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Abstract

We present a new deep learning approach to pose-guided

resynthesis of human photographs. At the heart of the new

approach is the estimation of the complete body surface tex-

ture based on a single photograph. Since the input photo-

graph always observes only a part of the surface, we sug-

gest a new inpainting method that completes the texture of

the human body. Rather than working directly with col-

ors of texture elements, the inpainting network estimates an

appropriate source location in the input image for each el-

ement of the body surface. This correspondence field be-

tween the input image and the texture is then further warped

into the target image coordinate frame based on the desired

pose, effectively establishing the correspondence between

the source and the target view even when the pose change is

drastic. The final convolutional network then uses the estab-

lished correspondence and all other available information

to synthesize the output image. A fully-convolutional ar-

chitecture with deformable skip connections guided by the

estimated correspondence field is used. We show state-of-

the-art result for pose-guided image synthesis. Additionally,

we demonstrate the performance of our system for garment

transfer and pose-guided face resynthesis.

1. Introduction

Learning human appearance from a single image (one-

shot human modeling) has recently become an area of high

research interest. One interesting kind of the problem,

which has a number of potential applications in augmented

reality and retail, is pose-guided image generation [20].

Here, the task is to resynthesize the view of a person from

a new viewpoint and in a new pose, given a single input

image. The progress in this problem benefits from the re-

cent advances in human pose estimation and deep genera-

tive convolutional networks (ConvNets). A particular chal-

lenging setup considers humans wearing complex clothing,

such as encountered in fashion photographs.

In this work we suggest a new approach for pose-guided

person image generation. The approach is based on a

pipeline that includes two deep generative ConvNets. The

first convolutional network to estimate the texture of the hu-

man body surface from a small part of this texture (texture

completion/inpainting). This texture is then warped to the

new pose to serve as an input to the second convolutional

network that generates the new view.

One novelty of the approach lies in the texture estima-

tion part (Figure 1), where the challenge is to utilize the

natural symmetries of the human body. This task is non-

trivial since the part of the texture that is known changes

from one input image to another. As a result, straightfor-

ward image-to-image translation approaches result in very

blurred textures, where the colors predicted at unknown lo-

cations are effectively averaged over very large number of

input locations.

To solve this problem, we suggest a new method for tex-

ture completion, which we call coordinate-based texture in-

painting, and which results in a significant boost of the vi-

sual quality output for the entire pipeline. The method is

based on a simple idea. Rather than working directly with

colors of texture elements, the inpainting network works

with coordinates of the texture elements in the source view.

These values are analyzed by the inpainting network and

then extended into the unknown part of the texture, so that

each unknown texture element gets assigned a coordinate

in the source view. Thus, a correspondence between source

pixels and all points on the body surface is estimated. Us-

ing the estimated correspondence, the colors of each tex-

ture element can be transferred from the source view. The

inpainting thus happens in the coordinate-space, while the

extraction of colors from the source image, which generates

the final texture, happens after the inpainting. As a result,

the inpainted textures retain high-frequency details from the

source images.

Given the detailed texture generated by the coordinate-

based inpainting process, the next step of the pipeline warps

both the color texture and the source image coordinate maps

according to the target pose (which similarly to [22] is de-

fined by the DensePose [11] descriptor). The final stage of
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Figure 1. Coordinate-based texture inpainting. The scheme depicts the first (out of the two) part of our pipeline. Given the source pose

(estimated by DensePose and converted to SMPL format), we rasterize the source coordinates of the known texture elements (e.g. by

warping the source coordinate meshgrid). The resulting map is completed using deep convolutional network (gray) into a complete body

texture, where for each texel a corresponding pixel coordinate in the source image is assigned. This correspondence map is then used to

estimate the color texture. The second warping transforms the estimated texture maps into the target coordinate frame using the target pose,

on which the resynthesis is conditioned (Data known at test time is underlined. 2D meshgrid arrays that define colormaps in the plot are

in italic. Warping transforms are shown using green arrows, where the side connections correspond to the warp coordinates and straight

arrows point from the data being warped).

the pipeline takes the warped images along with the pose

information and maps it to the target image using a deep

fully-convolutional encoder-decoder architecture with skip

connections. The input image is used in this translation net-

work, while the warped source image coordinates obtained

during the texture inpainting process, are used to route the

deformable skip connections [28].

Our contribution is thus two-fold. First, we suggest the

new texture completion method that allows to retain high-

level texture details even under large uncertainty. Secondly,

we present a pose-guided person image generation pipeline

that utilizes this method in two ways (to inpaint texture and

to guide deformable skip connections) in order to gener-

ate new views with high realism and abundant texture de-

tails. Our method is evaluated on the popular Deep Fashion

dataset [18], where it obtains good results outperforming

prior art. Furthermore, we additionally demonstrate the effi-

cacy of coordinate-based texture inpainting idea on the face

texture inpainting task for in-the-wild new view synthesis of

faces, using the 300-VW dataset [26]. As a coda, we show

that a small modification of our approach can successfully

be used to perform garment transfer (virtual try-on) with

convincing results.

2. Related Work

Warping-based resynthesis. There is a strong interest in

using deep convolutional networks for generating realistic

images [10, 4]. In the resynthesis case, when new images

are generated by the change of geometry and appearance

of the input images, it has been shown that using warping

modules greatly enhances the quality of the re-synthesized

images [7, 38]. The warping modules in this case are based

on the differentiable (backward) grid sampler layer, which

was first introduced as a part of Spatial Transformer Net-

works (STN) [14]. A large number of follow-up works on

resynthesis reviewed below have relied on backward sam-

pler. Here we revisit this building block and advocate the

use of forward warping module.

Neural human resynthesis. Neural-based systems for

transforming an input view of a person into a new view

with modified pose has been suggested recently. The ini-

tial works [20, 21, 5] used encoder-decoder type of archi-

tectures in order to perform resynthesis. More recent works

use warping models that redirect either raw pixels or inter-

mediate activations of the source view [30, 28, 36, 22]. Our

approach falls into this category and is most related to [22],

as it utilizes the DensePose parameterization [11] within the

network, and to [30] as we use the idea of deformable skip

connections from [30]. We compare our results to [22, 30]

and additionally to [5] extensively.

Texture completion. Image inpainting based on deep

convolutional networks is attracting increasing attention at
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the moment. Special variants of convolutional architectures

adapted to the presence of gaps in the input data include

Sheppard Networks [24], Sparsity-Invariant CNNs [31],

networks with Partial Convolutions [17], networks with

Gated Convolutions [35]. We use the latter variant for our

texture inpainting network. Learning body texture inpaint-

ing has two specific parts that distinguish it from generic

image inpainting. First, complete textures may not be easily

available and it is desirable to devise a method that can be

trained from partial images. Secondly, textures are spatially

aligned and possess symmetry structures that can be ex-

ploited, which calls for special-purpose algorithms. We are

aware of only a few works which address these challenges

specifically. Thus, UV-GAN [3] utilizes the main axial sym-

metry of a face by passing an image and its flipped copy to

an inpainting ConvNet. The system in [36] estimates a ma-

trix that corresponds to the probabilities of SMPL model

vertices to have similar colors, and use it to color vertices

with unobserved colors.

Garment transfer. We also show that a small modifica-

tion of our approach can be used to transfer clothing from

the photograph of one person to the photograph of a differ-

ent person in a different pose. Most existing works that uti-

lize neural networks can only handle very limited amount

of deformation between the source image and the target

view [12, 15, 32]. The only work that we are aware of that

can handle similar amount of pose change is SwapNet [23],

which however only present results at low resolution. We

perform comparison to [23] in the experimental section.

Face resynthesis. Our approach is related to a number of

very recent face resynthesis works that operate by warping

the input image into the output image. These works include

deforming autoencoders [27] and X2Face [34]. An older

class of works going back to the seminal Blanz and Vetter

morphable model [1] estimate face texture from its fragment

using a parametric model.

3. Methods

Problem formulation. Our goal is to synthesize the new

view of the person N from the source view S. The resynthe-

sis progresses by estimating the texture T . Below, we use

the indexing [x, y] to denote locations in the image frame

(both the source and the new view), and we use the indexing

[u, v] to denote locations in the texture. We refer to source

and target image elements and locations as pixels, and to

texture elements and positions as texels.

The texture is linked with the source and the new views,

and following [22] we assume that both for the source and

the new view a mapping from a subset of the pixels covering

the body (excluding hair and loose clothing) to the body tex-

Figure 2. Body surface textures estimated using color-based in-

painting (middle) and coordinate-based inpainting (right) for the

inputs on the holdout set (left). Both inpaintings are generated

using deep networks that were trained end-to-end with a variety

of standard losses. Coordinate-based inpainting generates textures

with more details leading to better final resynthesis results.

ture positions is known. We thus assume that for each pixel

[x, y] in the source image (respectively in the new image)

exists a mapping MS [x, y] (respectively MN [x, y]) that as-

sociates with [x, y] a position [u, v] = [M1

S
[x, y],M2

S
[x, y]]

(respectively, [u, v] = [M1

N
[x, y],M2

N
[x, y]]) on the tex-

ture. For pixels [x, y] that do not fall within the projection of

the human body, the mappings MN and MS are undefined.

We assume that MS [x, y] and MN [x, y] are given and

our goal is thus to estimate the new unknown view N given

its body texture mapping MN [x, y], as well as the known

source view S and its body texture mapping MS .

Texture map format and output conditioning. We use

the SMPL texture format [19]. To make our approach com-

parable with [22], we estimate the mappings MS and MN

based on DensePose [11], and then convert them to SMPL

coordinates using a predefined mapping (provided with the

DensePose). Thus, unlike [22], we use a single body texture

during transfer. The information that is used to encode the

source and the target pose is however exactly the same (the

DensePose encoding), making the methods directly compa-

rable.

12137



Coordinate-based texture inpainting. The first step of

our pipeline estimates the complete body surface texture

from the source image S, and the mapping MS . We first ras-

terize the source image coordinates over texture using warp-

ing. In more detail, we use scattered interpolation with bi-

linear kernel, so that each source pixel [x, y] is rasterized at

position [M1

S
[x, y],M2

S
[x, y]]. Unlike [22], we rasterize not

the color values, but the values x and y themselves (in other

words we apply scattered interpolation to the meshgrid ar-

ray). The result of this warping step is the source coordinate

map C, which for each texture element (texel) [u, v] defines

a corresponding location [x, y] = [C1[u, v], C2[u, v]] in the

source image. Since only a part of a human body can be

visible in the source photograph, for a big part of texels,

the source image location is undefined. When passing C

into the network, we set the unknown values to a negative

constant (-10), and also provide the network with the mask

C ′[u, v] of known texels.

The first learnable module of our pipeline is the inpaint-

ing network f(C,C ′;φ) with learnable parameters φ that

takes an incomplete coordinate map C in the texture space

along with the mask of known texels, and outputs a com-

pleted and corrected source correspondence map D, where

for each [u, v] the corresponding location in the source im-

age is defined:

D = f(C,C ′;φ) . (1)

The mapping f has a fully-convolutional structure. The task

of the network is to learn the symmetries typical for human

body and human dress, such as the left-right symmetry be-

tween body parts as well as less obvious symmetries. E.g.

the network has a chance to learn that many clothings have

repeated textures, so that if a guess needs to be made about

the texture of the back from the front view, the best the net-

work can do is to copy the frontal texture. Since the net-

work f deals with the inpainting task, we utilize the recently

proposed gated convolution layers [35] instead of standard

convolutional layers. We use an hourglass (without skip-

connection) architecture with 14 convolutional layers and

2.8 millions of parameters.

Given the estimated source correspondence map D, we

can obtain the completed texture by sampling the original

image using the locations prescribed by D:

T [u, v] = S[D1[u, v], D2[u, v]] . (2)

where the bilinear sampling operator [14] is used to sample

the source image at fractional locations.

It is interesting to compare the way our approach

(coordinate-based inpainting) obtains the complete texture

with the way the texture is obtained by other texture inpaint-

ing approaches (color-based inpainting), e.g. [22, 3, 36].

In the case of the color-based inpainting, the sampling (2)

and the inpainting operation (1) are swapped, i.e. the colors

result

loss

ground truth

deformable skip connection

skip connection (concat)

Figure 3. Final resynthesis. The second (of the two) part of our

pipeline that takes the maps computed by the inpainting stage and

map them to the final output image. Two separate encoders are

used for maps aligned with the source pose (source pose, source

image, meshgrid) and for maps aligned with the target pose (target

pose, warped color texture, warped source coordinate map, mesh-

grid). The network has a U-Net type architecture (with interme-

diate residual blocks). Deformable skip connections are used to

pass the activations of the source coordinate encoder to the joint

decoder. The estimated correspondence map between the target

and the source image is used to guide the deformable skip connec-

tions. Standard loss functions computed between the output of the

pipeline and the ground truth target image in each pair are used for

learning.

are first sampled from the source image to the texture lead-

ing to an incomplete color texture and then the incomplete

color texture is inpainted using a learnable convolutional ar-

chitecture. As we have compared the two approaches, we

have found that due to a very high uncertainty and multi-

modality of the texture inpainting task, the color-based in-

painting produces the textures with very blurred details as

compared to the coordinate-based inpainting (see Fig. 6).

As will be shown in the experiments, when embedded into

end-to-end resynthesis pipeline, considerably better results

are obtained with coordinate-based inpaintings.

New view resynthesis. Similarly to [22], in order to re-

synthesize the target view, we warp the obtained color tex-

ture T as well as the coordinate-based texture map D to the

new image frame, using the backward bilinear warping:

W [x, y] = T
[

M1

N [x, y],M2

N [x, y]
]

, (3)

E[x, y] = D
[

M1

N [x, y],M2

N [x, y]
]

, (4)

where W and E are the new maps containing RGB color

and the source view location for each body pixel of the tar-

get view. The values for non-body pixels are undefined (set

to zeros in practice). The warping (4) effectively estimates

the correspondence between the target and the source views.
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The final stage of our pipeline is a single convolutional

network g that converts (translates) the maps W , E, as well

as the input maps S, MS , and MN into an output image N .

We first consider a straightforward architecture that takes

all five maps, together with the meshgrid defined over the

image frame as an input and uses the architecture of [16]

with added skip-connections to synthesize the output image.

One caveat is that the input maps S, MS are not in any

ways aligned with the target new image, which is known

to cause problems. As a more advanced variant (Figure 3),

we have used the deformable skip connections [28] idea.

Towards this end, we use a separate encoder part for the

two maps S and MS concatenated with a separate mesh-

grid. When passing the activations of this encoder into the

decoder, we use the warp field E and its downsampled ver-

sions to do bilinear resampling of the activations. In the ex-

periments, we compare both variants of the architecture and

find that deformable skip connections considerably boost

the performance of our pipeline.

Training procedure. Our complete pipeline includes two

convolutional networks, namely the inpainting network f

that performs coordinate-based texture completion, and the

final network g. Both networks are trained on quadruplets

{S,MS , N,MN}. We first train the network f by minimiz-

ing the loss comprising two terms: (1) the ℓ1 difference be-

tween the input incomplete texture C and the inpainted tex-

ture D, where the difference is computed over texels that are

observed in C; (2) the ℓ1 difference between the inpainted

texture D and the incomplete output texture that is obtained

by warping the target image N into the texture space using

the map MN , where the difference is computed over texels

that are observed in the output image.

After that, we fix f and optimize the weights of network

g, where we minimize the loss between the predicted N̂

and the ground truth new view N . Here, we combine the

perceptual loss [16] based on the VGG-19 network [29],

the style loss [8] based on the same network, the adversarial

loss [10] based on the patch GAN discriminator [13] and

the nearest neighbour loss introduced in [28] (that proved

to be a good substitution for l1 loss used in [22]). While the

first network f can be fine-tuned during the second stage,

we did not find it beneficial for the resulting image quality.

Garment transfer. A slight modification of our architec-

ture allows it to perform garment transfer [12, 15, 32, 23].

Here, given two views A and B, we want to synthesize a

new view, where the pose and the person identity is taken

from the view B, while the clothing is taken from view A.

We achieve this by taking the architecture outlined above,

and additionally conditioning the network g on the masked

image N ′ of the target view, where we mask out all areas ex-

cept head (including face, hair, hats, and glasses) and hands

(including gloves).

The network g is trained on the pairs of views of the

same person, and effectively learns to copy heads and hands

from N ′ to N . At test time, we provide the network the

identity-specific image N ′ and the body texture mapping

MN that are both obtained from the image of a different

person from the one depicted in the input view. We show

that our architecture successfully generalizes to this setting

and thus accomplishes the virtual re-dress task.

4. Applications and experiments

4.1. Pose­guided image generation

For the main experiments, we use the DeepFashion

dataset (the in-shop clothes part) [18]. In general, we fol-

low the same splits as used in [28, 22] that include 140,110

training and 8,670 test pairs, where clothing and models do

not overlap between train and test sets.

Network architectures. For the texture inpainting net-

work f we employ an hourglass architecture with gated

convolutions from [35] which proved effective in image

reconstruction tasks with large hidden areas. The refine-

ment network g is also a hourglass network that has two

encoders that map images by a series of gated convolu-

tions interleaved with three downsampling layers resulting

in 256 × 64 × 64 feature tensors. This is followed by con-

secutive residual blocks and concluded by a decoder. The

encoder and the decoder are also connected via three skip

connections (at each of three resolutions). The encoder that

works with S and MS is connected to the decoder with de-

formable skip connections that are guided by the deforma-

tion field E. The network f has 2,824,866 parameters, and

the network g has 11,382,984 parameters.

Comparison with state-of-the-art. We compare the re-

sults of our method (full pipeline) with three state-of-the-art

works [22, 28, 5]. We again follow the previous work [22]

closely using structural self-similarity (SSIM) along with

its’ multi-scale version (MS-SSIM) metrics [33] to measure

the structure preservation and the inception score (IS) [25]

to measure image realism. We also use recently introduced

perceptual distance metric (LPIPS) [37] which measures

distance between images using a network trained on human

judgements (Table 1).

Additionally we perform a user study to compare our re-

sults with state-of-the-art based on 80 image pairs from the

test set (the indices of the pairs, as well as the results of

[22, 28, 5] were kindly provided by the authors of [22]).

In the user study, we have shown our results alongside of

[22, 28, 5] and asked to pick the variant, which was best fit-

ting the ground truth (target) image. The source image was

not shown. The order of presentation was normalized. 50
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SRC GT [28] [22] [5] Ours-D Ours-K SRC GT [28] [22] [5] Ours-D Ours-K
Figure 4. Side-by-side comparison with state-of-the-art (first eight samples from the test set). We show source image (SRC), ground truth

in the target pose (GT), deformable GAN [28], our method conditioned on dense pose (Ours-D), and our method conditioned on keypoints

(Ours-K). Consistently with the user study on a broader set, our method is more robust and has less artefacts than the state-of-the-art

[28, 22] on this subset. Electronic zoom-in recommended.

people were involved in the user study. Each of them were

to chose more realistic image in each of 80 pairs. In 90%

cases our reconstructions were preferred over those of [22]

and in 76.7% cases cases over [28], while against [5] our

results were considered more realistic in 71.6% cases (ap-

proximately 4000 pairs were compared in each of the three

cases).

Ablation study. We evaluate the full variant of our ap-

proach that is described above, as well as the following ab-

lations. In the Ours-NoDeform ablation we do not use the

deformable skip-connections in the network f , resulting in

a single encoder for W , E, S, MS , MN even though some

of them (S, MS) are aligned with the source view, while

others (W , E, MN ) are aligned with the target view.

In the RGB inpainting ablation we additionally replace

coordinate-based inpainting with color-space inpainting, so

that the output of the texture inpainting stage is only the

color texture T , which is warped according to MN into the

warped texture W aligned with the target view. Since the

map E is unavailable in this scenario, no deformable skip-

connections are used in this case. Finally, the No textures

ablation simply uses the maps S, MS , and MN as an input

to the translation network, ignoring texture estimation step

altogether.

We compare the full version of the algorithm in terms

of same four metrics: SSIM, MS-SSIM, IS and LPIPS. To

SSIM↑ MS-SSIM↑ IS↑ LPIPS↓
Ours 0.791 0.810 4.46 0.169

DPT [22] 0.785 0.807 3.61 —

DSC [28] 0.761 — 3.39 —

VUnet [5] 0.753 0.757 4.55 0.196
Table 1. Comparison with state-of-the-art. Our approach outper-

forms the other three in three of the four used metrics, although we

found SSIM, MS-SSIM and IS to be much less adequate judge-

ments of visual fidelity than user judgements. Arrows ↑, ↓ tell

which value is better for the score larger or smaller, respectively.

Since we do not have access to full test set and code of some meth-

ods, values for metrics not presented in the respective papers are

missing.

ensure superiority of coordinate-based inpainting to color-

based we have also performed a user study comparing Ours-

Full and RGB inpainting methods. During this evaluation

Ours-Full were preferred in 62.7% cases.

Keypoint-guided resynthesis. It can be argued that our

method (as well as [22]) has an unfair advantage over [28, 5]

and other keypoint-conditioned methods, since DensePose-

based conditioning provides more information about the

target pose compared to just keypoints (skeleton). To ad-

dress this argument, we have trained a fully-convolutional

network that rasterizes the OpenPose [2]-detected skeleton

over a set of maps (one bone per map) and train a network
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Person Cloth Try-on Person Cloth Try-on Person Cloth Try-on
Figure 5. Examples of garment transfer procedure obtained using a simple modification of our approach. In each triplet, the third image

shows the person from the first image dressed into the clothes from the second image.

to predict the DensePose [22] result. We fine-tune our full

network, while showing such “fake” DensePose results for

the target image, effectively conditioning the system on the

keypoints at test time. We add this variant to comparison

and observe that the performance of our network in this

mode is very similar to the mode with DensePose condi-

tioning (Figure 4).

Garment transfer. We also show some qualitative results

of the garment transfer (virtual try-on). The garment trans-

fer network was obtained by cloning our complete pipeline

in the middle of the training and adding the masked target

image (with revealed face and hair) to the input of the net-

work. During training background on ground truth targets

is segmented out by the pretrained network [9] resulting in

white background on try-on images. We use the Dense-

Pose coordinates to find the face part, and we additionally

used the same segmentation network [9] to detect hair. As

the training progressed, the network has quickly learned to

copy the revealed parts through skip-connections, achieving

the desired effect. We show examples of garment transfer in

Figure 5. We conducted a user-study using 73 try-on sam-

ples provided by the authors of [23]. Participants were given

quadruplets of images – cloth image, person image, our try-

on result and result of [23] and asked to chose which of

the try-on images seem more realistic. Since work of [23]

produce only 128×128 images, our results were downsam-

pled. Each sample was assessed by 50 people totalling in

3650 cases, of which our method were preferred in 57.1%.

4.2. Pose­guided face resynthesis

To demonstrate the generality of our idea on texture in-

painting, we also apply it to the additional task of face

resynthesis. Here, reusing the pipeline used for full body

resynthesis, we provide a pair of face images in different

poses as a source and a new, unseen view. To estimate the

mappings MS and MN we use PRNet [6] — a state-of-

the-art 3D face reconstruction algorithm which provides a

full 3D mesh with a fixed number of vertices (43867 in a

publicly available version) and triangles (86906). A fixed

precomputed mapping from the vertices numbers to their

(u, v) texture coordinates is also provided with PRNet im-

plementation. By processing source and target images with

PRNet, we obtain estimated (x, y, z) coordinates of a 3D

face mesh which leans on an image, such that (x, y) axes

are aligned with image axes. We set (u, v, 1) texture coor-

dinates of each vertex as its (R,G,B) color and render a

mesh onto an image via Z-buffer, which leaves pixels only

visible on a camera view (those not occluded by different

faces of a mesh). Similarly to the full body scenario, the ob-

tained rendering for the source view reflects MS [x, y] map-

ping, and rendering for the new view reflects MN [x, y]. The

pipeline consists of two networks f and g which follow the

same architectures as used for the full body view resynthe-

sis. Provided with a source view image and a new view im-

age, the system transfers facial texture from source image

onto a pose of a new view image.

For this subtask, we use 300-VW [26] dataset of contin-

uous interview-style videos of 114 people taken in-the-wild

as a source of training data. Duration of each video is typi-

cally around 1 minute and the spatial resolution varies from

480 x 360 to 1280 x 720. Despite that original videos were

taken in 25-30 fps, we took each sixth frame of a video

in order to speed up the data preparation. Images are pre-

liminarily cropped by a bounding box of 3D face found by

PRNet with a margin of 10 pixels and bilinearly resized to

a resolution of 128 x 128. Dataset was split into train and

validation in proportion of 91 and 23 subjects respectively.

12141



Full body Face

SSIM↑ MS-SSIM↑ IS↑ LPIPS↓ SSIM↑ MS-SSIM↑ IS↑ LPIPS↓

Ours-Full 0.791 0.810 4.46 0.169 0.613 0.764 1.834 0.203

Ours-NoDeform 0.797 0.815 3.23 0.198 0.609 0.758 1.819 0.203

RGB inpainting 0.797 0.818 3.02 0.198 0.595 0.745 1.821 0.221

No textures 0.796 0.812 3.295 0.202

Table 2. Ablation study for both full body and face resynthesis. For all algorithms, evaluation is performed based on the same set of

validation images. Arrows ↑, ↓ tell which value is better for the score — larger or smaller, respectively.
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Figure 6. Predictions for several test samples. For each method, we take 3 random subjects, first video frame as a source frame and sample

4 target views according to the 4-quantiles of the pose difference distribution (see testing protocol in Subsection 4.2). For each subject,

source frame is identical to the leftmost target frame shown. In the figure, rendered texture refers to the result of warping an inpainted

texture onto a new view coordinates, and predicted view is a final algorithm output containing the result of texture transfer. Note the

differences in sharpness between textures in Ours and in RGB inpainting and visual quality of their predicted views. Electronic zoom-in

recommended.

New view resynthesis. Table 2 contains the results of the

ablation study, in which we compare three investigated ver-

sions of the method (see Subsection 4.1). The reported val-

ues were computed for a subset of 1356 hold out images,

collected by a following procedure. For each of 23 videos

in the validation set, each 120th frame of a video was se-

lected as a source frame. Then, pose orientations of 3D

models provided by PRNet were collected for all frames of

the video, and angles between pose vector of a source frame

3D model and 3D models of all other frames were calcu-

lated. 4 target frames were selected for each source frame

as the closest to all of the 4-quantiles of the angles cosine

distribution. This way, we test the ability of a model to gen-

eralize on target poses both near and far from a source pose

(Fig. 6).

5. Conclusion

We have present a new deep learning approach to pose-

guided image synthesis. The approach works by estimat-

ing the texture of the human body, while a new method for

coordinate-based texture inpainting allows to reconstruct

detail-rich textures. The reconstructed textures are then

used by final resynthesis. The user study suggests that

the approach performs well and outperforms state-of-the-

art methods [28, 22, 5]. We note that for smaller varia-

tion of pose, the mapping and estimation of the full texture

may be unnecessary, and therefore more direct warping ap-

proaches such as [28] may be more appropriate under lim-

ited changes.
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[11] Riza Alp Güler, Natalia Neverova, and Iasonas Kokkinos.

DensePose: Dense human pose estimation in the wild. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2018. 1, 2, 3

[12] Xintong Han, Zuxuan Wu, Zhe Wu, Ruichi Yu, and Larry S

Davis. Viton: An image-based virtual try-on network. In

CVPR, 2018. 3, 5

[13] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.

Efros. Image-to-image translation with conditional adver-

sarial networks. In Proc. CVPR, pages 5967–5976, 2017.

5

[14] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and

Koray Kavukcuoglu. Spatial transformer networks. In Proc.

NIPS, pages 2017–2025, 2015. 2, 4

[15] Nikolay Jetchev and Urs Bergmann. The conditional analogy

GAN: swapping fashion articles on people images. In 2017

IEEE International Conference on Computer Vision Work-

shops, ICCV Workshops 2017, Venice, Italy, October 22-29,

2017, pages 2287–2292, 2017. 3, 5

[16] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

Proc. ECCV, pages 694–711, 2016. 5

[17] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang,

Andrew Tao, and Bryan Catanzaro. Image inpainting for

irregular holes using partial convolutions. arXiv preprint

arXiv:1804.07723, 2018. 3

[18] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou

Tang. Deepfashion: Powering robust clothes recognition and

retrieval with rich annotations. In Proc. CVPR, pages 1096–

1104, 2016. 2, 5

[19] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard

Pons-Moll, and Michael J Black. Smpl: A skinned multi-

person linear model. ACM Transactions on Graphics (TOG),

34(6):248, 2015. 3

[20] Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuyte-

laars, and Luc Van Gool. Pose guided person image genera-

tion. In Advances in Neural Information Processing Systems,

pages 405–415, 2017. 1, 2

[21] Liqian Ma, Qianru Sun, Stamatios Georgoulis, Luc

Van Gool, Bernt Schiele, and Mario Fritz. Disentangled per-

son image generation. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2018. 2

[22] Natalia Neverova, Riza Alp Güler, and Iasonas Kokkinos.
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