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Abstract

This paper proposes the dynamic recursive neural net-
work (DRNN), which simplifies the duplicated building
blocks in deep neural network. Different from forwarding
through different blocks sequentially in previous networks,
we demonstrate that the DRNN can achieve better perfor-
mance with fewer blocks by employing block recursively.
We further add a gate structure to each block, which can
adaptively decide the loop times of recursive blocks to re-
duce the computational cost. Since the recursive networks
are hard to train, we propose the Loopy Variable Batch Nor-
malization (LVBN) to stabilize the volatile gradient. Fur-
ther, we improve the LVBN to correct statistical bias caused
by the gate structure.

Experiments show that the DRNN reduces the parame-
ters and computational cost and while outperforms the orig-
inal model in term of the accuracy consistently on CIFAR-
10 and ImageNet-1k. Lastly we visualize and discuss the re-
lation between image saliency and the number of loop time.

1. Introduction

Deep neural networks (DNNs) have gained huge suc-
cess in various computer vision tasks in recent years. It
is confirmed by many works [ 13, 34] that deeper and wider
models could acquire better results. It is of great challenge
to achieve appropriate trade-off between performance and
model complexity.

Recently, many efficient network are proposed to over-
come this troublesome. Some works concentrate on reform-
ing the internal structure of blocks, like MobileNet [17]
obtains novel performance by depthwise-convolution and
Inceptions [37] show that block designed delicately can
acquire better abilities. Some methods try to optimize
blocks [13, 18, 43] by adding reasonable connections
among each other. Other methods based on adaptive com-
putation [9, 11, 38, 39, 42] have been proposed as a good
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Figure 1: Blocks are executed sequentially in normal networks
like (a). Shown in (b), the same block is cyclically executed a
fixed times in a recursive network. (c) illustrates that the loop time
is dynamically determined by the gate.

alternative option to tackle the model efficiency problem.

According to the above works, we have the following
observations: Most existing networks usually contain mas-
sive blocks of the identical structure. Some blocks can be
skipped to reduce the computational cost. In this work, we
attempt to simplify the duplicated blocks and find an effec-
tive forward mechanism for different inputs at runtime from
novel perspective of block design.

Motivated by the above observation, we propose Dy-
namic Recursive Neural Network which can reuse blocks
dynamically. Fig.1 gives an overview of our approach. In
DRNN, feature that is embedded with high-level informa-
tion can be brought back to refine low-level filters. In this
way, the recursive structure makes full use of the param-
eters. We introduce a gate unit to determine whether to
jump out of the loop in advance. It means that different in-
puts could loop different times in dynamic recursive blocks,
which significantly saves computational resources.

The main technical challenge of recursive structure is the
problem of gradient explosion and vanish like RNN [2].
Learning an efficient gate unit is difficult while conceptu-
ally simple. The gate unit need to make discrete decision
and should be end-to-end trained which is empirically op-
timal. Meanwhile, statistical bias in batch normalization
(BN) layer is also an annoying problem caused by different
loop time of a recursive block during training.

To tackle with the optimization problem of recursive
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structure, we analyze the gradient propagation of recursive
block and find that the gradient explosion of a recursive net-
work is caused by BN layer. Therefore, we propose Loopy
Variable Batch Normalization to stabilize the gradients and
benefit feature re-usage in a more general and easier way
than LSTM [10]. In particular, we employ different BN
layer for each looping. By applying LVBN, the recursive
network can be trained better with fewer parameters.

To incorporate the discrete decisions, we build upon re-
cent work [39] that introduces the Gumbel-Max trick [23]
and its differentiable approximations to allow for the propa-
gation of gradient through the discrete decision. Further, the
gate unit makes discrete decision deterministically by re-
moving the gumbel noise while maintains the performance.

To deal with the statistical bias, we make an improve-
ment on LVBN, which normalizes all the inputs and up-
dates the population statistics (moving averaged statistics
of means and variances across all training images) used
in testing time. Some inputs will jump out of loop in ad-
vance, while they should contribute to optimizing the gate
unit but not to population statistics. So our improved LVBN
(I-LVBN) corrects the population statistics by normalizing
inputs according to the decision made by the gate unit and
updates the population statistics across the inputs which are
allowed to pass.

DRNN, combined with the gate unit and I-LVBN,
achieves even better performance while accelerating the in-
ference of deep networks. To evaluate DRNN, we use Mo-
bileNetV?2 [33] and ResNet [ 13] as the base models on clas-
sification and other visual tasks. We approve that, with the
progressive strategy designed for recursive network, Dy-
namic Recursive (DR) ResNet-53 outperforms ResNet-101
while reducing model parameters by 47.0% and computa-
tional cost by 35.2%. Further, we study the dynamic recur-
sive behavior of the learned model and reveal the relation
between the image saliency and the number of loop time.

Our contributions are listed as follows:

e Presenting a Dynamic Recursive Mechanism to reduce
the computational cost.

e Proposing LVBN to stabilize the gradients of recursive
networks and make full use of convolutional parame-
ters. Improving LVBN to deal with the statistical bias
caused by different loop time of a recursive block dur-
ing training.

e Model parameters and computational cost can be re-
duced while obtaining a universal improvement of ac-
curacy.

2. Related Work

Recursive network. Different from the way of shar-
ing weights along the sequence in Recurrent Neural Net-
works (RNN) [40], recursive network shares weights at ev-
ery node, which could be considered as a generalization of

RNN. [7] tries recursive layers on image recognition but
gets worse performance than a single convolution due to
overfitting. [36, 30] apply recursive blocks when the input
dimension is twice that of output. Studies, incorporating re-
current connections into CNNs, also show superiority in ob-
ject recognition [27], super-resolution [25] and some other
tasks. Recently, based on the studies about recurrent struc-
ture and iterative refinement [24, 28], densely connected
structure is widely used to obtain more efficient model like
DenseNet [ 18] and CliqueNet [43]. In contrast to these ap-
proaches, DRNN behaves as a strategy that can be generally
applied in networks with modern block structure. Requiring
no complicated connections from former inputs, very deep
DRNN performs well on robustness and convergence.

Adaptive computation. The main purpose of adap-
tive computation is providing “Customized Service” for
different inputs to reduce overall inference time, while
maintaining or even boosting accuracy. Cascade detec-
tors [8, 41] are early methods that exploit this idea in
computer vision, relying on extra prediction modules or
handcrafted control strategies. Early prediction models
like BranchyNet [38] and Adaptive Computation Time
(ACT) [11] adopt branches or halt units to decide whether
the model could stop early. Figurnov et al. [9] further ex-
tend this idea to the spatial domain in ResNet by apply-
ing ACT to each spatial position of multiple image blocks.
Our approach is closer to the works [39, 42] which add gate
unit on every block to determine the execution of block-
operation according to current input. Inspired by above
methods, a reusable gate unit is designed to reconstruct net-
work structure on the fly conditioned on the input during
execution. After every single forward of recursive block,
gate unit of recursive block is activated to make a routing
choice between going back to block or just passing by and
forwarding normally.

Model Compression. Besides critical need of accuracy
improvements, reducing storage and inference time also
plays an important role in deploying top-performing deep
neural networks. Related techniques focus on many fields
like distillation [3, 15], filter pruning [5, 31], low-rank fac-
torization [21], quantization [12], compression with struc-
tured matrices [4, 35] and network binarization [32]. These
works are applied after training the initial networks and usu-
ally used as post-processing. DRNN could be trained end-
to-end without well-designed training rules.

Other Compact deep nets like SqueezeNet [20] and Mo-
bileNet [17, 33] are also end-to-end trainable, but they ap-
ply the same computation to all images. Thanks to the loop
structure controlled by gate units, DRNN could reuse one
block dynamically. In experiments, we prove even com-
pact model like MobileNetV2 could be further improved
by applying the dynamic recursive block. Theoretically, re-
cursively used blocks could be further pruned or quantized
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by compression method, because internal structure of block
has not been changed, and convolution or linear layers still
have the potential to be reduced.

3. Dynamic Recursive Neural Network

In this section, we introduce the structure of DRNN,
which constructed by the dynamic recursive blocks.

3.1. Naive Recursive Block

Since feature re-usage is able to bring high-level infor-
mation back to refine low-level filters, the recursive struc-
ture could make full use of the parameters as illustrated in
Fig. 1b. More precisely, let x’ be the input of the i*" loop
of the block, F(x?) be the output and the number of loops
is N. We denote x° as the input of recursive block, then xV
is the output of the block.

X = F(x') (1)

To ensure Eq. 1 to be well defined, we require F(x’) and
x’ have the same dimensions. Reusing block simply is con-
sidered as Naive Recursive Block. However, the recursive
structure gets into trouble during training. We encounter
gradient explosion and excessive bias, even though we care-
fully initialize all the parameters and start with a very small
learning rate. According to Eq. 1, we can get the gradient of
the parameters in recursive block. Denote W, and L as the
parameters of recursive block and the objective function.
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In Eq. 2, H;\:l 3"9‘21 is the main factor of unstable gra-
dient. We find that this instability has nothing to do with
convolutional layers. For the convolutional layer, followed
with batch normalization layer, back-propagation is unaf-
fected by the scale of its parameters, which has been proved
in [22]. The gradient of convolutional layer is stable due to
batch normalization. As to activation function, the gradient
is 1 or 0 depending on input, so ReLU is not instable in re-
cursive architecture and works fine. So we conjecture that
the problem is in the batch normalization layer. In order to
solve this problem, we propose to replace batch normaliza-
tion layers in the block with Loopy Variable Batch Normal-
ization layers, noticing that most of excellent networks have
batch normalization layer. That makes the naive recursive
network convergent and achieve a good performance.
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Figure 2: Example network architectures for ImageNet. Left: the
ResNet-50 model (25.56M parameters) in [13]. Right: the DR-
ResNet 35 model reformed from ResNet-50 (17.61M parameters).
More details in Tab. 2

3.2. Loopy Variable Batch Normalize

Training deep neural networks is complicated by internal
covariate shift which is proposed in [22]. To reduce internal
covariate shift, the BN layer normalizes each scalar feature
independently, making it have the mean of zero and the vari-
ance of 1, then scales and shifts the normalized value.

wl = vz + B, 3)

~ and (3 are usually initialized to 1 and 0. According to
Eq. 2 and Eq. 3, we use chain rule, as follows:
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Figure 3: Overview of LVBN when loop time is 3. After the con-
volution layer, a separated BN layer will be activated each time
instead of the same BN layer activated for 3 times. The different
style of arrow line represents being into different loop.

We find that the gradient of x is proportional to 7%V,
which will cause the unstable gradient propagation. The
gradient of ~ also contains a term proportional to v~ 1.
When ~ is greater than 1, it is easy to cause gradient explo-
sion.

During training, a BN layer needs to calculate the mean
and variance of each mini-batch and update the population
statistics. Whereas, the input features, representing differ-
ent information, have different means and variances which
are then recurrently averaged to the shared population statis-
tics. This will cause incorrect population statistics for each
looping. These batch normalization statistics are used dur-
ing testing which is crucial to the performance.

So we propose LVBN which employs different BN layer
for each looping as illustrated in Fig. 3. Training v and
separately for each looping stabilizes the gradient and en-
hances the representation ability of the network. Updating
the population statistics correctly and separately guarantees
the performance during testing.

The cost of these additional BN layers is marginal(less
than 1% for bottleneck in ResNets) in the number of pa-
rametersand the run-time overhead is also negligible for in-
ference. Based on some excellent networks, we fold some
blocks of identical structure which turns the network into a
recursive vision (Fig. 2). The results show that LVBN en-
ables the network with recursive block to achieve similar
accuracy as the counterpart with the same training proce-
dure but perform better by reducing the learning rate simply
(Tab. 3).

Even though an amount of parameters are saved by re-
cursive structure, the inference time hasn’t been reduced
obviously. We propose a dynamic recursive mechanism to
reduce the number of looping and optimization difficulty.
Consequently, this mechanism also reduces the cost of com-
putation.

3.3. Dynamic Recursive Mechanism

According to the mismatch of growth rate between pa-
rameters and accuracy, we infer that many layers are more
concerned with some concepts unrelated to the final perfor-
mance, which cannot be shared across examples. (e.g. The

parameter amount of ResNet-101 is 74% more than ResNet-
50, but the performance on ImageNet only increases 1.1%.)
Actually, a shallower network is qualified for many exam-
ples. For recursive network, it means that fewer loop times
could handle the easy examples.

Inspired by the method about gated inference in [39], we
propose Dynamic Recursive Mechanism to decide whether
to jump out of the loop in advance based on the input. The
dynamic recursive block can be defined as

xH = g(x")F(x') + (1 - G(x'))x’ o

where G(x%) € {0,1} is a gate. The gate has two discrete
outputs: execute (G(x!) = 1) or skip (G(x*) = 0), which
is a hard attention mechanism actually.

Our aim is to reduce the average computational cost by
skipping some looping. Therefore, we adopt a lightweight
and universal design for gate unit shown in Fig. 4. We first
apply global average pooling on the input feature map to
squeeze global spatial information into a 1 x 1 x C chan-
nel descriptor and then project the feature to unnormalized
scores s for the discrete outputs. We opt to employ two fully
connected layers around the non-linearity.

S = W2(S(W1XP) (8)

where § refers to the ReLU function, W; € R?*C W, €
R2*4, Xp is the output of global average pooling layer and
d is the dimension of the hidden layer. The gate unit con-
structed by this way adds only a computational overhead of
0.04%.

From the perspective of model design, we need a gate
unit can make a discrete decision like arg max. And fol-
lowing the term of end-to-end training, the gate unit should
be differentiable. A straight idea is to choose the maximum
of the two scores to decide whether execute or skip during
feed-forward. However, this approach is not differentiable.
So, we would like choose among the two decisions propor-
tional to their score. For this, we use the Straight-Through
Gumbel-Softmax estimator, which is proposed in [1], for
propagating gradient through stochastic neurons. The ran-
dom variable G follows a standard Gumbel distribution if
G = —log(—1log(U)) with U ~ Uniform(0,1). Accord-
ing to Gumbel-MAX trick, which is a key property of Gum-
bel distribution, let X be a discrete random variable with
P(X = k) o« aj and let {Gg}reqi,....x} be an i.id se-
quence of standard Gumbel random variables, then we can
sample X by sampling from Gumbel random variables.

X = argmax (log ay + Gi) )
ke{l,...,K}

We set the log probabilities to the estimated scores, log o =
s. For propagating gradient, we use a continuous relaxation
of the Gumbel-Max trick proposed in [23, 29], replacing the
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Figure 4: Overview of dynamic recursive mechanism during train-
ing. There are three branches. Top: shortcut of the original in-
put. Middle: gate structure. Bottom: sequential layers in block.
Global Pooling and FC layers firstly estimate relevance of the
block. Then a Gumbel-Max trick is used to choose the output
according to the relevance scores. A softmax relaxation is used
for backward.

argmax with softmax. The relaxation procedure is summa-
rized by:

arg max s +G
Greton(x) = gmaxye(o.13(sk + Gk) (10)
softmax (s + Gi)

where sj is the maximum one of s, argmax is used in for-
ward pass and softmax in backward pass. The straight-
through estimator performs well with the gumbel sample
during training. But the gumbel sample, a noise in fact, is
neither necessary nor desirable during inference; we want
the output to depend only on the input deterministically. For
this, noise is removed in testing.

3.4. Improved Loopy Variable Batch Norm

According to Eq.7, the gradient of G(x?) is related to
F(x%), so F(x') is needed to optimize G regardless of
whether the block is skipped or not. Actually, all the fea-
ture maps in a mini-batch need to be input to blocks during
training, while LVBN calculates and updates mean and vari-
ance of both skipped inputs and executed inputs.

However, the skipped inputs and executed inputs have
different mean and variance. This leads to inaccurate BN
population statistics in a layer-by-layer propagating manner,
which has a negative effect on performance. For this, we
propose Improved Loopy Variable Batch Normalization (I-
LVBN) to update the statistics correctly as shown in Fig. 5.
I-LVBN normalizes the input feature maps respectively by
making them have the mean of 0 and the variance of 1,
according to the outputs of the gate. Only the mean and
variance of executed inputs will be used for inference. The
normalization procedure is summarized by:

uj =9'x} + 4, (1n

where j € {0,1} is the output of gate and x/ is allowed to
pass during inference.

I-LVBN could not only enhance performance for infer-
ence by using population statistics based on executed in-
puts, but also prompt gradient to propagate more precisely

g=l1, 1010]

= gy
i =7 i

Figure 5: Overview of I-LVBN when batch size is 5. Gate unit
first predicts whether the following block is needed conditioned
on red input feature maps. Next, the outputs of convolution layer
will be divided in to two groups(green and gray) and normalized
independently. Whereas, only the population statistics of green
group are used in inference. Finally, normalized feature maps will
be reindexed, scaled and shifted.

Scale
Shlft

during training. This improvement does not lead to increas-
ing parameters or computational overhead.

3.5. Training Loss

The average computational cost of the network depends
on how often each block is allowed to be executed. Ide-
ally, for each loop, the block is executed at a certain rate ¢.
It means that when loop twice, the target rate becomes 2.
In this way, the average computational cost will decrease
rapidly as the number of loop increases. We estimate the
execution rates for each block over mini-batch. Let g; de-
note the ratio of images executed at the i** loop of the j'"
block. Then, the loss of average computational cost is de-

fined as
m—MZXM Zﬁ (12)

j=1 i=1

The average computational cost can be easily adjusted
by the target execution rate. DRNN are trained end-to-end
with a multi-task loss function :

L= LMC + Lacc (13)

where L /¢ is the standard multi-class logistic loss.

4. Experiments

We perform a series experiments to evaluate our Dy-
namic Recursive Neural Network on image classification
benchmarks.

4.1. Results on CIFAR

Model configurations and training details We first
evaluate a range of DR-ResNets architectures on CIFAR-
10. Our focus is on the behaviors of our terse and efficient
approach, but not on pushing the state-of-the-art results,
so we intentionally use the same architectures of block as
ResNet. ResNet has a stack of 3n blocks on feature maps
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Model Error Params(10%) FLOPs(10°)
SD-ResNet 110 [19]  5.25 1.7 0.255
Pre-ResNet 110 [14]  6.37 1.7 0.255
AIG-ResNet 110 [39] 5.76 1.78 0.215
RCNN-160 [27] 7.09 1.86 -
ResNet-110 [13] 6.61 1.7 0.255
DR-Res 74 (I = 2) 5.21 0.92 0.220
DR-Res 66 (I = 3) 5.66 0.73 0.214
DR-Res 58 (I = 4) 5.79 0.55 0.197
DR-Res 54 (I = 5) 5.97 0.45 0.192
ResNet-56 [13] 6.97 0.85 0.127
DR-Res 40 (I = 2) 6.51 0.50 0.110
DR-Res 32 (I = 4) 6.73 0.310 0.099
ResNet-20 [13] 8.75 0.27 0.041
DR-Res 16 (I = 2) 8.14 0.18 0.032

Table 1: Error rate (%) on CIFAR-10. All of the DR-ResNets out-
perform their counterpart while using less parameters and com-
putation cost. Our proposed approach for dynamic recursive net-
works is applicable to both deep network architectures and shal-
lower ones.

of sizes {32, 16, 8} respectively, with n blocks for each fea-
ture map size. Our DR-ResNet has L@J + 1 blocks for
each feature map size where [ is the number of loop. An ad-
ditional block is for downsampling. Such a design ensures
that the maximum computational cost of our network does
not exceed its counterpart.

We fix the early blocks up to the first downsampling be-
cause the low-level feature maps are not yet distinguish. For
the gates, we set the size of hidden state d to 16 and the tar-
get executed rate to 0.7.

We follow a similar training scheme as [13] with a
weight decay of 0.0005 and momentum of 0.9. The models
are trained with a mini-batch size of 256 for 350 epochs.
We start with learning rate of 0.1 and divide it by 10 after
150 and 250 epochs. All the images for training are padded
with 4 pixels on each side and a 32 x 32 crop is randomly
sampled from the padded image or its horizontal flip.

Results Tab. 1 shows test error, the number of model
parameters and floating point operations(multiply-adds) on
CIFAR-10 [26]. The first part in the table includes some
variant methods based on ResNet and a study that also in-
corporates recursive structure. The other parts compare our
DR-ResNets with ResNets. From the results, we observe
that all of the DR-ResNets outperform their counterpart.
The more times block loops, the less parameters and com-
putation are need. Whereas, the performances are similar.

Overall, DR-ResNet 54 is able to reduce parameters and
computation by 73.53% and 24.71% while outperform-
ing the ResNet-110. Since the ResNet-110 is overfitted
for CIFAR-10, stochastic depth ResNet-110 regularizes by

dropping layers and AIG-ResNet 110 applies adaptive infer-
ence graph. DR-ResNet 110 outperforms them by reusing
the convolutional layer conditioned on the input example.
Our proposed method can be applied not only to deep net-
works, but also to shallower networks like ResNet-20. DR-
ResNet 16 can also reduce parameters and computation by
33.3% and 22.0% while outperforming its counterpart.

4.2. Results on ImageNet

In experiments on ImageNet [0], we analyze the effec-
tiveness of our LVBN, dynamic recursive mechanism and
Improved LVBN based on ResNet-101 and evaluate a se-
ries of network on ImageNet.

Model configurations and training details We build
DR-ResNet and DR-MobileNetV2 by inheriting the resid-
ual bottleneck and inverted residual block.

Blocks in early stage or not repetitive are fixed. The dy-
namic recursive block groups are marked bold in Tab. 2,
while the downsampling layers stay unchanged. The num-
ber of blocks is designed to ensure the maximum compu-
tational cost of our network does not exceed its counter-
part. The blocks in last group loop twice in DR-ResNets
because the last group comprises only three blocks. In DR-
MobileNetV2, the loop time of the fourth group is three and
the other dynamic recursive blocks loop twice.

For our counterparts of ResNet-101, ResNet-50 and Mo-
bileNetV2, the target rate is set to 0.7, 0.8, 0.9. All the
gates are initialized at a executed rate of 85% at the begin-
ning of training. The size of the hidden state is 16 for gates
in DR-ResNets. Moreover, each gate unit comprises only
one fully-connected layer for more compact structure.

We follow the ResNet training procedure, with learning
rate starting at 0.1 and decaying by 0.1 every 30 epochs.
The weight decay is 0.0001 and momentum is 0.9. All the
models are trained for 100 epochs. One exception is that for
DR-MobileNetV2 and its counterpart, we start the learning
rate at 0.01 and decay it by 0.1 at 200 and 300 epochs. Both
are optimized by stochastic gradient descent (SGD) for 400
epochs.

We apply the scale and aspect ratio augmenta-
tion as GoogleNet [37] and the photometric distortions
method [16]. During test time, the images are rescaled to
256 x 256 follwed by a 224 x 224 center crop.

Quantitative comparison Tab. 2 shows top-1 accuracy
rate and models’ details on ImageNet. From the results
we can make the following key observations. DR-ResNet
with 65 and 53 layers have better performance than ResNet-
101 while using less computational resources. Shallower
DRNNs also outperform their counterpart. In particular,
DR-ResNet 53 saves 35.2% of computation and 47.0% of
parameters. Similarly, DR-ResNet 35 outperforms ResNet-
50 while using 33.7% less parameters and 17.8% less av-
erage computational cost. For DR-ResNet, increasing loop
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Model Topl Top5 Params(10%) FLOPs(10%) Blocks
ResNet-101 [13] 7795 93.86 44.54 7.6 (3,4,23,3)
Stochastic Depth ResNet-101 [19]  77.20  93.56 44.54 7.6 (3,4,23,3)
AIG-ResNet-101 [39] 7793  93.85 46.23 5.11 (3,4,23,3)
DR-ResNet 65 (I = 2) 78.12 93.90 28.12 5.49 (3,4,12,2)
DR-ResNet 53 (I = 3,t =0.7) 77.96 93.86 23.60 4.92 (3,4,8,2)
DR-ResNet 53 (I = 3,¢ = 0.65) 77.14  93.52 23.60 4.62 (3,4,8,2)
DR-ResNet 53 (I = 3,¢ = 0.6) 7691 93.51 23.60 4.35 (3.4,8,2)
DR-ResNet 47 (I = 4) 7741 93.54 21.34 4.56 (3.,4,6,2)
DR-ResNet 44 (I = 5) 7727  93.53 20.21 4.25 (3,4,5,2)
ResNet-50 [13] 7645 9290 25.56 3.8 (3,4,6,3)
Stochastic Depth ResNet-50 [19] 7225  90.86 25.56 3.8 (3,4,6,3)
AIG-ResNet 50 [39] 7642  93.17 26.56 3.15 (3,4,6,3)
DR-ResNet 35 (I = 2) 76.48 92.92 17.61 3.12 (3,3,3,2)
MobileNetV2 [33] 71.8 90.27 3.40 0.300 (1,2,3,4,3,3,1)
DR-MobileNetV2 71.8 90.28 2.96 0.275 (1,2,2,2,2,2,1)

Table 2: Top 1 and Top 5 accuracy rate (%) on ImageNet. Dynamic recursive block groups are bold in table. All the downsampling blocks
are not recursive in block groups. The last group blocks loop twice for computational equality in DR-ResNets. The result demonstrates
that DR-ResNet is more efficient and also improves overall classification quality. All the MobileNetV2, ResNets and AIG-ResNets are

reimplemented with the training procedure in Sec. 4.2.

Model L G I Topl © ;‘fgg)“ %g)gf;s
ResNet-101 [13] 7795 4454 7.6
R-ResNet 53 Fail 23.39 7.6
R-ResNet 53 v 7722 2339 76
R-ResNet 53 v v 7752 23.60 492
R-ResNet 53 J oV 7196 2360 492
R-ResNet 53%  / 7838 2339 76

Table 3: The comparative and ablative result of our dynamic re-

cursive network on ImageNet validation set.

When Recursive

ResNet-53 is trained with smaller learning rate for more epochs,

it(R-ResNet 53*) also outperforms ResNet-101.

time performs better than reducing the execution rate. In
particular, DR-ResNet 53 with a target rate of 0.65 has a
larger expected total loop time than DR-ResNet 47.

For the deeper network, reusing the parameters of convo-
lutional layer first improve accuracy, before increasing the
loop time further decrease accuracy insignificantly. This
demonstrates that reusing the parameters of convolutional
layer is efficient to improve the capacity of network by dy-
namic recursive mechanism. Further, reusing blocks adap-
tively is often more effective to save computational resoures
compared to reducing blocks of identical structure directly.

As expected, decreasing the target rate reduces computa-
tion time. Interestingly, increasing loop times leads to bet-
ter result than reducing the execution rate. More loop time
means that more high-level information is used to refine the
low-level filters to get a stronger ability for representation.

The recursive structure benefits feature re-usage.

Due to our proposed approach for dynamic recursive net-
works is general, we also apply dynamic recursive block
on MobileNetV2. The result show that the training of dy-
namic recursive models can be applied to convolution and
depthwise-sparable convolution layers in different building
blocks.

These results indicate that the parameters of convolu-
tional layer is underused and DRNN is an effective means
to adaptively assemble network graph on the fly.

Analysis of dynamic recursive network To understand
dynamic recursive network, we conduct ablation experi-
ments to examine how each proposed component affects
the final performance. We use R- to indicate naive recur-
sive models. L indicates that we replace BN with LVBN,
G stands for gate units and [ is the improved LVBN. Each
component is an improvement based on the previous one.

From results in Tab. 3, some promising conclusions can
be summed up as follows:

e LVBN is crucial to reuse convolution layers. Naive

recursive network (R-ResNet 53) fails to converge to
a good solution and becomes divergent after a few
epochs, as illustrated in Fig. 6. LVBN can not only
get correct population statistics for each loop but also
solve gradient explosion. Utilizing LVBN, we can
get a result similar to baseline without changing any
hyper-parameters of optimization algorithm. We train
a recursive network with LVBN starting with a lower
learning rate of 0.01 and weight decay of 0.0005 for
180 epochs. The learning rate is divided by 10 after
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ImageNet top-1 accuracy %

— Naive R-ResNet
— R-ResNet with LVBN
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Training Epochs

Figure 6: Testing accuracy on validation
set of naive R-ResNet 53 and R-RseNet
53 with LVBN. For the naive network, we

Figure 7: Statistics of the skipﬁed Wand exe-
cuted feature maps in DR-ResNet 53. Both
shallow and deep blocks are shown. X-axis
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Figure 8: For DR-ResNet 53 on ImageNet,
11.74 out of 23 loops are executed on av-
erage. According to the target 0.7, the total

start with a smaller learning rate of 0.01
o :

represents channel index.

loop time has an expect of 11.921.

-

Figure 9: Visualization of easy and hard examples in ImageNet validation set with DR-ResNet 53. The images on the top are easy example
(loop less than 9 times) and the bottom ones are hard examples (loop more than 15 times).

100, 130 and 160 epochs. This trick leads to a better
top-1 accuracy of 78.38%, the last row of Tab. 3, with-
out adding FLOPs compared to ResNet-101. It shows
a trade-off between the size of model and the difficulty
of optimizing.

e Dynamic recursive mechanism is efficient. Since
reusing lots of parameters in network poses extra opti-
mization contrast to unrolled networks, a dynamic re-
cursive network with LVBN is expected to have lower
performance. Howerer, the comparison between third
and fourth rows in Tab. 3 shows that our dynamic
recursive mechanism effectively improves the perfor-
mance. The prediction cost is reduced by 35.2% while
accuracy is increased by 0.4%. The main reason is that
our gate unit is efficient and reduces the difficulty of
optimizing recursive network by jumping out of loop
in advance. The result also indicates that shallower
network is easy to optimize and able to tackle most

easy examples.
e Improved LVBN is essential. It deals with the devia-

tion of population statistics caused by the feature maps
which the gates forbid to pass. Each channel of the
features maps has different mean and variance. Fig. 7
shows the diverse mean and variance of the different
feature maps according to outputs of gates. The results
shows that the value discrepancy increases in the deep
layer, which indicates that the gate is more confident

in deeper layers.

Visualization of loop time Our primary interest lies in
understanding the learned gated pattern. Due to the dy-
namic recursive mechanism, loop time varies across im-
ages. Fig. 8 shows the distribution over the total loop times
in DR-ResNet 53 are executed on ImageNet validation set.
On average 11.74 loops are executed with a standard devia-
tion of 1.50. We collect the easy examples which skip most
loops and the hard examples which execute most loops in
Fig. 9 for ImageNet validation set. Images in the same col-
umn are in the same category. Interestingly, the easy exam-
ples are clear and iconic while the hard examples are blurry
and occluded, which are even hard for humans to recongize.

5. Conclusion

In this work, we introduce Dynamic Recursive Neu-
ral Network that reuses the identical blocks on the fly
in a neat way. The usual gradient problem in recursive
networks is solved by our LVBN. DRNN also learns to
adaptively skip redundant loop based on the input. Fur-
ther, we correct the population statistics of LVBN which
is combined with dynamic recursive mechanism. Experi-
ments on ImageNet and CIFAR show that DRNNs reduce
model size and computational cost substantially while out-
performing. The proposed DRNN could be further ex-
tended to densely-connected or inception-based networks
and may help to optimize the learning of long-term depen-
dencies.
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