames that, on average, result in better per-

formance than the middle frame (see Tables 4 & 5). On

DAVIS 2017 Val., BNLF deviations from the middle frame

results in better performance 70% of the time. We believe

the underlying mechanism for this improvement is recog-

nizing when the middle frame exhibits less distinguishable

ResNet features or is less representative of the video refer-

ence frames. To demonstrate beneficial and counterproduc-

tive examples of this behavior, the two best and worst BNLF

selections relative to the middle frame on DAVIS 2017 Val.

are shown with relative performance % in Figure 6.

BN0 has the greatest relative segmentation improve-

ments over simple selection strategies on the DAVIS valida-

tion datasets (see example comparison in Figure 7). How-

ever, this performance did not translate to datasets with a

limited number of annotation frames available. To deter-

mine if this is due to domain shift of fewer frames, we an-

alyze the 10 longest and shortest videos from DAVIS 2017

Val. in Table 7 as an additional experiment. The key result

is that BN0 and BNNIFI’s relative performance gains double

once approximately forty annotation frames are available.

This is encouraging as most real-world videos have many

more frames available for annotation, which is conducive

for BN0’s best annotated frame selection results.

5. Conclusions

We emphasize that automatic selection of the best-

performing annotation frames for video object segmenta-

tion is a hard problem. Still, as video object segmentation

methods become more learning-based and data-driven, it is

critical that we make the most of training data and users’

time for annotation. The most recent DAVIS challenge

has shifted focus toward improving performance given lim-

ited annotation feedback [5]. However, we demonstrate

in this work that there are already simple strategies avail-

able that offer a significant performance improvement over

first frame annotations without increasing user effort; like-

wise, our BubbleNets framework further improves perfor-

mance using learned annotated frame selection. To continue

progress in this direction and improve video object segmen-

tation algorithms in practice, dataset annotators should give

full consideration to alternative frame selection strategies

when preparing future challenges.

Finally, while the current BubbleNets implementation is

specific to video object segmentation, it is more widely ap-

plicable. In future work, we plan to apply BubbleNets to

improve performance in other video-based applications.
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D. Cremers, and L. Van Gool. One-shot video object seg-

mentation. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017. 1, 2, 3, 4

[5] S. Caelles, A. Montes, K. Maninis, Y. Chen, L. V. Gool,

F. Perazzi, and J. Pont-Tuset. The 2018 DAVIS challenge on

video object segmentation. CoRR, abs/1803.00557, 2018. 1,

2, 3, 6, 8

[6] J. Carreira and A. Zisserman. Quo vadis, action recognition?

a new model and the kinetics dataset. In 2017 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2017. 3

[7] Y. Chen, J. Pont-Tuset, A. Montes, and L. Van Gool. Blaz-

ingly fast video object segmentation with pixel-wise met-

ric learning. In Computer Vision and Pattern Recognition

(CVPR), 2018. 1

[8] J. Cheng, Y.-H. Tsai, W.-C. Hung, S. Wang, and M.-H. Yang.

Fast and accurate online video object segmentation via track-

ing parts. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2018. 1

[9] J. Cheng, Y.-H. Tsai, S. Wang, and M.-H. Yang. Segflow:

Joint learning for video object segmentation and optical

flow. In IEEE International Conference on Computer Vision

(ICCV), 2017. 1, 4

[10] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2009. 2

[11] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (VOC) chal-

lenge. International journal of computer vision, 88(2):303–

338, 2010. 4

[12] A. Faktor and M. Irani. Video segmentation by non-local

consensus voting. In British Machine Vision Conference

(BMVC), 2014. 1

[13] Q. Fan, F. Zhong, D. Lischinski, D. Cohen-Or, and B. Chen.

Jumpcut: non-successive mask transfer and interpolation for

video cutout. ACM Trans. Graph., 34(6):195, 2015. 2

[14] B. A. Griffin and J. J. Corso. Tukey-inspired video object

segmentation. In IEEE Winter Conference on Applications

of Computer Vision (WACV), 2019. 5

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016. 4

[16] V. Jampani, R. Gadde, and P. V. Gehler. Video propagation

networks. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2017. 1, 2

[17] W. D. Jang and C. S. Kim. Online video object segmentation

via convolutional trident network. In 2017 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

7474–7483, July 2017. 1

[18] A. Khoreva, R. Benenson, E. Ilg, T. Brox, and B. Schiele.

Lucid data dreaming for object tracking. The 2017 DAVIS

Challenge on Video Object Segmentation - CVPR Work-

shops, 2017. 2

[19] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. In International Conference on Learning Rep-

resentations (ICLR), 2014. 6

[20] D. Knuth. The Art of Computer Programming, volume 1-

3. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1998. 3

[21] Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video

object segmentation. In IEEE International Conference on

Computer Vision (ICCV), 2011. 1

[22] F. Li, T. Kim, A. Humayun, D. Tsai, and J. M. Rehg.

Video segmentation by tracking many figure-ground seg-

ments. In The IEEE International Conference on Computer

Vision (ICCV). 1, 2, 5

[23] X. Li, Y. Qi, Z. Wang, K. Chen, Z. Liu, J. Shi, P. Luo,

C. C. Loy, and X. Tang. Video object segmentation with re-

identification. The 2017 DAVIS Challenge on Video Object

Segmentation - CVPR Workshops, 2017. 2

[24] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlin-

earities improve neural network acoustic models. In ICML

Workshop on Deep Learning for Audio, Speech and Lan-

guage Processing, 2013. 4

[25] K. Maninis, S. Caelles, Y. Chen, J. Pont-Tuset, L. Leal-Taix,

D. Cremers, and L. V. Gool. Video object segmentation

without temporal information. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, pages 1–1, 2018. 1,

2, 6

[26] A. McCallum and K. Nigam. Employing EM and pool-based

active learning for text classification. In In International

Conference on Machine Learning (ICML), 1998. 2

[27] N. Mrki, F. Perazzi, O. Wang, and A. Sorkine-Hornung. Bi-

lateral space video segmentation. In 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

743–751, June 2016. 2

[28] S. W. Oh, J.-Y. Lee, K. Sunkavalli, and S. J. Kim. Fast video

object segmentation by reference-guided mask propagation.

In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2018. 1, 2

[29] A. Papazoglou and V. Ferrari. Fast object segmentation in

unconstrained video. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision (ICCV), 2013. 1

[30] F. Perazzi, A. Khoreva, R. Benenson, B. Schiele, and

A.Sorkine-Hornung. Learning video object segmentation

from static images. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017. 1, 2

8922



[31] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool,

M. Gross, and A. Sorkine-Hornung. A benchmark dataset

and evaluation methodology for video object segmentation.

In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2016. 1, 2, 5

[32] F. Perazzi, O. Wang, M. Gross, and A. Sorkine-Hornung.

Fully connected object proposals for video segmentation. In

IEEE International Conference on Computer Vision (ICCV),

2015. 2

[33] J. Pont-Tuset, F. Perazzi, S. Caelles, P. Arbeláez, A. Sorkine-
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