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Abstract

Object class labelling is the task of annotating images

with labels on the presence or absence of objects from a

given class vocabulary. Simply asking one yes/no question

per class, however, has a cost that is linear in the vocabu-

lary size and is thus inefficient for large vocabularies. Mod-

ern approaches rely on a hierarchical organization of the

vocabulary to reduce annotation time, but remain expensive

(several minutes per image for the 200 classes in ILSVRC).

Instead, we propose a new interface where classes are an-

notated via speech. Speaking is fast and allows for direct

access to the class name, without searching through a list

or hierarchy. As additional advantages, annotators can si-

multaneously speak and scan the image for objects, the in-

terface can be kept extremely simple, and using it requires

less mouse movement. As annotators using our interface

should only say words from a given class vocabulary, we

propose a dedicated task that trains them to do so. Through

experiments on COCO and ILSVRC, we show our method

yields high-quality annotations at 2.3×− 14.9× less anno-

tation time than existing methods.

1. Introduction

Deep neural networks need millions of training exam-

ples to obtain high performance. Therefore, large and di-

verse datasets such as ILSVRC [6], COCO [16] or Open

Images [14] lie at the heart of the breakthrough and ongo-

ing advances in visual recognition.

Datasets for recognition are typically annotated in two

stages [6, 14, 16, 30] (Fig. 1): (i) determining the presence

or absence of object classes in each image, and (ii) provid-

ing bounding boxes or segmentation masks for all classes

present. Our work focuses on the former, which we call ob-

ject class labelling. As marking a class as present requires

finding at least one object of that class, we also ask annota-

tors to click on it (as also done for the COCO dataset [16]).

This task is not only natural, it also helps the subsequent

annotation stages [16], and can be used as input to weakly-

supervised methods [1, 18, 19, 25].

Object class labelling has traditionally been time-

Figure 1: Illustration of common stages of image annotation: typ-

ically annotators first provide object class labels at the image-

level [6, 14] (red), sometimes associated to a specific object via

a click as in [16] and our approach (green). Following stages then

annotate the spatial extent of objects, e.g. with bounding boxes or

segmentations (yellow).

consuming for annotators. A naı̈ve approach is to ask a sep-

arate yes/no question for each class of a given vocabulary.

Such a protocol is rooted on the vocabulary, not the image

content. It scales linearly in the size of the vocabulary, even

when only few of the classes are present in the image (which

is the typical case). Thus, it becomes very inefficient when

the vocabulary is large. Let’s take the ILSVRC dataset as

an example: getting labels for the 200 object classes in the

vocabulary would take close to 6 minutes per image [13],

despite each image containing only 1.6 classes on average.

Previous methods have attempted to improve on this by us-

ing a hierarchical representation of the class vocabulary to

quickly reject certain groups of labels [7, 16]. This reduces

the annotation complexity to sub-linear in the vocabulary

size. But even with these sophisticated methods, object

class labelling remains time consuming. Using the hierar-

chical method of [7] to label the 200 classes of ILSVRC

still takes 3 minutes per image [29]. The COCO dataset has

fewer classes (80) and was labelled using the more efficient

hierarchical method of [16]. Even so, it still took half a

minute per image.

In this paper, we improve upon these approaches by us-
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ing speech as an input modality. Given an image, annotators

scan it for objects and mark one per class by clicking on it

and saying its name. This task is rooted on the image con-

tent and naturally scales with the number of object classes

in the image. Using speech has several advantages: (i) it

allows for direct access to the class name via simply saying

it, rather than requiring a hierarchical search. (ii) it does

not require the experiment designer to construct a natural,

intuitive hierarchy, which becomes difficult as the class vo-

cabulary grows [28]. (iii) combining speaking with pointing

is natural and efficient: when using multimodal interfaces,

people naturally choose to point for providing spatial infor-

mation and to speak for semantic information [22]. Also,

these two tasks can be done concurrently [11, 22]. (iv) As

the class label is provided via speech, the task requires less

mouse movement and the interface becomes extremely sim-

ple (no need to move back and forth between the image and

the class hierarchy representation). (v) Finally, speaking is

fast, e.g. people can say 150 words per minute when de-

scribing images [31]. In comparison, people normally type

at 30-100 words per minute [3, 12]. Thanks to the above

points, our interface is more time efficient than hierarchical

methods.

Using speech as an input modality, however, poses cer-

tain challenges. In order to reliably transcribe speech to

text, several technical challenges need to be tackled, such

as segmenting the speech and obtaining high-accuracy tran-

scriptions. Furthermore, as speech is free-form in nature,

annotators need to be trained to know the class vocabulary

to be annotated in order to not label other objects or for-

get to annotate some classes. We show how to tackle these

challenges and design an annotation interface that allows

for fast and accurate object class labelling.

In our extensive experiments we:

• Show that speech provides a fast way for object class

labelling: 2.3× faster on the COCO dataset [16] than

the hierarchical approach of [16], and 14.9× faster

than [7] on ILSVRC [28].

• Demonstrate the ability of our method to scale to large

vocabularies.

• Show that our interface enables to carry out the task

with 3× shorter mouse paths than [16].

• Show that through our training task annotators learn to

use the provided vocabulary for naming objects with

high fidelity.

• Analyse the accuracy of models for automatic speech

recognition (ASR) and show that it supports deriving

high-quality annotations from speech.

2. Related Work

Using speech as an input modality has a long history [2]

and is recently emerging as a research direction in Com-

puter Vision [4, 9, 31, 32]. To the best of our knowledge,

however, our paper is the first to show that speech allows

for more efficient object class labelling than the prevailing

hierarchical approaches [7, 16] . We now discuss previous

works in the areas of leveraging speech, efficient image an-

notation and learning from point supervision.

Leveraging speech inputs. To point and speak is an ef-

ficient and natural way of human communication. Hence,

this approach was quickly adopted when designing com-

puter interfaces: as early as 1980, Bolt [2] investigates using

speech and gestures for manipulating shapes. Most previous

works in this space analyse what users choose when offered

different input modalities [10, 21, 22, 23], while only a few

approaches focus on the added efficiency of using speech.

The most notable such work is [26], which measures the

time needed to create a drawing in MacDraw. They com-

pare using the tool as is, which involves selecting com-

mands via the menu hierarchy, to using voice commands.

They show that using speech gives an average speedup of

21% and mention this is a “lower bound”, as the tool was

not designed with speech in mind.

In Computer Vision, Vasudevan et al. [32] detect objects

given spoken referring expressions, while Harwath et al. [9]

learn an embedding from spoken image-caption pairs. Their

approach obtains promising first results, but still performs

inferior to learning on top of textual captions obtained from

Google’s automatic speech recognition. Damen et al. [5]

annotates the EPIC-KITCHENS dataset based on spoken

free-form narratives, which cover only some of the objects

present in the image. Moreover, these narratives are tran-

scribed manually, and then object class labels are derived

from transcribed nouns, again manually. Instead, our ap-

proach is fully automatic and we exhaustively label all ob-

jects from a given vocabulary. Finally, more closely related

to our work, Vaidyanathan et al. [31] re-annotated a subset

of COCO with spoken scene descriptions and human gaze.

While efficient, free-form scene descriptions are more noisy

when used for object class labelling, as annotators might re-

fer to objects with ambiguous names, mention nouns that do

not correspond to objects shown in the image [31], or there

might be inconsistencies in naming the same object classes

across different annotators. Our approach avoids the addi-

tional complexities of parsing free-form sentences to extract

object names and gaze data to extract object locations.

Sub-linear annotation schemes. The naı̈ve approach to

annotating the presence of object classes grows linearly

with the size of the vocabulary (one binary present/absent

question per class). The idea behind sub-linear schemes

is to group the classes into meaningful super-classes, such

that several of them can be ruled out at once. If a super-

class (e.g. animals) is not present in the image, then one

can skip the questions for all its subclasses (cat, dog, etc.).

This grouping of classes can have multiple levels. The an-

notation schemes behind COCO [16] and ILSVRC [7, 28]

5366



datasets both fall into this category, but they differ in how

they define and use the hierarchy.

ILSVRC [28] was annotated using a series of hierar-

chical questions [7]. For each image, 17 top-level ques-

tions were asked (e.g. “Is there a living organism?”). For

groups that are present, more specific questions are asked

subsequently, such as “Is there a mammal?”, “Is there a

dog?”, etc. The sequence of questions for an image is

chosen dynamically, such that the they allow to eliminate

the maximal number of labels at each step [7]. This ap-

proach, however, involves repeated visual search, in con-

trast to ours, which is guided by the annotator scanning the

image for objects, done only once. Overall, this scheme

takes close to 3 minutes per image [29] for annotating the

200 classes of ILSVRC. On top of that, constructing such a

hierarchy is not trivial and influences the final results [28].

In the protocol used to create COCO [16], annotators are

asked to mark one object for each class present in an im-

age by choosing its symbol from a two-level hierarchy and

dragging it onto the object (Fig. 4). While this allows to

take the image, rather than the questions as the root of the

labelling task, it requires repeatedly searching for the right

class in the hierarchy, which induces significant time cost.

In our interface, such an explicit class search is not needed,

which speeds up the annotation process.

Rather than using a hierarchy, Open Images [14] uses an

image classifier to create a shortlist of object classes likely

to be present, which are then verified by annotators using

binary questions. The shortlist is generated using a pre-

defined threshold on the classifier scores. Thus, this ap-

proach trades off completeness for speed. In practice, [14]

asks annotators to verify 10 out of 600 classes, but report

a rather low recall of 59%, despite disregarding “difficult”

objects in evaluation.

Point supervision. The output of our annotation interface

is a list of all classes present in the image with a point

on one object for each. This kind of labelling is efficient

and provides useful supervision for several image [1,15,25]

and video [18, 19] object localization tasks. In particu-

lar, [1, 18, 25] show that for their task, point clicks deliver

better models than other alternatives when given the same

annotation budget.

3. Speech-based annotation

We now describe our annotation task, which produces

a series of time-stamped click positions {pi} and an audio

recording for each image (Sec. 3.1). From this, we obtain

object class labels by associating audio segments to clicks

and then transcribing the audio (Sec. 3.2). Before annota-

tors can proceed to the main task, we require them to pass a

training stage. This helps them memorise the class vocabu-

lary and get confident with using the interface (Sec. 3.3).

Figure 2: Our interface. Given an image the annotator is asked to

click on one object per class and say its name. To aid memory, we

additional allow to review the class vocabulary through the “Show

classes” button.

3.1. Annotation task

First, annotators are presented with the class vocabulary

and instructed to memorise it. Then, they are asked to label

images with object classes from the vocabulary, by scanning

the image and saying the names of the different classes they

see. Hence, this is a simple visual search task that does not

require any context switching. While we are primarily in-

terested in object class labels, we ask annotators to click on

one object for each class, as the task naturally involves find-

ing objects anyway. Also, this brings valuable additional

information, and matches the COCO protocol, allowing for

direct comparisons (Sec. 4.1). Fig. 2 shows the interface

with an example image.

To help annotators restrict the labels they provide to the

predefined vocabulary, we allow them to review it using a

button that shows all class names including their symbols.

3.2. Temporal segmentation and transcription

In order to assign class names to clicks, we need to tran-

scribe the audio and temporally align the transcriptions. To

obtain transcriptions and their start and end time we rely

on Google’s automatic speech recognition API1. While it

would be possible to first transcribe the full audio recording

and then match the transcriptions to clicks, we found that

the temporal segmentation of transcriptions is error-prone.

Hence, we opt to first segment the audio recording based on

the clicks’ timestamps and then transcribe these segments.

Temporal segmentation of the recording. We create an

object annotation oi for each click at position pi and time

1https://cloud.google.com/speech-to-text/
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(a)

(b)

Figure 3: Training process. 3a shows the training task: marking

an object per class with a click and saying and writing its name.

3b shows the feedback provided after each image.

ti. For each object annotation we create an audio segment

[ti−δ, ti+1], i.e. an interval ranging from shortly before the

current click to the next click. Finally, we transcribe these

audio segments and assign the result to their corresponding

object annotations oi. Empirically, using a small validation

set, we found that δ = 0.5s performs best, as people often

start speaking slightly before clicking on the object [22].

Transcribing the object class name. The speech transcrip-

tion provides a ranked list of alternatives. To find the most

likely class in the vocabulary we use the following algo-

rithm: (i) if one or more transcriptions match a class in the

vocabulary, we use the highest ranking; ii) in the rare case

that none matches, we represent the vocabulary and all the

transcriptions using word2vec [20] and use the most similar

class from the vocabulary, according to their cosine similar-

ity. This class ci is then treated as the label of oi.

3.3. Annotator training

Before tackling the main task, annotators go through a

training stage which provides feedback after every image

and also aggregated statistics after 80 images. If they meet

our accuracy targets, they can proceed to the main task. If

they fail, they can repeat the training until they succeed.

Purpose of training. Training helps annotators to get con-

fident with an interface and allows to ensure they correctly

solve the task and provide high-quality labels. As a conse-

quence, it has become common practice [14, 16, 25, 28, 30].

While we want to annotate classes from a predefined vo-

cabulary, speech is naturally free-form. In our initial ex-

periments we found that annotators produced lower recall

compared to an interface which displays an explicit list of

classes due to this discrepancy. Hence, we designed our

training task to ensure annotators memorise the vocabulary

and use the correct object names. Indeed, after training an-

notators with this process they rarely use object names that

are not in the vocabulary and obtain a high recall, compara-

ble to [16] (Sec. 4.2 & 4.4).

Training procedure. The training task is similar to the

main task, but we additionally require annotators to type

the words they say (Fig. 3a). This allows to measure tran-

scription accuracy and dissect different sources of error in

the final class labelling (Sec. 4.4). After each image we pro-

vide immediate feedback listing their mistakes, by compar-

ing their answers against a pre-annotated ground truth. This

helps annotators memorise the class vocabulary and learn

to spot all object classes (Fig. 3b). We base this feedback

on the written words, rather than the transcribed audio, for

technical simplicity.

Passing requirements. At the beginning of training, anno-

tators are given targets on the minimum recall and precision

they need to reach. Annotators are required to label 80 im-

ages and are given feedback after every image, listing their

errors on that image, and on how well they do overall with

respect to the given targets. If they meet the targets after

labelling 80 images, they successfully pass training. In case

of failure, they are allowed to repeat the training as many

times as they want.

4. Experiments

Here we present experiments on annotating images us-

ing our speech-based interface and the hierarchical inter-

face of [16]. First, in Sec. 4.1 we reimplement the interface

of [16] and compare it to the official reported results in [16].

Then, we compare our interface to that of [16] on the COCO

dataset, where the vocabulary has 80 classes (Sec. 4.2). In

Sec. 4.3 we scale up annotation to a vocabulary of 200

classes by experimenting on the ILSVRC dataset. Finally,

Sec. 4.4 provides additional analysis such as the transcrip-

tion and click accuracy as well as response times per object.

4.1. Hierarchical interface of [16]

In the interface used for COCO [16], annotators are

asked to mark one object for each class present in an im-

age by choosing its symbol from a two-level hierarchy and

dragging it onto the object. While [16] provides coarse

timings, we opted to re-implement their interface for fair

comparison and to do a detailed analysis on how annotation

time is spent (Fig. 4). First, we made five crowd workers

pass a training task equivalent to that used for our interface

(Sec. 3.3). Then, they annotated a random subset of 300 im-
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Figure 4: Our reimplementation of the hierarchical interface

of [16].

ages of the COCO validation set (each image was annotated

by all workers).

Results. Annotators take 29.9 seconds per image on av-

erage, well in line with the 27.4 seconds reported in [16].

Hence, we can conclude that our implementation is equiva-

lent in terms of efficiency.

Annotators have produced annotations with 89.3% pre-

cision and 84.7% recall against the ground-truth (Tab. 1).

Thus, they are accurate in the labels they provide and re-

cover most object classes. We also note that the COCO

ground-truth itself is not free of errors, hence limiting the

maximal achievable performance. Indeed, our recall and

precision are comparable to the numbers reported in [16].

Time allocation. In order to better understand how an-

notation time is spent, we recorded mouse and keyboard

events. This allows us to estimate the time spent on search-

ing for the right object class in the hierarchy of symbols

and measure the time spent dragging the symbol. On av-

erage, search time is 14.8s and drag time 3.4s per image.

Combined, these two amount to 61% of the total annotation

time, while the rest is spent on other tasks such as visual

search. This provides a target on the time that can be saved

by avoiding these two operations, as done in our interface.

In the remainder of this section, we compare our speech-

based approach against this annotation method.

4.2. Our interface on COCO

In this section we evaluate our approach and compare it

to [16]. Annotations with our interface were done by a new

set of crowd workers, to avoid bias arising from having used
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Figure 5: Our approach vs. the hierarchical interface of [16]. Each

point in the plot corresponds to an individual annotator. F1 score is

the harmonic mean between recall and precision. Dataset: COCO.

the hierarchical interface before. The workers are all Indian

nationals and speak English with an Indian accent. Hence,

we use a model of Indian English for the automatic speech

recognition. We also provide the class vocabulary as phrase

hints2, which is crucial for obtaining high transcription ac-

curacy of these phrases (Sec. 4.4).

Speed and semantic accuracy. Fig. 5 and Tab. 1 show re-

sults. Our method provides a speed-up of 2.3× over [16] at

similar F1 scores (harmonic mean of precision and recall).

In Sec. 4.1 we estimated that annotation could be sped up

by up to 2.6× by avoiding symbol search and dragging. In-

terestingly, our interface provides a speedup close to this

target, confirming its high efficiency.

Despite the additional challenges of handling speech, av-

erage precision is only 2% lower than for [16]. Hence, au-

tomatic speech transcription does not affect label quality

much (we study this further in Sec. 4.4). Recall is almost

identical (0.8% lower), confirming that, thanks our training

task (Sec. 3.3), annotators remember what classes are in the

vocabulary.

Location accuracy. We further evaluate the location accu-

racy of the clicks by using the ground-truth segmentation

masks of COCO. Specifically, given an object annotation

oi with class ci, we evaluate whether its click position pi
lies on a ground-truth segment of class ci. If class ci is not

present in the image at all, we ignore that click in the eval-

uation to avoid confounding semantic and location errors.

This analysis shows that our interface leads to high lo-

cation accuracy: 96.0% of the clicks lie on the object. For

the hierarchical interface it is considerably lower at 90.7%.

While this may seems surprising, it can be explained by the

differences in the way the location is marked. In our inter-

face one directly clicks on the object, while [16] requires

2https://cloud.google.com/speech-to-text/docs/

basics#phrase-hints
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Speech Lin et al. [16] Deng et al. [7]

COCO

Recall 83.9 % 84.7 %

Precision 87.3 % 89.3 %

Time / image 13.1s 29.9s

Time / label 4.5s 11.5s

ILSVRC

Recall 83.4 % 88.6 %

Precision 80.5 % 76.6 %

Time / image 12.0s 31.1s ≈ 179s [29]

Time / label 7.5s 18.4s ≈ 110s [29]

Table 1: Accuracy and speed of our interface (Speech) and hier-

archical approaches [7, 16]. Our interface is significantly faster at

comparable label quality.

dragging a relatively large, semi-transparent class symbol

onto it (Fig. 4).

Parts of the speed gains of our interface are due to

concurrently providing semantic and location information.

However, this could potentially have a negative effect on

click accuracy. To test this, we compare to the click ac-

curacy that the annotators in [1] obtained on the PASCAL

VOC dataset. Their clicks have a location accuracy of

96.7% comparable to our 96.0%, despite the simpler dataset

with larger objects on average, compared to COCO. Hence,

we can conclude that clicking while speaking does not neg-

atively affect location accuracy.

4.3. Our interface on ILSVRC 2014

Here we apply our interface and the hierarchical inter-

face of [16] to a larger vocabulary of 200 classes, using 300

images from the validation set of ILSVRC [28]. For [16]

we manually constructed a two-level hierarchy of symbols,

based on the multiple hierarchies provided by [28]. The hi-

erarchy consists of 23 top-level classes, such as “fruit” and

“furniture”, each containing between 5 to 16 object classes.

Speed and semantic accuracy. Fig. 6 shows a compari-

son to [16] in terms of speed and accuracy, while Fig. 10

shows example annotations obtained with our interface. In

Tab. 1, we also compare to the speed of [7], the method

that was used to annotate this dataset. Our approach is sub-

stantially faster than both: 2.6× faster than [16] and 14.9×
faster than [7]. We also note that [7] only produces a list

of classes present in an image, while our interface and [16]

additionally provide the location of one object per class.

Despite the increased difficulty of annotating this

dataset, which has considerably more classes than COCO,

our interface produces high-quality labels. The F1 score is

similar to that of [16] (81.9% vs. 82.2%). While recall is

lower for our interface, precision is higher.
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Figure 6: Our approach vs. the hierarchical interface [16]. Each

point in the plot corresponds to an individual annotator. Dataset:

LSVRC.

Fig. 7 shows a histogram of the annotation time per im-

age. Most images are annotated extremely fast, despite the

large vocabulary, as most images in this dataset contain few

classes. Indeed, there is a strong correlation between the

number of object classes present in an image and its an-

notation time (rank correlation 0.55). This highlights the

advantage of methods that are rooted on the image content,

rather than the vocabulary: their annotation time is low for

images with few classes. Instead, methods rooted on the

vocabulary cannot exploit this class sparsity to a full extent.

The naı̈ve approach of asking one yes-no questions per class

is actually even slower the fewer objects are present, as de-

termining the absence of a class is slower than confirming

its presence [8].

4.4. Additional analysis of our interface

Time allocation. To understand how much of the annota-

tion time is spent on what, we analyse timings for speaking

and moving the mouse on the ILSVRC dataset. Of the total

annotation time, 26.7% is spent on speaking. The mouse

is moving 74.0% of the total annotation time, and 62.4%

of the time during speaking. The rather high percentage

of time the mouse moves during speaking confirms that hu-

mans can naturally carry out visual processing and speaking

concurrently.

In order to help annotators label the correct classes, we

allowed them to consult the class vocabulary, through a but-

ton on the interface (Fig. 2). This takes 7.2% of the total

annotation time, a rather small share. Annotators consult

the vocabulary in fewer than 20% of the images. When

they consulted it, they spent 7.8 seconds looking at it, on

average. Overall, this shows the annotators feel confident

about the class vocabulary and confirms that our annotator

training stage is effective.

In addition, we analyse the time it takes annotators to

say an object name in Fig. 8, which shows a histogram of
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Figure 7: Histogram of the time required to annotate an image

using our interface. Dataset: ILSVRC.
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Figure 8: Histogram of the time spent saying the object name on

ILSVRC. Saying the object names is fast and usually takes less

than 2 seconds.

speech durations. As can be seen, most names are spoken

in 0.5 to 2 seconds.

Per-click response time. In Fig. 9 we analyse the time

taken to annotate the first and subsequent classes of an im-

age in the COCO dataset. It takes 3.3s to make the first

click on an object, while the second takes 2.0s only. This

effect was also observed by [1]. Clicking on the first object

incurs the cost of the initial visual search across the whole

scene, while the second is a continuation of this search and

thus cheaper [17, 27, 33]. After the second class, finding

more classes becomes increasingly time-consuming again,

as large and salient object classes are already annotated.

Indeed, we find that larger objects are typically annotated

first: object size has a high median rank correlation with

the annotation order (−0.80). Interestingly, on the interface

of [16], this effect is less pronounced (−0.50), as the anno-

tation order is affected by the symbol search and grouping

of classes in the hierarchy. Finally, our analysis shows that

the annotators spent 3.9s between saying the last class name

and submitting the task, indicating that they do a thorough

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 end

Click Number

0

1

2

3

4

5

6

7

T
im

e
 t

a
ke

n
 f

ro
m

 l
a
st

 c
lic

k 
[s

] Time gaps between clicks

Figure 9: Analysis of the time it takes for the first and subsequent

clicks when annotating object classes on the COCO dataset.

final scan of the image to ensure they do not miss any class.

Mouse path length. To better understand the amount of

work required to annotate an image we also analysed the

mean length of the mouse path. We find that on ILSVRC

annotators using [16] move the mouse for a 3.0× greater

length than annotators using our interface. Thus, our inter-

face is not only faster in terms of time, but is also more effi-

cient in terms of mouse movements. The reason is that the

hierarchical interface requires moving the mouse back and

forth between the image and the class hierarchy (Fig. 11).

The shorter mouse path indicates the simplicity and im-

proved ease of use of our interface.

Training time. Training annotators to achieve good per-

formance on the 200 classes of ILSVRC takes 1.6 hours

for our interface, or 1 hour with the hierarchical interface

of [16]. Instead, annotating the full ILSVRC dataset takes

1726 hours with our interface vs. 4474 hours with [16].

Hence, the cost of training is negligible and our interface

is far more efficient than [16] even after taking training into

account.

Transcription accuracy. The annotator training task pro-

vides spoken and written class names for each annotated

object (Sec. 3.3). Using this data we evaluate the accuracy

of the automatic speech recognition (ASR). For this we only

take objects into account if they have transcriptions results

attached. This keeps the analysis focused on transcription

accuracy by ignoring other sources of errors, such as incor-

rect temporal segmentation or annotators simply forgetting

to say the class name after they click on an object.

Tab. 2 shows the transcription accuracy in two setups:

with and without using the vocabulary as phrase hints.

Phrase hints allow to indicate phrases or words that are

likely to be present in the speech and thus help the ASR

model transcribe them correctly more often. Using phrase

hints is necessary to obtain high transcription accuracy.

Thanks to them, Recall@3 is at 96.5% on COCO and 97.5%
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Figure 10: Example annotations on ILSVRC. For each click we show the three alternatives from the ASR model (orange) and the final

class label (green). The first three images show typical annotations produced by our method. The last one shows a failure case: while the

correct name is among the alternatives, an incorrect transcription matching a class name ranks higher, hence the final class label is wrong.

Figure 11: A comparison of typical mouse paths produced when

annotating an image with our interface (green) or with [16] (red).

Circles indicate clicks. Mouse paths for our interface are ex-

tremely short, thanks to its simplicity and naturalness.

on ILSVRC. Hence, the top three transcriptions usually

contain the correct class name, which we then extract as

described in Sec. 3.2.

In fact, we actually consider above numbers to be a lower

bound on the transcription accuracy in the main task, as here

we compare the transcriptions against the raw written class

names, which contain a few spelling mistakes. Moreover,

here the annotators are in the training phase and hence still

learning about the task. Overall, the above evidence shows

that ASR provides high accuracy, definitely good enough

for labelling object class names.

Vocabulary usage. As speech is naturally free-form, we

are interested in knowing how often annotators use object

names that are outside of the vocabulary. Thus, we anal-

yse how often the written class name in the annotator train-

ing task does not match a vocabulary name. We find that

on COCO annotators are essentially only using names from

the vocabulary (99.5% of the cases). On ILSVRC they still

mostly use names from the vocabulary, despite the greater

number of classes which induces a greater risk of misre-

membering their names (96.3% are in vocabulary).

Some of the out-of-vocabulary names are in fact vari-

ations of names in the vocabulary. These cases can be

Recall@1 Recall@3

COCO w/ hints 93.1 % 96.5 %

COCO w/o hints 70.5 % 84.7 %

ILSVRC w/ hints 93.3 % 97.5 %

ILSVRC w/o hints 70.2 % 89.5 %

Table 2: Transcription accuracy. Accuracy is high when using

phrase hints (see text).

mapped to their correct name in the vocabulary as described

in Sec. 3.2. For example, for the ILSVRC dataset some

annotators say “oven”, which gets correctly mapped to

“stove”, and “traffic signal” to “traffic light”. In other cases

the annotators use out-of-vocabulary names because they

actually label object classes that are not in the vocabulary

(e.g. “fork” and “rat”, which are not classes of ILSVRC).

We find that our annotator training task helps reducing

the use of out-of-vocabulary names: on ILSVRC the use

of vocabulary names increases from 96.3% in training to

97.5% in the main task.

5. Conclusion

We proposed a novel approach for fast object class la-

belling, a task that has traditionally been very time consum-

ing. At the core of our method lies speech: annotators label

images simply by saying the names of the object classes

that are present. In extensive experiments on COCO and

ILSVRC we have shown the benefits of our method: it of-

fers considerable speed gains of 2.3×−14.9× over previous

methods [7,16]. Finally, we have conducted a detailed anal-

ysis of our and previous interfaces, hence providing helpful

insights for building efficient annotations tools.

We believe that speech will be useful for other tasks that

combine annotating semantic and geometric properties, be-

cause speaking and moving the mouse can naturally be done

concurrently [22]. In fact, our ongoing work shows that

when annotating bounding boxes, class labels can be anno-

tated without additional cost.
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