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Abstract

Single-photon avalanche diodes (SPADs) are starting to

play a pivotal role in the development of photon-efficient,

long-range LiDAR systems. However, due to non-linearities

in their image formation model, a high photon flux (e.g., due

to strong sunlight) leads to distortion of the incident tempo-

ral waveform, and potentially, large depth errors. Oper-

ating SPADs in low flux regimes can mitigate these distor-

tions, but, often requires attenuating the signal and thus, re-

sults in low signal-to-noise ratio. In this paper, we address

the following basic question: what is the optimal photon

flux that a SPAD-based LiDAR should be operated in? We

derive a closed form expression for the optimal flux, which

is quasi-depth-invariant, and depends on the ambient light

strength. The optimal flux is lower than what a SPAD typ-

ically measures in real world scenarios, but surprisingly,

considerably higher than what is conventionally suggested

for avoiding distortions. We propose a simple, adaptive ap-

proach for achieving the optimal flux by attenuating inci-

dent flux based on an estimate of ambient light strength.

Using extensive simulations and a hardware prototype, we

show that the optimal flux criterion holds for several depth

estimators, under a wide range of illumination conditions.

1. Introduction

Single-photon avalanche diodes (SPAD) are increasingly

being used in active vision applications such as fluores-

cence lifetime-imaging microscopy (FLIM) [33], non-line-

of-sight (NLOS) imaging [24], and transient imaging [23].

Due to their extreme sensitivity and timing resolution, these

sensors can play an enabling role in demanding imaging

scenarios, for instance, long-range LiDAR [6] for automo-

tive applications [20], with only limited power budgets [25].

A SPAD-based LiDAR (Fig. 1) typically consists of a

laser which sends out periodic light pulses. The SPAD

detects the first incident photon in each laser period, after

which it enters a dead time, during which it cannot detect

any further photons. The first photon detections in each pe-

riod are then used to create a histogram (over several pe-

riods) of the time-of-arrival of the photons. If the incident

flux level is sufficiently low, the histogram is approximately
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Figure 1. Pile-up in SPAD-based pulsed LiDAR. A pulsed

LiDAR consists of a light source that illuminates scene points with

periodic short pulses. A SPAD sensor records the arrival times of

returning photons with respect to the most recent light pulse, and

uses those to build a timing histogram. In low ambient light, the

histogram is the same shape as the temporal waveform received at

the SPAD, and can be used for accurate depth estimation. How-

ever, in high ambient light, the histogram is distorted due to pile-

up, resulting in potentially large depth errors.

a scaled version of the received temporal waveform, and

thus, can be used to estimate scene depths and reflectivity.

Although SPAD-based LiDARs hold considerable

promise due to their single-photon sensitivity and extremely

high timing (hence, depth) resolution, the peculiar his-

togram formation procedure causes severe non-linear dis-

tortions due to ambient light [12]. This is because of in-

triguing characteristics of SPADs under high incident flux:

the detection of a photon depends on the time of arrival of

previous photons. This leads to non-linearities in the image

formation model; the measured histogram gets skewed to-

wards earlier time bins, as illustrated in Figs. 1 and 21. This

distortion, also called “pile-up” [12], becomes increasingly

severe as the amount of ambient light increases, and can

lead to large depth errors. This can severely limit the per-

formance of SPAD-based LiDAR in outdoor conditions, for

example, imagine a power-constrained automotive LiDAR

operating on a bright sunny day [20].

One way to mitigate these distortions is to attenuate

the incident flux sufficiently so that the image formation

model becomes approximately linear [26, 13]. However,

1In contrast, for a conventional, linear-mode LiDAR pixel, the detec-

tion of a photon is independent of previous photons (except past satura-

tion). Therefore, ambient light adds a constant value to the entire wave-

form.
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in a LiDAR application, most of the incident flux may be

due to ambient light. In this case, lowering the flux (e.g., by

reducing aperture size), requires attenuating both the ambi-

ent and the signal light2. While this mitigates distortions,

it also leads to signal loss. This fundamental tradeoff be-

tween distortion (at high flux) and low signal (at low flux)

raises a natural question: Is there an optimal incident flux

for SPAD-based active 3D imaging systems?

Optimal incident flux for SPAD-based LIDAR: We ad-

dress this question by analyzing the non-linear imaging

model of SPAD LiDAR. Given a fixed ratio of source-to-

ambient light strengths, we derive a closed-form expression

for the optimal incident flux. Under certain assumptions,

the optimal flux is quasi-invariant to source strength and

scene depths, and surprisingly, depends only on the ambient

strength and the unambiguous depth range of the system.

Furthermore, the optimal flux is lower than that encoun-

tered by LiDARs in typical outdoor conditions. This sug-

gests that, somewhat counter-intuitively, reducing the total

flux improves performance, even if that means attenuating

the signal. On the other hand, the optimal flux is consid-

erably higher than that needed for the image formation to

be in the linear regime [2, 15]. As a result, while the opti-

mal flux still results in some degree of distortion, with ap-

propriate computational depth estimators, it achieves high

performance across a wide range of imaging scenarios.

Based on this theoretical result, we develop a sim-

ple adaptive scheme for SPAD LiDAR where the incident

flux is adapted based on an estimate of the ambient light

strength. We perform extensive simulation and hardware

experiments to demonstrate that the proposed approach

achieves up to an order of magnitude higher depth precision

as compared to existing rule-of-thumb approaches [2, 15]

that require lowering flux levels to linear regimes.

Implications: The theoretical results derived in this paper

can lead to a better understanding of this novel and exciting

sensing technology. Although our analysis is performed for

an analytical pixel-wise depth estimator [7], we show that in

practice, the improvements in depth estimation are achieved

for several reconstruction approaches, including pixel-wise

statistical approaches such as MAP, as well as estimators

that account for spatial correlations and scene priors (e.g.,

neural network estimators [17]). These results may moti-

vate the design of practical, low-power LiDAR systems that

can work in a wide range of illumination conditions, rang-

ing from dark to extreme sunlight.

2. Related Work

SPAD-based active vision systems: Most SPAD-based

LiDAR, FLIM and NLOS imaging systems [5, 16, 34, 29,

17, 3] rely on the incident flux being sufficiently low so that

pile-up distortions can be ignored. Recent work [13] has ad-

dressed the problem of source light pile-up for SPAD-based

2Ambient light can be reduced to a limited extent via spectral filtering.

LiDAR using a realistic model of the laser pulse shape and

statistical priors on scene structure to achieve sub-pulse-

width depth precision. Our goal is different—we provide

theoretical analysis and design of SPAD LiDAR that can

perform robustly even in strong ambient light.

Theoretical analysis and computational methods for

pile-up correction: Pile-up distortion can be removed in

post-processing by computationally inverting the non-linear

image formation model [7, 35]. While these approaches can

mitigate relatively low amount of pile-up, they have limited

success in high flux levels, where a computational approach

alone results in strong amplification of noise. Previous work

has performed theoretical analysis similar to ours in a range-

gating scenario where scene depths are known [10, 36, 9].

In contrast, we derive an optimal flux criterion that min-

imizes pile-up errors at capture time, is applicable for a

broad range of, including extremely high, lighting levels,

and does not require prior knowledge of scene depths.

Alternative sensor architectures: Pile-up can be sup-

pressed by modifying the detector hardware, eg. by us-

ing multiple SPADs per pixel connected to a single time-

correlated single-photon counting (TCSPC) circuit to dis-

tribute the high incident flux over multiple SPADs [3].

Multi-SPAD schemes with parallel timing units and multi-

photon thresholds can be used to detect correlated signal

photons [28] and reject ambient light photons that are tem-

porally randomly distributed. The theoretical criteria de-

rived here can be used in conjunction with these hardware

architectures for optimal LiDAR design.

Active 3D imaging in sunlight: Prior work in the struc-

tured light and time-of-flight literature proposes various

coding and illumination schemes to address the problem

of low signal-to-noise ratios (SNR) due to strong ambient

light [18, 11, 22, 1]. The present work deals with a differ-

ent problem of optimal photon detection for SPAD-based

pulsed time-of-flight. These previous strategies can poten-

tially be applied in combination with our method to further

improve depth estimation performance.

3. Background: SPAD LiDAR Imaging Model

This section provides mathematical background on the

image formation model for SPAD-based pulsed LiDAR.

Such a system typically consists of a laser source which

transmits periodic short pulses of light at a scene point, and

a co-located SPAD detector [21, 31, 8] which observes the

reflected light, as shown in Fig. 1. We model an ideal laser

pulse as a Dirac delta function δ̃(t). Let d be the distance of

the scene point from the sensor, and τ̃ = 2d/c be the round

trip time-of-flight for the light pulse. The photon flux inci-

dent on the SPAD is given by:

Φ(t) = Φ̃sig δ̃(t− τ̃) + Φ̃bkg, (1)

where Φ̃sig is the signal component of the received wave-

form; it encapsulates the laser source power, distance-
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Figure 2. Effect of ambient light on SPAD LiDAR. A SPAD-based pulsed LiDAR builds a histogram of the time-of-arrival of the incident

photons, over multiple laser pulse cycles. In each cycle, at most one photon is recorded, whose timestamp is used to increment the

counts in the corresponding histogram bin. (Left) When there is no ambient light, the histogram is simply a discretized, scaled version

of the incident light waveform. (Right) Ambient light photons arriving before the laser pulse skew the shape of the histogram, causing a

non-linear distortion, called pile-up. This results in large depth errors, especially as ambient light increases.

squared fall-off, scene brightness and BRDF. Φ̃bkg denotes

the background component, assumed to be a constant due

to ambient light. Since SPADs have a finite time resolu-

tion (few tens of picoseconds), we consider a discretized

version of the continuous waveform in Eq. (1), using uni-

formly spaced time bins of size ∆. Let Mi be the number

of photons incident on the SPAD in the ith time bin. Due to

arrival statistics of photons, Mi follows a Poisson distribu-

tion. The mean of the Poisson distribution, E[Mi], i.e., the

average number ri of photons incident in ith bin, is given as:

ri = Φsig δi,τ +Φbkg. (2)

Here, δi,j is the Kronecker delta,3 Φsig is the mean number

of signal photons received per bin, and Φbkg is the (undesir-

able) background and dark count photon flux per bin. Let B
be the total number of time bins. Then, we define the vector

of values (r1, r2, . . . , rB) as the ideal incident waveform.

SPAD histogram formation: SPAD-based LiDAR systems

operate on the TCSPC principle [15]. A scene point is illu-

minated by a periodic train of laser pulses. Each period

starting with a laser pulse is referred to as a cycle. The

SPAD detects only the first incident photon in each cycle,

after which it enters a dead time (∼100 ns), during which

it cannot detect any further photons. The time of arrival of

the first photon is recorded with respect to the start of the

3The Kronecker delta is defined as δi,j = 1 for i = j and 0 otherwise.

most recent cycle. A histogram of first photon arrival times

is constructed over many laser cycles, as shown in Fig. 2.

If the histogram consists of B time bins, the laser repeti-

tion period is B∆, corresponding to an unambiguous depth

range of dmax = cB∆/2. Since the SPAD only records the

first photon in each cycle, a photon is detected in the ith bin

only if at least one photon is incident on the SPAD during

the ith bin, and, no photons are incident in the preceding

bins. The probability qi that at least one photon is incident

during the ith bin can be computed using the Poisson distri-

bution with mean ri [7]:

qi = P(Mi ≥ 1) = 1− e−ri .

Thus, the probability pi of detecting a photon in the ith bin,

in any laser cycle, is given by [27]:

pi = qi

i−1∏

k=1

(1− qk) =
(
1− e−ri

)
e−

∑
i−1

k=1
rk . (3)

Let N be the total number of laser cycles used for forming

a histogram and Ni be the number of photons detected in

the ith histogram bin. The vector (N1,N2,. . . ,NB+1) of the

histogram counts follows a multinomial distribution:

(N1,N2,. . . ,NB+1)∼Mult(N, (p1, p2, . . . , pB+1)) , (4)

where, for convenience, we have introduced an additional

(B + 1)st index in the histogram to record the number

of cycles with no detected photons. Note that pB+1 =
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1 −
∑B

i=1 pi and N =
∑B+1

i=1 Ni. Eq. (4) describes a gen-

eral probabilistic model for the histogram of photon counts

acquired by a SPAD-based pulsed LiDAR.

Fig. 2 (a) shows the histogram formation in the case of

negligible ambient light. In this case, all the photon ar-

rival times line up with the location of the peak of the in-

cident waveform. As a result, ri = 0 for all the bins except

that corresponding to the laser impulse peak. In this case,

the measured histogram vector (N1,N2,. . . ,NB), on aver-

age, is simply a scaled version of the incident waveform

(r1, r2, . . . , rB). The time-of-flight can be estimated by lo-

cating the bin index with the highest photon counts:

τ̂ = argmax
1≤i≤B

Ni , (5)

and the scene depth can be estimated as d̂ = cτ̂∆
2 .

For ease of theoretical analysis, we assume the laser

pulse is a perfect Dirac-impulse with a duration of a single

time bin. We also ignore other SPAD non-idealities such as

jitter and afterpulsing. We show in the supplement that the

results presented here can potentially be improved by com-

bining our optimal photon flux criterion with recent work

[13] that explicitly models the laser pulse shape and SPAD

timing jitter.

4. Effect of Ambient Light on SPAD LiDAR

If there is ambient light, the waveform incident on the

SPAD can be modeled as an impulse with a constant ver-

tical shift, as shown in the top of Fig. 2 (b). The mea-

sured histogram, however, does not reliably reproduce this

“DC shift” due to the peculiar histogram formation proce-

dure that only captures the first photon for each laser cycle.

When the ambient flux is high, the SPAD detects an ambi-

ent photon in the earlier histogram bins with high probabil-

ity, resulting in a distortion with an exponentially decaying

shape. This is illustrated in the bottom of Fig. 2 (b), where

the peak due to laser source appears only as a small blip in

the exponentially decaying tail of the measured histogram.

The problem is exacerbated for scene points that are farther

from the imaging system. This distortion, called pile-up,

significantly lowers the accuracy of depth estimates because

the bin corresponding to the true depth no longer receives

the maximum number of photons. In the extreme case,

the later histogram bins might receive no photons, making

depth reconstruction at those bins impossible.

Computational Pile-up Correction: In theory, it is pos-

sible to “undo” the distortion by inverting the exponential

nonlinearity of Eq. (3), and finding an estimate of the inci-

dent waveform ri in terms of the measured histogram Ni:

r̂i = ln

(
N −

∑i−1
k=1 Nk

N −
∑i−1

k=1 Nk −Ni

)
. (6)

This method is called the Coates’s correction [7], and it can

be shown to be equivalent to the maximum-likelihood es-

Figure 3. Efficacy of computational pile-up correction ap-

proaches [7]. (a) In low ambient light, there is negligible pile-

up. (b) At moderate ambient light levels, pile-up can be observed

as a characteristic exponential fall-off in the acquired histogram.

The signal pulse location can still be recovered using computa-

tional correction (Section 4). (c) In strong ambient light, the later

histogram bins receive very few photons, which makes the com-

putationally corrected waveform extremely noisy, making it chal-

lenging to reliably locate the laser peak for estimating depth.

timate of ri [27]. See supplementary document for a self-

contained proof. The depth can then be estimated as:

τ̂ = argmax
1≤i≤B

r̂i. (7)

Although this computational approach removes distortion,

the non-linear mapping from measurements Ni to the esti-

mate r̂i significantly amplifies measurement noise at later

time bins, as shown in Fig. 3.

Pile-up vs. Low Signal Tradeoff: One way to mitigate pile

up is to reduce the total incident photon flux (e.g., by re-

ducing the aperture or SPAD size). Various rules-of-thumb

[2, 15] advocate maintaining a low enough photon flux so

that only 1-5% of the laser cycles result in a photon being

detected by the SPAD. In this case, ri ≪ 1 ∀ i and Eq. (3)

simplifies to pi ≈ ri. Therefore, the mean photon counts

Ni become proportional to the incident waveform ri, i.e.,

E[Ni] = Npi ≈ Nri. This is called the linear operation

regime because the measured histogram (Ni)
B
i=1 is, on av-

erage, simply a scaled version of the true incident waveform

(ri)
B
i=1. This is similar to the case of no ambient light as

discussed above, where depths can be estimated by locating

the histogram bin with the highest photon counts.

Although lowering the overall photon flux to operate in

the linear regime reduces ambient light and prevents pile-up

distortion, unfortunately, it also reduces the source signal

considerably. On the other hand, if the incident photon flux

is allowed to remain high, the histogram suffers from pile-

up, undoing which leads to amplification of noise. This fun-

damental tradeoff between pile-up distortion and low signal

raises a natural question: What is the optimal incident flux

level for the problem of depth estimation using SPADs?
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Figure 4. Bin receptivity curves (BRC) for different attenua-

tion levels. (a-b) Large (extreme) attenuation results in flat BRC

with no pile-up, but low signal level. No attenuation results in a

distorted BRC, but higher signal level. The proposed optimal at-

tenuation level achieves a BRC with both low distortion, and high

signal. (c) The optimal attenuation factor is given by the maxima

location (unique) of the minimum value of BRC.

5. Bin Receptivity and Optimal Flux Criterion

In this section, we formalize the notion of optimal inci-

dent photon flux for a SPAD-based LiDAR. We model the

original incident waveform as a constant ambient light level

Φbkg, with a single source light pulse of height Φsig. We as-

sume that we can modify the incident waveform only by

attenuating it with a scale factor Υ ≤ 1. This attenuates

both the ambient Φbkg and source Φsig components propor-

tionately. 4 Then, given a Φbkg and Φsig, the total photon

flux incident on the SPAD is determined by the factor Υ.

Therefore, the problem of finding the optimal total incident

flux can be posed as determining the optimal attenuation Υ.

To aid further analysis, we define the following term.

Definition 1. [Bin Receptivity Coefficient] The bin recep-

tivity coefficient Ci of the ith histogram bin is defined as:

Ci =
pi
ri
r , (8)

where pi is the probability of detecting a photon (Eq. (3)),

and ri is the average number of incident photons (Eq. (2))

in the ith bin. r is the total incident flux r =
∑B

i=1 ri . The

bin receptivity curve (BRC) is defined as the plot of the bin

receptivity coefficients Ci as a function of the bin index i.
The BRC can be considered an intuitive indicator of the

performance of a SPAD LiDAR system, since it captures the

pile-up vs. shot noise tradeoff. The first term pi

ri
quantifies

the distortion in the shape of the measured histogram with

respect to the ideal incident waveform, while the second

term r quantifies the strength of the signal. Figs. 4 (a-b)

show the BRCs for high and low incident flux, achieved

by using a high and low attenuation Υ, respectively. For

small Υ (low flux), the BRC is uniform (negligible pile-

up, as pi

ri
≈ 1 is approximately constant across i), but the

curve’s values are small (low signal). For large Υ (high

flux), the curve’s values are large on average (large signal),

4It is possible to selectively attenuate only the ambient component, to a

limited extent, via spectral filtering. We assume that the ambient level Φbkg

is already at the minimum level that is achievable by spectral filtering.

but skewed towards earlier bins (strong pile-up, as pi

ri
varies

considerably from ≈ 1 for earlier bins to ≪ 1 for later bins).

Higher the flux, larger the variation in pi

ri
over i.

BRC as a function of attenuation factor Υ: Assuming

total background flux BΦbkg over the entire laser period

to be considerably stronger than the total source flux, i.e.,

Φsig ≪ BΦbkg, the flux incident in the ith time bin can be

approximated as ri ≈ r/B. Then, using Eqs. (8) and (3), the

BRC can be expressed as:

Ci = B (1− e−
r

B ) e−(i−1) r

B . (9)

Since total incident flux r = Υ (Φsig +B Φbkg), and we

assume Φsig ≪ BΦbkg, r can be approximated as r ≈
ΥB Φbkg. Substituting in Eq. (9), we get an expression for

BRC as a function only of the attenuation Υ, for a given

number of bins B and a background flux Φbkg:

Ci(Υ) = B (1− e−ΥΦbkg) e−(i−1)ΥΦbkg . (10)

Eq. (10) allows us to navigate the space of BRCs, and

hence, the shot noise vs. pile-up tradeoff, by varying a sin-

gle parameter: the attenuation factor Υ. Based on Eq. (10),

we are now ready to define the optimal Υ.

Result 1 (Attenuation and Probability of Depth Error).

Let τ be the true depth bin and τ̂ the estimate obtained us-

ing the Coates’s estimator (Eq.(7)). An upper bound on the

average probability of depth error
∑B

τ=1 P(τ̂ 6= τ) is mini-

mized when the attenuation fraction is given by:

Υopt = argmax
Υ

min
i

Ci(Υ). (11)

See the supplementary technical report for a proof. This

result states that, given a signal and background flux, the

optimal depth estimation performance is achieved when the

minimum bin receptivity coefficient is maximized.

From Eq. (10) we note that for a fixed Υ, the small-

est receptivity value is attained at the last bin i = B, i.e.,

mini Ci(Υ) = CB(Υ). Substituting in Eq. (11), we get:

Υopt = argmax
Υ

CB(Υ).

Using CB(Υ) from Eq. (10) and solving for Υ, we get:

Υopt =
1

Φbkg

log

(
B

B − 1

)
.

Finally, assuming that B ≫ 1, we get log
(

B
B−1

)
≈ 1

B
.

Since B = 2dmax/c∆, where dmax is the unambiguous depth

range, the final optimality condition can be written as:

Υopt =
c∆

2 dmax Φbkg

.

︸ ︷︷ ︸
Optimal Flux Attenuation Factor

(12)

Geometric interpretation of the optimality criterion:

Result 1 can be intuitively understood in terms of the space

of shapes of the BRC. Figs. 4 (a-b) shows the effect of
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three different attenuation levels on the BRC of a SPAD

exposed to high ambient light. When no attenuation is

used, the BRC decays rapidly due to strong pile-up. Cur-

rent approaches [2, 15] that use extreme attenuation 5 make

the BRC approximately uniform across all histogram bins,

but very low on average, resulting in extremely low signal.

With optimal attenuation, the curve displays some degree

of pile-up, albeit much lower distortion than the case of

no attenuation, but considerably higher values, on average,

compared to extreme attenuation. Fig. 4 (c) shows that the

optimal attenuation factor is given by the unique maxima

location of the minimum value of BRC.

Choice of optimality criterion: Ideally, we should mini-

mize the root-mean-squared depth error (RMSE or L2) in

the design of optimal attenuation. However, this leads to

an intractable optimization problem. Instead, we choose

an upper bound on mean probability of depth error (L0)
as a surrogate metric, which leads to a closed form mini-

mizer. Our simulations and experimental results show that

even though Υopt is derived using a surrogate metric, it also

approximately minimizes L2 error, and provides nearly an

order of magnitude improvement in L2 error.

Estimating Φbkg: In practice, Φbkg is unknown and may

vary for each scene point due to distance and albedo. We

propose a simple adaptive algorithm (see supplement) that

first estimates Φbkg by capturing data over a few initial cy-

cles with the laser source turned off, and then adapts the

attenuation at each point by using the estimated Φbkg in

Eq. (11) on a per-pixel basis.

Implications of the optimality criterion: Note that Υopt is

quasi-invariant to scene depths, number of cycles, as well as

the signal strength Φsig (assuming Φsig ≪ BΦbkg). Depth-

invariance is by design—the optimization objective in Re-

sult 1 assumes a uniform prior on the true depth. As seen

from Eq. (11), this results in an Υopt that doesn’t depend

on any prior knowledge of scene depths, and can be eas-

ily computed using quantities that are either known (∆ and

dmax) or can be easily estimated in real-time (Φbkg). The op-

timal attenuation fraction can be achieved in practice using

a variety of methods including aperture stops, varying the

SPAD quantum efficiency, or with ND-filters.

6. Empirical Validation using Simulations

Simulated single-pixel mean depth errors: We per-

formed Monte Carlo simulations to demonstrate the effect

of varying attenuation on the mean depth error. We assumed

a uniform depth distribution over a range of 1000 time bins.

5For example, consider a depth range of 100m and a bin resolution of

∆ = 100 ps. Then, the 1% rule of thumb recommends extreme attenu-

ation so that each bin receives ≈ 1.5 × 10−6 photons. In contrast, the

proposed optimality condition requires that, on average, one background

photon should be incident on the SPAD, per laser cycle. This translates to

≈ 1.5× 10−4 photons per bin, which is orders of magnitude higher than

extreme attenuation, and, results in considerably larger signal and SNR.

Figure 5. Simulation based validation. (Top row) The values

of no, extreme, and optimal attenuation are indicated by dotted

vertical lines. In each of the three plots, the value of optimal at-

tenuation is approximately invariant to source power level. The

optimal attenuation factor depends only on the fixed ambient light

level. (Bottom row) For fixed values of source power, the optimal

attenuation factor increases as ambient light decreases. The loca-

tions of theoretically predicted optimal attenuation (dotted vertical

lines) line up with the valleys of the depth error curves.

Figure 6. Neural network based reconstruction for simula-

tions. Depth and error maps for neural networks-based depth es-

timation, under different levels of ambient light and attenuation.

Extreme attenuation denotes average ΥBΦbkg = 0.05. Optimal

attenuation denotes ΥBΦbkg = 1. % inliers denotes the percent-

age of pixels with absolute error < 36 cm. Φsig = 2 for all cases.

Eq. (6) was used to estimate depths. Fig. 5 shows plots of

the relative RMSE as a function of attenuation factor Υ, for

a wide range of Φbkg and Φsig values.

Each plot in the top row corresponds to a fixed ambient

flux Φbkg. Different lines in a plot correspond to different

signal flux levels Φsig. There are two main observations
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Figure 7. Validation of optimal attenuation using hardware

experiments. These plots have the same layout as the simulations

of Fig. 5. As in simulations, the theoretically predicted locations of

the optimal attenuation match the valleys of the depth error curves.

to be made here. First, the optimal attenuation predicted

by Eq. (12) (dotted vertical line) agrees with the locations

of the minimum depth error valleys in these error plots.6

Second, the optimal attenuation is quasi-independent of the

signal flux Φsig, as predicted by Eq. (12). Each plot in the

second row corresponds to a fixed source flux Φsig; different

lines represent different ambient flux levels. The predicted

optimal attenuation align well with the valleys of respective

lines, and as expected, are different for different lines.

Improvements in depth estimation performance: As

seen from all the plots, the proposed optimal attenuation cri-

terion can achieve up to 1 order of magnitude improvement

in depth estimation error as compared to extreme or no at-

tenuation. Since most valleys are relatively flat, in general,

the proposed approach is robust to uncertainties in the es-

timated background flux, and thus, can achieve high depth

precision across a wide range of illumination conditions.

Validation on neural networks-based depth estimation:

Although the optimality condition is derived using an an-

alytic pixel-wise depth estimator [7], in practice, it is

valid for state-of-the-art deep neural network (DNN) based

methods that exploit spatio-temporal correlations in natural

scenes. We trained a convolutional DNN [17] using simu-

lated pile-up corrupted histograms, generated using ground

truth depth maps from the NYU depth dataset V2 [19], and

tested on the Middlebury dataset [32]. For each combina-

tion of ambient flux, source flux and attenuation factor, a

separate instance of the DNN was trained on corresponding

training data, and tested on corresponding test data to ensure

a fair comparison across the different attenuation methods.

Fig. 6 shows depth map reconstructions at different lev-

els of ambient light. If no attenuation is used with high am-

6As explained in the supplement, the secondary dips in these error plots

at high flux levels are an artifact of using the Coates’s estimator, and are

removed by using more sophisticated estimators such as MAP.

Figure 8. 3D reconstruction of a mannequin face (a) A man-

nequin face illuminated by bright ambient light. The laser spot is

barely visible. (b) Representative histograms acquired from the

laser position shown in (a). With extreme and no attenuation,

the peak corresponding to the scene depth is barely identifiable.

With optimal attenuation, the peak can be extracted reliably. (c-d)

The depth reconstructions using no and extreme attenuation suf-

fer from strong pile-up and shot noise, (e) Optimal attenuation

achieves an order of magnitude higher depth precision, even en-

abling recovery of fine details.

bient light, the acquired data is severely distorted by pile-up,

resulting in large depth errors. With extreme attenuation,

the DNN is able to smooth out the effects of shot noise,

but results in blocky edges. With optimal attenuation, the

DNN successfully recovers the depth map with consider-

ably higher accuracy, at all ambient light levels.

7. Hardware Prototype and Experiments

Our hardware prototype is similar to the schematic

shown in Fig. 1. We used a 405 nm wavelength, pulsed,

picosecond laser (PicoQuant LDH P-C-405B) and a co-

located fast-gated single-pixel SPAD detector [4] with a

200 ns dead time. The laser repetition rate was set to 5 MHz

corresponding to dmax = 30m. Photon timestamps were

acquired using a TCSPC module (PicoQuant HydraHarp

400). Due to practical space constraints, various depths cov-

ering the full 30m of unambiguous depth range in Fig. 7

were emulated using a programmable delayer module (Mi-

cro Photon Devices PSD). Similarly, all scenes in Figs. 8, 9

and 10 were provided with a depth offset of 15m using the

PSD, to mimic long range LiDAR.

Single-pixel Depth Reconstruction Errors: Fig. 7 shows

the relative depth errors that were experimentally acquired
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Figure 9. Depth estimation with varying attenuation. The average ambient illuminance of the scene was 15 000 lx. With no attenuation,

most parts are affected by strong pile-up, resulting in several outliers. For extreme attenuation, large parts of the scene have very low SNR.

In contrast, optimal attenuation achieves high depth estimation performance for nearly the entire object. (15m depth offset removed.)

Figure 10. Ambient-adaptive Υ
opt. This scene has large ambient brightness variations, with both brightly lit regions (right) and shadows

(left). Pixel-wise ambient flux estimates were used to adapt the optimal attenuation, as shown in the attenuation map. The resulting

reconstruction achieves accurate estimates, both in shadows and brightly lit regions. (15m depth offset removed.)

over a wide range of ambient and source flux levels and dif-

ferent attenuation factors. These experimental curves fol-

low the same trends observed in the simulated plots of Fig. 5

and provide experimental validation for the optimal flux cri-

terion in the presence of non-idealities like jitter and after-

pulsing effects, and for a non-delta waveform.

3D Reconstructions with Point Scanning: Figs. 8 and 9

show 3D reconstruction results of objects under varying at-

tenuation levels, acquired by raster-scanning the laser spot

with a two-axis galvo-mirror system (Thorlabs GVS-012).

It can be seen from the histograms in Fig. 8 (b) that extreme

attenuation almost completely removes pile-up, but also re-

duces the signal to very low levels. In contrast, optimal

attenuation has some residual pile-up, and yet, achieves ap-

proximately an order of magnitude higher depth precision

as compared to extreme and no attenuation. Due to rela-

tively uniform albedos and illumination, a single attenua-

tion factor for the whole scene was sufficient.

Fig. 10 shows depth maps for a complex scene contain-

ing a wider range of illumination levels, albedo variations

and multiple objects over a wider depth range. The optimal

scheme for the “Blocks” scene adaptively chooses different

attenuation factors for the parts of the scene in direct and

indirect ambient light.7 Adaptive attenuation enables depth

reconstruction over a wide range of ambient flux levels.

7 In this proof-of-concept, we acquired multiple scans at different at-

tenuations, and stitched together the final depth map in post-processing.

8. Limitations and Future Outlook

Achieving uniform depth precision across depths: The

optimal attenuation derived in this paper results in a high

and relatively less skewed BRC (as shown in Fig. 4), result-

ing in high depth precision across the entire depth range.

However, since the optimal curve has some degree of pile-

up and is monotonically decreasing, later bins correspond-

ing to larger depths still incur larger errors. It may be pos-

sible to design a time-varying attenuation scheme that gives

uniform depth estimation performance.

Handling non-impulse waveforms: Our analysis assumes

ideal delta waveform, as well as low source power, which

allows ignoring the effect of pile-up due to the source it-

self. For applications where source power is comparable

to ambient flux, a next step is to optimize over non-delta

waveforms [13] and derive the optimal flux accordingly.

Multi-photon SPAD LiDAR: With recent improvements

in detector technology, SPADs with lower dead times (tens

of ns) can be realized, which enable capturing more than

one photon per laser cycle. This includes multi-stop TC-

SPC electronics and SPADs that can be operated in the free-

running mode, for which imaging models and estimators

have been proposed recently [30, 14]. An interesting future

direction is to derive optimal flux criterion for such multi-

photon SPAD-based LiDARs.
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