
Blind Super-Resolution With Iterative Kernel Correction

Jinjin Gu1∗, Hannan Lu2∗, Wangmeng Zuo2, Chao Dong3

1The School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen
2School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
3ShenZhen Key Lab of Computer Vision and Pattern Recognition, SIAT-SenseTime Joint Lab,

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

jinjingu@link.cuhk.edu.cn, {hannanlu, wmzuo}@hit.edu.cn, chao.dong@siat.ac.cn

Abstract

Deep learning based methods have dominated super-

resolution (SR) field due to their remarkable performance in

terms of effectiveness and efficiency. Most of these methods

assume that the blur kernel during downsampling is prede-

fined/known (e.g., bicubic). However, the blur kernels in-

volved in real applications are complicated and unknown,

resulting in severe performance drop for the advanced SR

methods. In this paper, we propose an Iterative Kernel Cor-

rection (IKC) method for blur kernel estimation in blind SR

problem, where the blur kernels are unknown. We draw the

observation that kernel mismatch could bring regular ar-

tifacts (either over-sharpening or over-smoothing), which

can be applied to correct inaccurate blur kernels. Thus

we introduce an iterative correction scheme – IKC that

achieves better results than direct kernel estimation. We fur-

ther propose an effective SR network architecture using spa-

tial feature transform (SFT) layers to handle multiple blur

kernels, named SFTMD. Extensive experiments on synthetic

and real-world images show that the proposed IKC method

with SFTMD can provide visually favorable SR results and

the state-of-the-art performance in blind SR problem.

1. Introduction

As a fundamental low-level vision problem, single image

super-resolution (SISR) is an active research topic and has

attracted increasingly attention. SISR aims to reconstruct

the high-resolution (HR) image from its low-resolution

(LR) observation. Since the seminal work of employing

convolutional neural networks (CNNs) for SR [6], various

deep learning based methods with different network archi-

tectures [15, 16, 18, 29, 41, 10, 40] and training strategies

[19, 34, 27, 5] have been proposed to continuously im-

prove the SR performance. Most of the existing advanced

∗This work was done when they were interns at SenseTime.

LR image ZSSR [27]

SR without kernel correction Iterative Kernel Correction (ours)

Figure 1. SISR results on image “img 017” with SR factor 4. Be-

fore bicubic downsamping, the HR image is blurred by a Gaussian

kernel with σ = 1.8

SR methods assume that the downsampling blur kernel is

known and pre-defined, but the blur kernels involved in real

applications are typically complicated and unavailable. As

has been revealed in [9, 36], learning-based methods will

suffer severe performance drop when the pre-defined blur

kernel is different from the real one. This phenomenon of

kernel mismatch will introduce undesired artifacts to output

images, as shown in Figure 2. Thus the problem with un-

known blur kernels, also known as blind SR, has failed most

of deep learning based SR methods and largely limited their

usage in real-world applications.

Most existing blind SR methods are model-based [3, 32,

11, 12, 14], which usually involve complicated optimization

procedures. They predict the underlying blur kernel using

self-similarity properties of natural images [23]. However,

their predictions are easily affected by input noises, lead-

ing to inaccurate kernel estimation. A few deep learning

based methods have also tried to make progress for blind

SR. For example, in CAB [25] and SRMD [39], the net-
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work can take the blur kernel as an additional input and

generate different results according to the provided kernel.

They achieve satisfactory performance if the input kernel

is close to the ground truth. However, these methods still

cannot predict the blur kernel for every image on hand, thus

are not applicable in real applications. Although deep learn-

ing based methods have dominated SISR, they have limited

progress on blind SR problem.

In this paper, we focus on using deep learning methods

to solve the blind SR problem. Our method stems from the

observation that artifacts caused by kernel mismatch have

regular patterns. Specifically, if the input kernel is smoother

than the real one, then the output image will be blurry/over-

smoothing. Conversely, if the input kernel is sharper than

the correct one, then the results will be over-shapened with

obvious ringing effects (see Figure 2). This asymmetry of

kernel mismatch effect provides us an empirical guidance

on how to correct an inaccurate blur kernel. In practical, we

propose an Iterative Kernel Correction (IKC) method for

blind SR based on predict-and-correct principle. The esti-

mated kernel is iteratively corrected by observing the previ-

ous SR results, and gradually approaches the ground truth.

Even the predicted blur kernel is slightly different from the

real one, the output image can still get rid of those regular

artifacts caused by kernel mismatch.

By further diving into the SR methods proposed for

multiple blur kernels (i.e., SRMD [39]), we find that tak-

ing the concatenation of image and blur kernel as input is

not the optimal choice. To make a step forward, we em-

ploy spatial feature transform (SFT) layers [33] and pro-

pose an advanced CNN structure for multiple blur kernels,

namely SFTMD. Experiments demonstrate that the pro-

posed SFTMD is superior to SRMD by a large margin. By

combining the above components – SFTMD and IKC, we

achieve state-of-the-art (SOTA) performance on blind SR

problem.

We summarize our contributions as follows: (1) We pro-

pose an intuitive and effective deep learning framework for

blur kernel estimation in single image super resolution. (2)

We propose a new non-blind SR network using the spa-

tial feature transform layers for multiple blur kernels. We

demonstrate the superior performance of the proposed non-

blind SR network. (3) We test the blind SR performance on

both carefully selected blur kernels and real images. Exten-

sive experiments show that the combination of SFTMD and

IKC achieves the SOTA performance in blind SR problem.

2. Related Work

Super-Resolution Neural Networks. In the past few

years, neural networks have shown remarkable capability

on improving SISR performance. Since the pioneer work

of using CNN to learn the end-to-end mapping from LR to

HR images [6], plenty of CNN architectures have been pro-

posed for SISR [7, 26, 18, 10, 16, 28]. In order to go deeper

in network depth and achieve better performance, most

of the existing high-performance SR networks have resid-

ual architecture [15]. SRGAN [19] first introduce residual

blocks into SR networks. EDSR [20] improve it by remov-

ing unnecessary batch normalization layer in residual block

and expanding the model size. DenseSR [41] present an ef-

fective residual dense block and ESRGAN [34] further use

a residual-in-residual dense block to improve the perceptual

quality of SR results. Zhang et al. [40] introduce the chan-

nel attention component in residual blocks. Some networks

are specifically designed for the SR task in some special

scenarios, e.g., Wang et al. [33] use a novel spatial feature

transform layer to introduce the semantic prior as an addi-

tional input of SR network. Moreover, Riegler et al. [25]

propose conditioned regression models can effectively ex-

ploit the additional kernel information during training and

inference. SRMD [39] propose a stretching strategy to inte-

grate non-image degradation information in a SR network.

Blind Super-Resolution. Blind SR assume that the

degradation kernels are unavailable. In recent years, the

community has paid relatively less research attention to

blind SR problem. Michaeli and Irani [23] estimate the

optimal blur kernel based on the property that small im-

age patches will re-appear in images. There are also re-

search works trying to employ deep learning in blind SR

task. Yuan et al. [37] propose to learn not only SR mapping

but also the degradation mapping using unsupervised learn-

ing. Shocher et al. [27] exploit the internal recurrence of

information inside an image and propose an unsupervised

SR method to super-resolve images with different blur ker-

nels. They train a small CNN on examples extracted from

the input image itself, the trained image-specific CNN is

appropriate for super-resolving this image. Different from

the previous works, our method employs the correlation be-

tween SR results and kernel mismatch. Our method uses the

intermediate SR results to iteratively correct the estimation

of blur kernels, thus provide artifact-free final SR results.

3. Method

3.1. Problem Formulation

The blind super-resolution problem is formulated as fol-

lows. Mathematically, the HR image IHR and LR image

ILR are related by a degradation model

ILR = (k ⊗ IHR) ↓s +n, (1)

where ⊗ denotes convolution operation. There are three

main components in this model, namely the blur kernel k,

the downsampling operation ↓s and the additive noise n. In

literature, the most widely adopted blur kernel is isotropic

Gaussian blur kernel [8, 36, 39]. Besides, the anisotropic

blur kernels also appear in some works [25, 39], which can
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be regarded as the combination of a motion blur and an

isotropic blur kernel. For simplicity, we mainly focus on

the isotropic blur kernel without motion effect in this pa-

per. Following most recent deep learning based SR methods

[39], we adopt the combination of Gaussian blur and bicu-

bic downsampling. In real-world use cases, the LR images

are often accompanied with additive noises. As in SRMD

[39], we assume that the additive noise follows Gaussian

distribution in real world application. Note that the formu-

lation of blind SR in this paper is different with the previous

works [23, 37] . Although defined as blind SR problem, our

method focuses on a limited variety of kernels and noise.

But the kernel estimated according to our assumptions can

handle most of the real world images.

3.2. Motivation

We then review the importance of using correct blur ker-

nel during SISR based on the settings described above. In

order to obtain the LR images ILR, the HR images IHR

are first blurred by the isotropic Gaussian kernel with ker-

nel width σLR and then downsampled by bicubic interpola-

tion. Assume that the mapping F(ILR, k) is a well-trained

SR model with the kernel information as input (e.g., SRMD

[39]). Then the output image is artifact-free with correct

kernel k. The blind SR problem is equivalent to finding the

kernel k that helps SR model generate visual pleasing re-

sult ISR. A straightforward solution is to adopt a predictor

function k′ = P(ILR) that estimates k from the LR input

directly. The predictor can be optimized by minimizing the

l2 distance as

θP = argmin
θP

‖k − P(ILR; θP)‖
2
2, (2)

where θP is the parameter ofP . By employing the predictor

function and the SR model together, we are able to build an

end-to-end blind SR model.

However, accurate estimation of k is impossible. As the

inverse problem is ill-posed, there exists multiple candi-

dates of k for a single input. Meanwhile, the SR models

are very sensitive to the estimation error. If the inaccurate

kernel is used for SR directly, then the final SR results will

contain obvious artifacts. Figure 2 shows the sensitivity of

the SR results to kernel mismatch, where σSR denotes the

kernel width used for SR. As shown in the upper-right re-

gion of Figure 2, where the kernel used for SR are sharper

than the real one (σSR < σLR), the SR results are over-

smoothing and the the high frequency textures are signifi-

cantly blurred. In the lower-left region of Figure 2, where

the kernel used for SR are smoother than the correct one

(σSR > σLR), the SR results show unnatural ringing arti-

facts caused by over-enhancing high-frequency edges. In

contrast, the results on the diagonal, which use correct blur

kernels, look natural without artifacts and blurring. The
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Figure 2. SR sensitivity to the kernel mismatch. Where σLR de-

notes the kernel used for downsampling and σSR denotes the ker-

nel used for SR.

above phenomenon illustrates that the estimation error of

k will be significantly magnified by the SR model, resulting

in unnatural output images. To address the kernel mismatch

problem, we propose to iteratively correct the kernel until

we obtain an artifact-free SR results.

To correctly estimate k, we build a corrector function C
that measures the difference between the estimated kernel

and the ground truth kernel. In the core of our idea is to

adopt the intermediate SR results. The corrector function

can be obtained by minimizing the l2 distance between the

corrected kernel and the ground truth as

θC = argmin
θC

‖k − (C(ISR; θC) + k′)‖22, (3)

where θC is the parameter of C and ISR is the SR result

using the last estimated kernel. This corrector adjusts the

estimated blur kernel based on the features of the SR image.

After correction, the SR results using adjusted kernel are

supposed to approach natural images with less artifacts.

However, if we train our model with only one time of

correction, the corrector may provide inadequate correc-

tion or over-correct the kernel, leading to unsatisfactory

SR results. A possible solution is to use smaller correc-

tion steps that gradually refine the kernel until it reaches

ground truth. When the SR result does not contain seri-

ous over-smoothing or over-sharpening effects, the correc-

tor will make little changes to the estimated kernel to en-

sure convergence. Then we are able to get a high-quality

SR image by iteratively applying kernel correction. Experi-

ments also demonstrate our assumption. Figure 3 shows the

PSNR and SSIM results using different iteration numbers.
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Figure 3. The curves of PSNR and SSIM vs. iterations. The ex-

periments are conducted using IKC method. The test set is Set14

and the SR factor is 4.

It can be observed that correcting only once is not suffi-

cient. When the number of iterations increases, both PSNR

and SSIM increase gradually until convergence.

3.3. Proposed Method

Overall framework. The proposed Iterative Kernel Cor-

rection (IKC) framework consists of a SR model F , a pre-

dictor P and a corrector C, and the pseudo-code is shown

in Algorithm 1. Suppose the LR image ILR is of size

C × H × W , where C denotes the number of channels,

H and W denote the height and width of the image. We as-

sume that blur kernel is of size l× l and the kernel space is a

l2-dimensional linear space. In order to save computation,

we first reduce the dimensionality of the kernel space by

principal component analysis (PCA). The kernels are pro-

jected onto a b-dimensional linear space by a dimension re-

duction matrix M ∈ R
b×l2 . Thus we only need to perform

estimation in this low dimensional space, which is more ef-

fective in calculation. The kernel after the dimension reduc-

tion is denoted by h, where h = Mk, h ∈ R
b. At the start of

the algorithm, an initial estimation h0 is given by the predic-

tor function h0 = P(ILR), and then used to get the first SR

result ISR
0 = F(ILR, h0). After obtaining the initial esti-

mation, we proceed to the correction phase of the estimated

kernel. At the ith iteration, given the previous estimation

hi−1, the correcting update ∆hi, the new estimation hi and

the new SR result ISR
i can be written as

∆hi = C(I
SR
i , hi−1) (4)

hi = hi−1 +∆hi (5)

ISR
i = F(ILR, hi). (6)

After t iterations, the ISR
t is the final output of IKC.

Network architecture of SR modelF . As the most suc-

cessful SR method for multiple blur kernels, SRMD [39]

propose a simple yet efficient stretching strategy for CNN

to process non-image input directly. SRMD stretches the

input h into kernel maps H of size b × H ×W , where all

the elements of the ith map are equal to the ith element of h.

SRMD takes the concatenated LR image and kernel maps of

size (b+C)×H×W as input. Then, a cascade of 3×3 con-

volution layers and one pixel-shuffle upsampling layer are

applied to perform super-resolution. However, to exploit the

Algorithm 1 Iterative Kernel Correction

Require: the LR image ILR

Require: the max iteration number t

1: h0 ← P(I
LR) (Initialize the kernel estimation)

2: ISR
0 ← F(ILR, h0) (The initial SR result)

3: i← 0 (Initialize counter)

4: while i < t do

5: i← i+ 1
6: ∆hi ← C(I

SR
i−1, hi−1) (Estimate the kernel error us-

ing the intermediate SR results)

7: hi ← hi−1 +∆hi (Update kernel estimation)

8: ISR
i ← F(ILR, hi) (Update the SR result)

9: return ISR
t (Output the final SR result)

kernel information, concatenating the image and the trans-

formed kernel as input is not the only or best choice. On the

one hand, the kernel maps do not actually contain the infor-

mation of the image. Processing the kernel maps and the

image at the same time with convolution operation will in-

troduce interference that is not related to the image. Using

this concatenation strategy with residual blocks can inter-

fere with image processing, making it difficult to employ

residual structure to improve performance. On the other

hand, the influence of kernel information is only consid-

ered at the first layer. When applying the same strategy in a

deeper network, the deeper layers are difficult to be affected

by the kernel information input at the first layer. To address

above problems, we proposed a new SR model for multiple

kernels using spatial feature transform (SFT) layers [33],

namely SFTMD. In SFTMD, the kernel maps influence the

output of network by applying an affine transformation to

the feature maps in each middle layer by SFT layers. This

affine transformation is not involved in the process of input

image directly, thus providing better performance.

Figure 4 illustrates the network architecture of SFTMD.

We employ the high level architecture of SRResNet [19]

and extend it to handle multiple kernels by SFT layers.

The SFT layer provides affine transformation for the fea-

ture maps F conditioned on the kernel mapsH by a scaling

and shifting operation:

SFT(F,H) = γ ⊙ F + β, (7)

where γ and β is the parameters for scaling and shifting,

⊙ present Hadamard product. The transformation param-

eters γ and β are obtained by small CNN. Suppose that

the output feature maps of the previous layer F are of size

Cf × H × W , where Cf is the number of feature maps,

and the kernel maps are of size b × H × W . The CNN

takes the concatenated feature maps and kernel maps (total

size is (b+Cf )×H ×W ) as input and output γ and β. We

use SFT layers after all convolution layers in residual blocks
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Figure 4. The architecture of the proposed SFTMD network. The design of the proposed SFT layer is shown in pink box.
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Figure 5. The network architecture of the proposed predictor and corrector.

and after the global residual connection. It is worth pointing

out that the code maps are spatially uniform, thus the SFT

layers do not actually provide spatial variability according

to the code maps. This is different from its application in

semantic super resolution [33]. We only employ the trans-

formation characteristic of SFT layers.

Network architecture of predictor P and corrector

C. The network designs of the predictor and corrector are

shown in Figure 5. For the predictor P , we use four convo-

lution layers with Leaky ReLU activations and a global av-

erage pooling layer. The convolution layers give the estima-

tion of the kernel h spatially and form the estimation maps.

Then the global average pooling layer gives the global esti-

mation by taking the mean value spatially.

For the corrector C, we take not only the SR image ISR

but also the previous estimation h as inputs. Similar to Eq.

(3), the new corrector can be obtained by solving the fol-

lowing optimization problem:

θC = argmin
θC

‖k − (C(ISR, h; θC) + k′)‖22. (8)

The input SR result is first processed to feature maps FSR

by five convolution layers with Leaky ReLU activations.

Note that the previous SR result may contain artifacts (e.g.,

ringing and blurry) caused by kernel mismatch, which can

be extracted by these convolution layers. At the same time,

we use two fully-connected layers with Leaky ReLU activa-

tions to extract the inner correlations of the previous kernel

estimation. We then stretch the output vector fh to feature

maps Fh using the same strategy used in SFTMD. The Fh

and FSR are then concatenated to predict the ∆h. We use

three convolution layers with kernel size 1 × 1 and Leaky

ReLU activations to give the estimation for ∆h spatially.

Same as the predictor, a global average pooling operation is

used to get the global estimation of ∆h.

4. Experiments

4.1. Data Preparation and Network Training

We synthesize the training image pairs according to the

problem formulation described in section 3.1. For the

isotropic Gaussian blur kernels used for training, the ker-

nel width ranges are set to [0.2, 2.0], [0.2, 3.0] and [0.2, 4.0]
for SR factors 2, 3 and 4, respectively. We uniformly sample

the kernel width in the above ranges. The kernel size is fixed

to 21×21. When applying on real world images, we use the

additive Gaussian noise with covariance σ = 15. We also

provide noise-free version for comparison on the synthetic

test images. The HR images are collected from DIV2K [1]

and Flickr2K [30], then the training set consists of 3450
high-quality 2K images. The training dataset is augmented

with random horizontal flips and 90 degree rotations. All

models are trained and tested on RGB channels.

The SFTMD and IKC are both trained on the synthetic

training image pairs and their corresponding blur kernels.

First, the SFTMD is pre-trained using mean square error

(MSE) loss. We then train the predictor network and the

corrector network alternately. The parameters of the trained

SFTMD are fixed during training the predictor and the cor-

rector. The order of training can refer to Algorithm 1.

For every mini-batch data {ILR
i , IHR

i , hi}
N
i=1, where N de-

notes the mini-batch size, we first update the parameters of

the predictor according to Eq. (2). We then update the cor-
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Table 1. Quantitative comparison of SRCNN-CAB [25], SRMDNF [39] and the proposed SFTMD. The comparison is conducted using

three different isotropic Gaussian kernels on Set5, Set14 and BSD100 dataset. The best two results are highlighted in red and blue colors.

Method Kernel Width
Set5 [4] Set14 [38] BSD100 [21]

×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

SRCNN-CAB [25]

0.2

33.27 31.03 29.31 30.29 28.29 26.91 28.98 27.65 25.51

SRMDNF [39] 37.79 34.13 31.96 33.33 30.04 28.35 32.05 28.97 27.49

SRResNet, concatenate at the first layer 31.74 30.90 29.40 27.57 26.40 26.18 27.24 26.43 26.34

SRResNet, replace SFT layer by direct concatenation 37.69 34.01 31.64 33.26 30.04 28.23 31.83 28.81 27.26

SFTMD (ours) 38.00 34.57 32.39 33.68 30.47 28.77 32.09 29.09 27.58

SRCNN-CAB [25]

1.3

33.42 31.14 29.50 30.51 28.34 27.02 29.02 27.91 25.66

SRMDNF [39] 37.44 34.17 32.00 33.20 30.08 28.42 31.98 29.03 27.53

SRResNet, concatenate at the first layer 30.88 30.33 29.11 27.16 25.84 25.93 26.84 25.92 26.20

SRResNet, replace SFT layer by direct concatenation 37.01 34.02 31.69 32.96 30.13 28.29 31.58 28.89 27.29

SFTMD (ours) 38.00 34.57 32.39 33.68 30.47 28.77 32.09 29.09 27.58

SRCNN-CAB [25]

2.6

32.21 30.82 28.81 29.74 27.83 26.15 28.35 26.63 25.13

SRMDNF [39] 34.12 33.02 31.77 30.25 29.33 28.26 29.23 28.35 27.43

SRResNet, concatenate at the first layer 24.22 28.44 28.64 22.99 24.19 25.63 23.07 24.42 25.99

SRResNet, replace SFT layer by direct concatenation 27.75 32.71 31.35 25.67 29.28 28.07 25.57 28.19 27.15

SFTMD (ours) 38.00 34.57 32.39 33.68 30.47 28.77 32.09 29.09 27.58

rector according to Eq. (8) with a fixed iteration number

t = 7. For optimization, we use Adam [17] with β1 = 0.9,

β2 = 0.999 and learning rate 1× 10−4. We implement our

models with the PyTorch framework and train them using

NVIDIA Titan Xp GPUs.

We also propose a test kernel set for the quantitative

evaluation of blind SR methods, namely Gausssian8. As

declared by the name, Gausssian8 consists eight selected

isotropic Gaussian blur kernels for each SR factor 2, 3 and

4 (twenty four kernels in total). The ranges of kernel width

are set to [0.80, 1.60], [1.35, 2.40] and [1.80, 3.20] for SR

factors 2, 3 and 4, respectively. The HR images are first

blurred by the selected blur kernels and then downsampled

by bicubic interpolation. By determining the blur kernels

for testing, we can compare and analyze the performance

of blind SR methods. Although it only contains isotropic

Gaussian kernels, it can still be used to test the basic perfor-

mance of a blind SR method.

4.2. Experiments of SFTMD

We evaluate the performance of the proposed SFTMD

on different Gaussian kernels. The kernel settings are given

in Table 1. We compare the SFTMD with the SOTA non-

blind SR methods SRCNN-CAB [25] and SRMD [39]. As

SFTMD adopts SRResNet as the main network, which is

different from SRMD and SRCNN-CAB, we provide two

additional baselines that have same network structures but

different concatenation strategies: (1) SRResNet with con-

catenating H at the first layer, (2) SFTMD with SFT layer

replaced by direct concatenation1.Table 1 shows the quan-

titative comparison results. Comparing with the SOTA SR

methods – SRCNN-CAB and SRMD, the proposed SFTMD

achieves significantly better performance on all settings and

dataset. Comparing with two additional baselines that all

use SRResNet as the main network, SFTMD could also ob-

tain the best results. This further demonstrated the effect

1Direct concatenation means concatenating the kernel maps with fea-

ture maps directly. This is different from the affine transformation in the

SFT layer.

of SFT layers. It is worth noting that directly concatenat-

ingH in SRResNet will cause severe performance drop. As

the combination of direct concatenation strategy and resid-

ual structure will interfere with image processing and cause

severe artifacts.

4.3. Experiments on Synthetic Test Images

We evaluate the performance of the proposed method on

the synthetic test images. Figure 7 shows the intermediate

results during correction. As one can see that the SR results

using the kernel estimated by the predictor directly (the ini-

tial prediction in Figure 7) are unsatisfactory and contain

either blurry or ringing artifacts. As the number of itera-

tions increases, artifacts and blurring are gradually allevi-

ated. The quantitative results (PSNR) also prove the neces-

sity of the iterative correction strategy. We can see at the

4th iteration, the SR results using corrected kernels are able

to show good visual quality.

We then conduct thorough comparisons with the SOTA

non-blind and blind SR methods using Gaussian8 kernels.

We also provide the comparison with the solutions using

the SOTA deblurring method. We perform blind debluring

method Pan et al. [24] before and after the non-blind SR

method CARN [2]. Table 2 shows the PSNR and SSIM

[35] results on five widely-used datasets. As one can see,

despite the remarkable performance under bicubic down-

sampling setting, the non-blind SR methods suffer severe

performance drop when the downsampling kernel is differ-

ent from the predefined bicubic kernel. The ZSSR [27]

takes the effect of blur kernel into account, and provides

better SR performance compared with non-blind SR meth-

ods. Performing blind deblurring on the LR images makes

the SR images sharper, but lost in image quality The fi-

nal SR results have severe distortion. Deblurring on the

blurred super-resolved images provides better results, but

fails to reconstruct textures and details. Although the SR re-

sults without kernel correction (denoted by “P+SFTMD”)

achieves comparable quantitative performance with the ex-

isting methods, the SR performance can still be greatly im-
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A+ [31] CARN [2] CARN + Pan et al.[24] ZSSR [27] P+SFTMD IKC (ours)

Figure 6. SISR performance comparison of different methods with SR factor 4 and kernel width 1.8 on image “Img 050” from Urban100.

Table 2. Quantitative comparison of the SOTA SR methods and IKC method. The best two results are highlighted in red and blue colors,

respectively. Note that the methods marked with “*” is not designed for blind SR, thus the comparison with these methods is unfair.

Method Scale
Set5 [4] Set14 [38] BSD100 [21] Urban100 [13] Manga109 [22]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic

×2

28.82 0.8577 26.02 0.7634 25.92 0.7310 23.14 0.7258 25.60 0.8498

CARN∗ [2] 30.99 0.8779 28.10 0.7879 26.78 0.7286 25.27 0.7630 26.86 0.8606

ZSSR [27] 31.08 0.8786 28.35 0.7933 27.92 0.7632 25.25 0.7618 28.05 0.8769

Pan et al. [24] + CARN [2] 24.20 0.7496 21.12 0.6170 22.69 0.6471 18.89 0.5895 21.54 0.7496

CARN [2] + Pan et al. [24] 31.27 0.8974 29.03 0.8267 28.72 0.8033 25.62 0.7981 29.58 0.9134

P+ SFTMD 35.44 0.9617 31.27 0.8676 30.54 0.8946 27.80 0.8464 30.75 0.9074

IKC (ours) 36.62 0.9658 32.82 0.8999 31.36 0.9097 30.36 0.8949 36.06 0.9474

Bicubic

×3

26.21 0.7766 24.01 0.6662 24.25 0.6356 21.39 0.6203 22.98 0.7576

CARN∗ [2] 27.26 0.7855 25.06 0.6676 25.85 0.6566 22.67 0.6323 23.84 0.7620

ZSSR [27] 28.25 0.7989 26.11 0.6942 26.06 0.6633 23.26 0.6534 25.19 0.7914

Pan et al. [24] + CARN [2] 19.05 0.5226 17.61 0.4558 20.51 0.5331 16.72 0.4578 18.38 0.6118

CARN [2] + Pan et al. [24] 30.13 0.8562 27.57 0.7531 27.14 0.7152 24.45 0.7241 27.67 0.8592

P+ SFTMD 31.26 0.9291 28.41 0.7811 27.37 0.8102 24.57 0.7458 26.29 0.8399

IKC (ours) 32.16 0.9420 29.46 0.8229 28.56 0.8493 25.94 0.8165 28.21 0.8739

Bicubic

×4

24.57 0.7108 22.79 0.6032 23.29 0.5786 20.35 0.5532 21.50 0.6933

CARN∗ [2] 26.57 0.7420 24.62 0.6226 24.79 0.5963 22.17 0.5865 21.85 0.6834

ZSSR [27] 26.45 0.7279 24.78 0.6268 24.97 0.5989 22.11 0.5805 23.53 0.7240

Pan et al. [24] + CARN [2] 18.10 0.4843 16.59 0.3994 18.46 0.4481 15.47 0.3872 16.78 0.5371

CARN [2] + Pan et al. [24] 28.69 0.8092 26.40 0.6926 26.10 0.6528 23.46 0.6597 25.84 0.8035

P+ SFTMD 29.29 0.9014 26.40 0.7137 26.16 0.7648 22.97 0.6722 24.24 0.7950

IKC (ours) 31.52 0.9278 28.26 0.7688 27.29 0.8014 25.33 0.7760 29.90 0.8793

The Initial
Prediction
(23.60dB)

1st
Iteration

(25.65dB)

2nd
Iteration

(27.75dB)

3rd
Iteration

(27.94dB)

4th
Iteration

(27.97dB)

The Initial
Prediction
(22.22dB)

1st
Iteration

(24.60dB)

2nd
Iteration

(27.30dB)

3rd
Iteration

(27.88dB)

4th
Iteration

(27.90dB)

Figure 7. The intermediate SR results during kernel correction.

proved by using the proposed IKC method. An example is

shown in Figure 6. The PSNR values of different methods

on different blur kernels are shown in Figure 9. As can be

seen, when the kernel width becomes larger, the SR perfor-

mance of the previous methods decreases. Meanwhile, the

proposed IKC method achieves superior performance under

all blur kernels.

To further show the generalization ability of the pro-

posed IKC method, we test our method on another widely-

used degradation setting [36], which involves Gaussian ker-

nels and direct downsampler. When the downsampling

Table 3. Quantitative performance of the proposed IKC method on

other downsampling settings.

Method
Kernel BSD100 [21] BSD100 [21]

Width PSNR SSIM PSNR SSIM

CARN [2]

2.0

26.05 0.6970 25.92 0.6601

ZSSR [27] 25.64 0.6771 25.64 0.6446

CARN [2]+Pan et al. [24] 25.71 0.7115 25.94 0.6804

P+ SFTMD 23.42 0.6812 25.01 0.7231

IKC, w/o PCA 26.85 0.7694 26.30 0.7812

IKC (ours) 27.06 0.7704 26.35 0.7838

CARN [2]

3.0

24.20 0.6066 24.53 0.5812

ZSSR [27] 24.19 0.6045 24.53 0.5796

CARN [2]+Pan et al. [24] 25.62 0.6678 25.52 0.6293

P+ SFTMD 23.30 0.6799 24.41 0.7214

IKC, w/o PCA 26.75 0.7685 26.28 0.7849

IKC (ours) 26.98 0.7694 26.58 0.7994

function is different, the LR images obtained by the same

blur kernel are also different. Table 3 shows the quantitative

results of the proposed IKC method under different down-

sampling settings. The proposed IKC method has main-

tained its performance, which indicates that IKC is able

to generalize to a downsampling setting that is inconsis-

tent with the training settings. An important reason why

the IKC method has such generalization ability is that IKC

learns the kernel after PCA rather than the kernel parameter-

ized by kernel width. PCA provides a feature representation
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LR image A+ [31] ZSSR [27] CARN [2] IKC (ours)

Figure 8. SISR performance comparison of different methods with SR factor 4 on a real historic image ‘1967 Vietnam war protest’.
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Figure 9. The PSNR performance of different methods on BSD100

[21] with different kernel width. The test SR factor is 3.

for the kernels. IKC learns the relationship between the SR

images and these features rather than the Gaussian kernel

width. In Table 3, we provide the comparison with the IKC

method that adopts kernels parameterized by Gaussian ker-

nel width. Experiments prove that the use of PCA helps to

improve the generalization performance of IKC.

4.4. Experiments on Real Images Set

Besides the above experiments on synthetic test images,

we also conduct experiments on real images to demonstrate

the effectiveness of the proposed IKC and SFTMD. Since

there are no ground-truth HR images, we only provide the

visual comparison. Figure 8 shows the SISR results on

real world image from the Historic dataset. For compari-

son, the A+ [31] and CARN [2] are used as the represen-

tative SR methods with bicubic downsampling, and ZSSR

[27] is used as the representative blind SR method. For a

real-world image, the downsampling kernel is unknown and

complicated, thus performance of the non-blind SR meth-

ods are severely affected. The SOTA blind method – ZSSR

also fails to provide satisfactory results. In comparison, IKC

provides artifact-free SR result with sharp edges.

We also compare the proposed IKC method with the

non-blind SR method using ‘hand-craft’ kernel on real-

world image ‘Chip’. We super-resolve the LR image us-

ing SRMD with the ‘hand-craft’ kernel suggested by [39].

They use a grid search strategy to find the kernel parameters

with good visual quality. The visual comparison is shown

in Figure 10. We can see that the result of SRMD has harper

edges and higher contrast, but also looks a little artificial. At

the same time, IKC could provide visual pleasing SR results

automatically. Although the contrast of IKC result is not as

high as SRMD result, it still provides sharp edges and more

LR image ZSSR [27]

SRMD with hand-craft kernel IKC (Ours)

Figure 10. SR results of the real image “Chip” with SR factor 4.

The hand-craft kernel width suggested by SRMD is 1.5.

natural visual effects.

5. Discussion

In this paper, we explore the relationship between blur

kernel mismatch and the SR results, then propose an iter-

ative blind SR method – IKC. We also propose SFTMD,

a new SR network architecture for multiple blur kernels.

In this paper, our experiments are mainly conducted on the

isotropic kernels. However, the isotropic kernels don’t seem

to be applicable in some real world applications. As in most

cases, there are some slightly motion blurs that affect the

kernel. It is worth noting that the asymmetry of the ker-

nel mismatch effect that IKC relies on can still be observed

in the case of slightly motion blur (anisotropy blur kernels).

For example, the artifacts and blur of a SR image in a certain

direction is related to the width of the kernel in the same di-

rection. This indicates that, by employing such asymmetry

of the kernel mismatch in each direction, the IKC method

can also be applied to more realistic cases with slightly mo-

tion blur, which will be our future work.
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