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Abstract

This paper presents a novel method for rare event de-

tection from an image pair with class-imbalanced datasets.

A straightforward approach for event detection tasks is to

train a detection network from a large-scale dataset in an

end-to-end manner. However, in many applications such

as building change detection on satellite images, few posi-

tive samples are available for the training. Moreover, scene

image pairs contain many trivial events, such as in illumi-

nation changes or background motions. These many trivial

events and the class imbalance problem lead to false alarms

for rare event detection. In order to overcome these diffi-

culties, we propose a novel method to learn disentangled

representations from only low-cost negative samples. The

proposed method disentangles different aspects in a pair

of observations: variant and invariant factors that repre-

sent trivial events and image contents, respectively. The

effectiveness of the proposed approach is verified by the

quantitative evaluations on four change detection datasets,

and the qualitative analysis shows that the proposed method

can acquire the representations that disentangle rare events

from trivial ones.

1. Introduction

In the field of computer vision, event detection from an

image pair has been comprehensively studied as image sim-

ilarity estimation. Similarity estimation between images is

one of the fundamental problems, which can be applied for

many tasks, such as change detection [11, 14, 20, 25], image

retrieval and matching [3, 23, 33], identification [26, 31],

and stereo matching [9, 34]. Thanks to the recent success

of deep features, the image comparison methods have sub-

stantially progressed. However, a general draw back is that

they require a large amount of dataset to fully utilize the

representational power of the deep features.

In the context of image similarity estimation, this paper

considers a particular task of detecting rare events from an

image pair, such as detecting building changes on a pair

of satellite images, or detecting manufacturing defects by
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Figure 1. The overall concept of the proposed model. From

the negative image pairs, the representation learning model (left)

learns features that are invariant to trivial events. The rare event

detector (right) is then trained on the learned invariant features.

comparing images of products. One challenge of the task

lies in the difficulty of collecting training samples. Because

finding rare samples is labor intensive task, the training

dataset often includes few positive samples. Additionally,

image pairs often contain many cumbersome events that are

not of interest (e.g., illumination changes, registration er-

ror of images, shadow changes, background motion, or sea-

sonal changes). These many trivial events and the class im-

balance problem lead to false alarms for trivial events, or

overlooking the rare events.

In order to overcome these difficulties, we propose a

novel network architecture for disentangled representation

learning using only low-cost negative image pairs. Figure 1

demonstrates the overall concept of the proposed method.

The proposed network is trained to encode each image into

the two separated features, specific and common, by intro-

ducing a similarity constraint between the image contents.

The common features represent image contents that is in-

variant to trivial events, and the specific features represent a

mixture of information related to trivial events (e.g., illumi-

nation, shadows, or background motion). This disentangle-

ment can be learned using only low-cost negative samples

because negative samples contain rich information about

trivial events. Once we have acquired the common features,

we can build rare event detectors on the learned representa-

tions using small amount of training samples.
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The effectiveness of the proposed method on the class-

imbalance scenario is verified by the quantitative evalua-

tions on four change detection datasets, including in-the-

wild datasets. In addition, the qualitative analysis shows

that the proposed method successfully learns the disentan-

gled representation for both rare events and trivial ones in

the image pairs. The contributions of this work are as fol-

lows:

• We propose a novel solution to the class imbalance

problem in rare event detection tasks, which has not

been fully studied in the past literature.

• We propose a novel representation learning method

that only requires pairs of observations to learn dis-

entangled representations.

• We create a new large-scale change detection dataset

from the open data repository of Washington D.C.

2. Related Work

In change detection tasks, several works have attempted

to overcome the difficulties of data collection and cumber-

some trivial events as described in the previous section. In

order to save the cost of annotation, [13] proposed a weakly

supervised method that requires only image-level labels to

train their change segmentation models. Although their

work saves the pixel-level annotation cost, it still requires

image-level labels, which are still difficult to collect for rare

change events. To address trivial events, several works on

video surveillance tasks [4, 24] utilize background model-

ing techniques in which foreground changes are detected as

outliers. However, these works assume a continuous frame

as the input, and their application is limited to change de-

tection in video frames. [12] proposed a semi-supervised

method to detect damaged areas from pairs of satellite im-

ages. In their method, a bag-of-visual-words vector is ex-

tracted for hierarchical shape descriptors and a support vec-

tor machine classifier is trained on the extracted features.

Since their method is based on the carefully chosen feature

descriptors specialized for their task, the method lacks gen-

eralizability for application in other domains.

Disentangled representation learning is an actively stud-

ied field. [27] proposed a generative adversarial network

(GAN) framework to learn disentangled representation for

pose and identity of a face using encoder-decoder archi-

tecture with auxiliary variables inserted in its latent code.

[18] proposed a GAN model that can generate synthetic im-

ages conditioned on category labels. [22] proposed a semi-

supervised method to learn disentangled representation by

introducing graphical model structure between the encoder

and decoder of a standard variational auto-encoder (VAE).

A drawback of these methods is that during training, they

require explicit labels for the target factor of variation. As

for an unsupervised approach, [8] proposed a method that

learns disentangled representation by maximizing mutual

information between a small subset of latent codes and a

generated image. However, this method cannot control the

disentanglement so that the desired factor of variations is

represented in a certain latent code. Some works utilize

groups of observations as weak supervision. [16] trains a

target latent unit on grouped mini-batches that include only

one factor of variation. [5] and [17] proposed a method that

effectively disentangles intra-class and inter-class variations

using groups of images sharing the same class labels. Our

work is similar to the three works mentioned above. The

difference is that our work assumes weaker conditions; that

is, our method only requires pairs of observations and does

not require aligned observations or class labels. Recently,

multi-view image generation method that only use a paired

observation for feature disentanglement is proposed in [7].

The method that is most related to our work is Domain

Separation Network (DSN) [6]. DSN decomposes an im-

age into a common and a specific factors between two dif-

ferent image domains. To learn the disentanglement, DSN

penalizes distance between marginals of common features:

D(p(zA) ‖ p(zB)), where p(zA) = Ep(xA)[p(zA|xA)] and

p(zB) = Ep(xB)[p(zB |xB)]. While the method is effective

on domain adaptation tasks, it is not applicable to image

comparison tasks such as rare event detection. This is be-

cause the image comparison tasks do not assume domain

bias across p(xA) and p(xB) that is essential for DSN to

learn the disentanglement. On the other hand, our method

penalizes the distance between the posteriors instead of the

marginals; that is, D(p(zA|xA) ‖ p(zB |xB)). Since the

loss does not involve the expectation of p(xA) and p(xB),
our method is applicable regardless of the existence of do-

main bias across p(xA) and p(xB).

3. Methods

3.1. Overview

Figure 2 shows a schematic of the proposed model. The

model consists of two branches of VAEs that share parame-

ters each other. Each VAE extracts two types of feature rep-

resentations: common and specific. They represent different

aspects of an input image pair, invariant and variant factors,

respectively. In the context of rare event detection, the spe-

cific features represent trivial events, and the common fea-

tures represent image contents that are invariant to trivial

events. In order to achieve the disentanglement, we intro-

duce a similarity constraint between common features. This

constraint promotes common features to lie in a shared la-

tent space of paired images. The key aspect of the common

features is that they are invariant to trivial events, which

should be helpful to distinguish target events from trivial
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Figure 2. Schematics of the proposed representation learning method. The model takes a pair of images xA and xB as input. For each

image, the encoder extracts common and specific features, and the decoder reconstructs the input. The key feature of the model is the

similarity loss Lsim. This loss constrains the common features to extract invariant factors between xA and xB . Another feature is the

activation loss Lact. This loss encourages the mean vector of the common features (µc) to be activated, which avoids a trivial solution –

(σc,µc) = (1,0) – for any input.

events. In the successive fine-tuning phase, an event detec-

tor is trained on the learned common features using a small

number of positive and negative samples.

The contents of this section are as follows. In Sec-

tion 3.2, we present a brief introduction to VAEs. In Sec-

tion 3.3, the proposed method of representation learning is

explained in detail. Finally, in Section 3.4, the fine-tuning

phase of the event detector is explained.

3.2. Variational Auto­encoder

A variational auto-encoder [15, 19] is a kind of deep gen-

erative model that defines the joint distribution of an in-

put x ∈ X and a latent variable z ∈ Z as pθ(x, z) =
pθ(x|z)p(z). p(z) is often set to be Gaussian distribution

with zero mean and unit variance. The generative distribu-

tion pθ(x|z) is modeled by a deep neural network (decoder)

with parameters θ, and the model parameters are trained by

maximizing the marginal likelihood pθ(x) =
∑
z pθ(x, z).

However, in the case that pθ(x|z) is a neural network, the

marginal likelihood becomes intractable. Therefore, the fol-

lowing variational lower bound is used instead:

LV AE = Eqφ(z|x)[log pθ(x|z)]

−DKL(qφ(z|x) ‖ p(z)) ≤ log pθ(x)
(1)

In the above equation, qφ(z|x) is another deep neural net-

work (encoder) that approximates the posterior distribution

pθ(z|x). The first term of Eq. (1) can be seen as the re-

construction error of a classical auto-encoder, and the sec-

ond term can be seen as the regularization term. In order to

make the lower bound differentiable in terms of the encoder

parameters, a technique called reparameterization is used:

z = µφ(x) + σφ(x)⊙ ǫ where ǫ ∼ N (0,1) (2)

Here, ⊙ represents an element-wise product. In this case,

the encoder becomes a deep neural network that outputs

mean and variance of the posterior distribution.

3.3. Representation Learning

VAE provides an unsupervised method to learn latent

representations. Given input x, the latent representation can

be inferred using the encoder distribution qφ(z|x). The ob-

jective here is to learn the encoder distribution qφ(zc, zs|x)
in which latent variables are disentangled such that zc and

zs respectively represent invariant and variant factors in a

given image pair. For this, we build a model with two

branches of VAEs that share parameters each other. As

shown in Figure 2, the input images xA,xB ∈ X are fed

into different VAE branches, and the latent variables zc and

zs are extracted from each branch. The parameters of VAEs

are trained using following loss function.

L = LA
V AE + LB

V AE + λ1Lsim + λ2Lact (3)

where LA
V AE ,L

B
V AE are VAE losses for input images xA

and xB , respectively. Lsim is a similarity loss function that

constrains common features to represent invariant factors

between paired images. Lact is an activation loss function

that encourages activation of common features to avoid a

trivial solution. λ1 and λ2 are the coefficients of similarity
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and activation loss, respectively. The following explains

the details about each terms of the loss.

Variational auto-encoder loss. The joint distribution

of each VAE branch becomes

pθ(x, z
c, zs) = pθ(x|z

c, zs)p(zc)p(zs) (4)

The generative distribution pθ(x|z
c, zs) is set as a Gaus-

sian distribution with its mean given by the decoder out-

put. The priors p(zc) and p(zs) are both Gaussian distribu-

tions with zero mean and unit variance. Then, the inference

model becomes

qφ(z
c, zs|x) = qφ(z

c|x)qφ(z
s|x) (5)

The posteriors for zc and zs are set to Gaussian distri-

butions qφ(z
c|x) = N (µc

φ(x), σ
c
φ(x)) and qφ(z

s|x) =
N (µs

φ(x), σ
s
φ(x)) whose mean and variance are given by

the outputs of encoder networks. Then, the loss function of

the VAE becomes

LV AE = Eqφ(zc,zs|x)[log pθ(x|z
c, zs)]

+DKL(qφ(z
c|x) ‖ p(zc)) +DKL(qφ(z

s|x) ‖ p(zs))

(6)

Similarity loss. In order to make common features

encode invariant factors in an input image pair, we in-

troduce the following similarity loss between the pair of

common features extracted from xA and xB :

Lsim = D(qφ(z
c|xA) ‖ qφ(z

c|xB)) (7)

where D defines a statistical distance between latent vari-

ables. There are various types of similarity metric that can

be used for D. A simple candidate is L2 or L1 distance

between centroids µc(xA), µ
c(xB) of the two posteriors.

However, as shown in Figure 3, when the posterior distribu-

tions have different variance along each latent dimension,

the distance between centroids do not reflect the distance

between distributions. Therefore, we used a kind of Maha-

lanobis distance as follows:

Lsim =
1

M

M∑

i=1

(µc
i (xA)− µc

i (xB))
2

σc
i (xA)σc

i (xB)
(8)

Here, µc
i and σc

i represent the i-th element of the mean and

the standard deviation of the posterior distribution, and M

is the dimension of the latent variable. The metric measures

scaled distance along each latent dimensions according to

its variances. The experimental results and a comparison

between various kind of distance metrics are shown in

Section 4.5.

𝑞𝜙(𝒛|𝒙𝐵)
𝑧1

𝑧2

𝐷1

𝐷2
𝜎1(𝒙𝐴)𝜎2(𝒙𝐴)𝜎2(𝒙𝐵) 𝜎1(𝒙𝐵)

𝑞𝜙(𝒛|𝒙𝐴)

𝐷1 = 𝑧1,𝐴 − 𝑧1,𝐵 2𝐷2 = 𝑧2,𝐴 − 𝑧2,𝐵 2
ℒ = 𝐷1 + 𝐷2ℒ = 𝐷1𝜎1,𝐴𝜎2,𝐵 + 𝐷2𝜎2,𝐴𝜎2,𝐵

Figure 3. Illustration of posterior distributions in 2D case. Even if

the distances in each dimension D1, D2 are the same, distributions

are farther away in z2 axis because of the smaller variance.

Activation loss. One problem with the similarity

constraints is that there exists a trivial solution. The

constraints can be completely satisfied by setting the mean

vectors of common features to all zeros. In this case, all

the information in the input are encoded by the specific

features and the common features do not represent any

information. To avoid this, we introduce another loss to

encourage activation of the common features:

Lact = Lsparsity + Linvmax (9)

Activation loss consists of two parts: sparsity loss and in-

vmax loss:

Lsparsity =

d∑

i=1

(s logmi + (1− s) log (1−mi)) (10)

Linvmax =
1

B

B∑

k=1

(max
i

|µk
i |)

−1 (11)

Here, µk
i is an i-th element of the mean vector, and k repre-

sents sample index in a mini-batch. mi is the average of |µk
i |

in the mini-batch, i.e., mi =
∑B

k=1 |µ
k
i |. Lsparsity means

that through a mini-batch, every unit should be activated to

s in average (s is a hyperparameter), and Linvmax means

that at least one unit should be activated for each sample.

3.4. Fine­tuning

Now we have acquired the encoder for extracting com-

mon and specific features separately. As the next step, we

build a event detector network Cψ on the learned common

features µc
A and µc

B extracted from each image in a pair.

y = Cψ(µ
c) where µc = [µc

A,µ
c
B ] (12)

Here, [*,*] represents a concatenation of two vectors. We

used cross-entropy loss to train the classifier on a ground

truth label t.

Lfine = t log y + (1− t) log (1− y) (13)

In the fine-tuning phase, classifier parameters ψ and en-

coder parameters φ are jointly trained. Because common
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features represents image contents that are invariant to triv-

ial events, a robust event detector can be effectively trained

even with a small amount of labels. During the fine-tuning

phase, negative samples are randomly under-sampled to

have the same number of samples as positives.

4. Experiments

In this section, we verified the effectiveness of our

method on four change detection datasets: Augmented

MNIST, ABCD, PCD, and WDC dataset. We used Aug-

mented MNIST for comparing our method with other meth-

ods such as Mathieu et al. [17] which are commonly evalu-

ated on relatively simple datasets (e.g., MNIST). After that

we evaluated our method on in-the-wild datasets (ABCD,

PCD, and WDC dataset). While all the datasets originally

contained many positive samples, we limited the available

positive samples to simulate a class-imbalance scenario.

The numbers of positive and negative samples used in the

experiments are listed in Table 1. In Section 4.4, we con-

ducted the qualitative evaluation by visualizing learned fea-

tures. Finally, in Section 4.5, we investigated several design

choices of our model.

4.1. Datasets

Augmented MNIST. To validate the proposed model, we

set a problem of detecting a change of digit from a pair of

samples in MNIST. An input image pair is labeled as posi-

tive if the digits in the pair are different and labeled as neg-

ative if they are the same. For source images, we use three

variants of MNIST [29]: MNIST with rotation (MNIST-R),

background clutter (MNIST-B), and both (MNIST-R-B).

ABCD dataset. The ABCD dataset [10] is a dataset for

detecting changes in buildings from a pair of aerial images

taken before and after a tsunami disaster. The task is to clas-

sify whether the target buildings were washed away by the

tsunami or not. Training and test patches were resized and

cropped in advance such that the target buildings were in

the center (i.e., we used “resized” patches as used in [10]).

PCD dataset. The PCD dataset [21] is a dataset for detect-

ing scene changes from a pair of street view panorama im-

ages. For each pair, pixel-wise change masks are provided

as ground truth. In this work, we solved the change mask

estimation problem by conducting patch-based classifica-

tion. First, input patch pairs of size 112×112 were cropped

from original images, then they were labeled as positive if

the center area of size 14×14 was purely changed pixels and

labeled as negative if the center area was purely unchanged

pixels. In the testing phase, we cropped the patch pairs in a

sliding manner, and overlaid the classifier outputs to create

a heatmap of change probabilities. The heatmap was then

Table 1. Number of positive and negative samples used in each

dataset. All the negative samples were used for representation

learning. In fine-tuning, both the negative and positive samples

were used.
Training Testing

#negatives #positives #negatives #positives

Aug. MNIST 100,000 50 / 500 / 32,000 50,000 50,000

ABCD 3374 5 / 50 / 3378 847 845

PCD 56718 50 - -

WDC 250,000 50 / 500 1934 1934

Table 2. Comparison to the anomaly detection methods on Aug-

mented MNIST dataset. For all models, only negative samples

were used during training.

MNIST-R MNIST-B MNIST-R-B

AE-rec [32] 54.27 54.48 51.36

VAE-rec [1] 57.24 53.27 50.7

CAE-l2 [2] 55.14 55.74 50.29

MLVAE [5] 60.72 59.70 52.75

Mathieu et al. [17] 58.34 60.31 52.16

VAE w/o sim. 54.95 56.44 52.02

VAE w/ sim. (ours) 71.66 82.55 62.23

binarized using a threshold of 0.5, which results in change

mask estimation.

WDC dataset. In order to evaluate our method on a more

large scale dataset, we prepared a new change detection

dataset. This dataset is for detecting newly constructed or

destructed buildings from a pair of aerial images of Wash-

ington D.C. area. The dataset contains images of multi-

ple years (1995, 1999, 2002, 2005, 2008, 2010, 2013 and

2015). They have 16 cm resolution, and covers over 200

km2 for each year. We automatically annotated changes

in buildings by comparing the building footprints produced

at different years. All the images and the footprints are ac-

quired from open data repository hosted by the Government

of District of Columbia [28]. For more detail about the

dataset, please refer to the supplementary material.

4.2. Experimental setup

Baselines. For comparison, we built several baseline mod-

els for handling the class-imbalance problem. (1) Random

under/over-sampling: a straightforward approach for class-

imbalance problem is under-sampling of major class in-

stances or over-sampling of minor class instances. For each

sampling schemes, we trained a siamese CNN (the state-of-

the-art architecture for image comparison tasks). (2) Trans-

fer learning: transfer learning is considered to be effective

when the number of available labels are limited. We trans-

ferred weights from the ImageNet pre-trained models, and

fine-tuned it with under-sampling scheme. (3) Disentan-

gled representation learning methods: For comparison with

the state-of-the-art representation learning models, we tried

[5, 17] to acquire common features. In the original formu-
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Table 3. Change detection accuracies on Augmented MNIST dataset. The number of positive samples were varied from 50 to 32,000. Each

result is given in terms of the mean and standard deviation obtained by 10 training runs using different training subsets.

#Labels Under samp. Over samp. MLVAE [5] Mathieu et al. [17] VAE w/o sim. VAE w/ sim. (ours)

MNIST-R 50 50.63(0.31) 50.47(0.44) 57.22(1.39) 61.09(1.20) 51.55(0.43) 79.65(4.42)

500 60.05(3.10) 61.84(1.37) 79.15(0.90) 77.78(0.74) 64.74(1.31) 89.73(0.56)

32000 94.82(0.21) 95.49(0.15) 95.68(0.17) 95.85(0.23) 95.76(0.09) 95.94(0.15)

MNIST-B 50 50.69(0.61) 50.38(0.16) 59.33(2.25) 58.79(2.66) 52.67(1.44) 82.16(0.37)

500 52.04(1.52) 52.27(2.80) 72.26(0.96) 75.16(1.09) 73.56(2.24) 84.69(0.42)

32000 94.92(0.21) 93.28(0.15) 95.67(0.10) 94.47(0.29) 96.25(0.06) 96.05(0.13)

MNIST-R-B 50 50.30(0.11) 50.37(0.08) 51.61(0.67) 51.19(0.51) 50.32(0.28) 60.58(1.60)

500 50.35(0.12) 50.47(0.19) 56.21(0.27) 53.10(0.93) 52.39(0.49) 62.68(0.46)

32000 79.04(0.25) 75.94(0.80) 78.73(0.26) 78.55(1.17) 80.92(0.41) 81.54(0.57)

Table 4. Change detection accuracies on the ABCD, WDC and PCD dataset. On the column of ABCD and WDC dataset, accuracies are

presented for different numbers of positive samples. On PCD dataset, the performance is reported for three evaluation metrics (Accuracy,

mIoU, and IoU for positive class). The number of positive samples used for PCD dataset is 50. Each result is given in terms of the mean

and standard deviation obtained by 10 training runs using different training subsets.
ABCD WDC PCD

#Labels 5 50 All #Labels 50 500 Acc. mIoU IoU

Under samp. 61.14(11.61) 64.05(17.16) 95.24(0.20) 53.12(4.56) 51.72(3.03) 73.28(3.10) 56.27(3.32) 47.95(2.20)

Over samp. 60.88(13.58) 54.05(11.78) 92.91(0.39) 52.02(3.37) 52.09(4.80) 80.52(3.48) 60.88(3.68) 44.92(3.49)

Transfer 77.39(7.30) 88.17(0.75) 96.03(0.19) 61.32(1.73) 71.07(3.04) 75.59(2.58) 58.74(2.77) 49.60(2.18)

MLVAE [5] 65.36(5.19) 86.31(1.80) 95.33(0.19) 63.58(1.59) 74.70(0.77) 76.88(1.22) 60.13(1.50) 50.55(1.75)

Mathieu et al. [17] 64.73(5.41) 77.66(2.11) 91.79(0.21) 60.54(2.80) 71.55(0.69) 73.71(3.55) 56.63(3.59) 48.02(2.13)

VLAE w/o sim. 67.32(6.51) 86.69(1.79) 95.18(0.14) 59.41(1.68) 74.17(1.05) 77.22(1.75) 60.49(2.27) 50.73(2.70)

VLAE w/ sim. (ours) 78.52(5.01) 89.70(0.77) 95.60(0.14) 63.25(0.86) 75.70(0.66) 78.20(1.96) 61.66(2.23) 51.77(1.84)

lation of [17], the discriminator requires class labels as its

additional input. However, since we have no access to the

class labels, we used image pair instead (i.e., discriminate

real-generated and real-real pairs). (4) Anomaly detection

methods: we also tried several anomaly detection methods

from [1, 2, 32]. To apply the methods, images in each pair

are concatenated and regarded as a single data point. The

models are trained using only negative (i.e. normal) data,

and rare events are detected as outliers.

Model architecture for representation learning. We built

two architectures: one for Augmented MNIST dataset and

another for the rest of the datasets. For Augmented MNIST

dataset, the encoder had a simple architecture of “C-P-C-

P-C-H”, where C, P, and H represent convolution, max-

pooling, and hidden layer, respectively. Here, the hidden

layer consists of four branches of convolutional layers, each

of which extract mean and log-variance of specific and com-

mon features. For the rest of the dataset, in order to model

complex real-world scenes, we used a hierarchical latent

variable model proposed in [35], where a particular image

is modeled by a combination of multiple latent variables

with different levels of abstraction. Specifically, we used a

model with 5 hidden layers in the experiments. Because tar-

get events are often related to high-level image contents, the

common features were extracted only on the top two hidden

layers. For both architectures above, the decoder part was

set to be symmetric to its encoder. For the detailed archi-

tecture and the hyper-parameter settings, please refer to the

supplementary materials.

Model architecture for fine-tuning. In the fine-tuning

phase, we attached an event detector consisting of three

fully-connected layers. The dimensions of the layers were

100-100-2 for Augmented MNIST dataset and 2048-2048-2

for the rest of the datasets. During fine-tuning, the learning

rate of the pre-trained encoder part was down-weighted by

a factor of 10.

4.3. Quantitative results

Table 3 shows the results for Augmented MNIST dataset.

When labels were scarce, the proposed method outper-

formed the other models by a large margin. By compar-

ing the models with and without similarity loss (“VAE w/o

sim.” and “VAE w/ sim.”), we can conclude that the pro-

posed similarity loss is essential to learn better representa-

tions for the change detection task. The performance im-

provement is especially remarkable with 50 labels, where

the proposed model improved by approximately 20-30%

compared to the baselines.

In Table 2, we also compare our method to several

anomaly detection methods. In this case, we did not train

the event detector. Instead, we detected change events by

applying k-means clustering to the distance between com-

mon features. In the table, the proposed method outper-

forms the other models.

Table 4 shows the results for the ABCD, WDC and PCD

datasets, respectively. Also, for these in-the-wild datasets,
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(a) Source images and ground truth (b) Estimated change mask (d) Estimated change mask(c) Source images and ground truth

Figure 4. Examples of mask estimation results on the PCD dataset. From top to bottom, the figures in the columns b and d shows the result

of “Under samp.”, “Transfer”, and “VLAE w/ sim. (ours)”, respectively.

Interpolate common Interpolate specific

(a) (b)

Figure 5. Results of feature interpolation analysis. (a) Interpolation of common features. (b) Interpolation of specific features.

Common Specific Common Specific Common Specific

(a) MNIST-R (b) MNIST-B (c) MNIST-R-B

Figure 6. Results of t-SNE visualization for common and specific features. The color of each plot represents digit classes.

the proposed method outperformed the other baselines. Fig-

ure 4 compares the estimated change mask for baseline

models and that of the proposed model. We see that the

baseline models are sensitive to illumination changes or

registration errors in roads or buildings. Clearly, they suf-

fer from false alarms created by trivial events. On the

other hand, much of the false alarms were successfully sup-

pressed in the output of the proposed model.

4.4. Visualization of Latent Variables

In this subsection, we investigate what is encoded in

common features and specific features by visualizing them.

Interpolation: we generated a sequence of images by lin-

early interpolating image representations between pairs of

images. To independently investigate the learned semantics

of common and specific features, the features were interpo-

lated one at a time while fixing the others. Figure 5 shows

the result of visualization on Augmented MNIST dataset.

When common features were interpolated between differ-

ent digits, the digit classes in the generated sequences grad-

ually changed accordingly, while the other factors (i.e., ro-

tation, styles, and background) were unchanged. On the

other hand, when specific features are interpolated, rota-

tion angles or background patterns are changed accordingly,

while the digit classes remained the same. The result shows

that the common features extract information about digit

classes, but they are invariant to the variation observed in

the same digit pairs. 2D visualization: we visualized the

learned features by t-SNE [30]. Figure 6 shows the visual-

ization results for common and specific features. In this fig-

ure, the same color plots correspond to the same digits. We

see that the common features are more informative about

digit classes compared to the specific features.

We also conducted the above visualization for the rest

of the datasets. However, for the real-world complicated

scenes, it was difficult to achieve clear disentanglement.

Specifically, we observed that the activations of the units

in the common features are degenerated to a certain value.
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Figure 7. Analysis of the effect of activation loss. Results for dif-

ferent sparsity parameter values are shown with red plots (with-

out invmax-loss) and blue plots (with invmax-loss). The error bar

shows the standard deviations of the accuracies for 10 runs with

different training subsets

4.5. Ablation Study

Effect of activation loss. To investigate the effect of ac-

tivation loss (Eq. (9)), we conducted sensitivity analysis on

the sparsity parameter and existence of Linvmax. Figure 7

shows the results for MNIST-R. From these results, we

can draw several conclusions. First, a sparsity parameter

of approximately 0.5 seems to be suitable because the

performance becomes unstable in terms of the choice of

parameter value at larger than 0.5. Secondly, the use of

Linvmax boosts performance. Lastly and most importantly,

regardless of the parameter choices, the presence of activa-

tion loss improves the performance.

Choice of the distance function for similarity loss.

Here, we investigate several choices of distance function

in Eq. (7). Table 5 compares six types of distance function

evaluated on the MNIST-R and ABCD datasets. We found

that both Mahalanobis distance and Jeffreys divergence

are suitable choices. This result supports our intuition that

we should consider not only the mean vector of the latent

distribution but also the shape of the distribution.

Importance of hierarchical latent variables. Here,

we investigate the effect of using hierarchical latent vari-

able models for representation learning. In this analysis,

the hidden layers were eliminated one by one from the

proposed model in order of the lowest layer to the highest.

Figure 8 shows the results on the ABCD dataset. In the

figure, the models with 4 and 5 hidden layers perform

better. This result shows the importance of extracting

hierarchical latent variables for rare event detection of

complicated real-world scenes.

5. Conclusion

We proposed a novel representation learning method to

overcome the class-imbalance problem in rare event detec-

tion tasks. The proposed network learns the two separated
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Figure 8. Sensitivity analysis of the number of hidden layers. The

error bar shows the standard deviations of the accuracies for 10

runs with different training subsets.

Table 5. Comparison of the choices of distance function used in

similarity loss.

MNIST-R ABCD

L2 82.16(0.64) 90.13(1.31)

L1 79.14(0.90) 89.01(1.44)

Cosine 60.94(0.97) 89.63(1.51)

MMD 62.30(0.50) 89.69(1.35)

Jeffrey’s Divergence 86.90(0.32) 89.85(0.98)

Mahalanobis 89.73(0.56) 89.70(0.77)

features related to image contents and other nuisance factors

from only low-cost negative samples by introducing a simi-

larity constraint between the image contents. The learned

features are utilized in the subsequent fine-tuning phase,

where rare event detectors are learned robustly. The effec-

tiveness of the proposed method was verified by the quanti-

tative evaluations on the four change detection datasets. For

the evaluations, we created a large-scale change detection

dataset using publicly available data repository. In addition,

the qualitative analysis on Augmented MNIST showed that

the model successfully learns the desired disentanglement.

The disentanglement of the proposed method is still in-

sufficient for complicated scenes in the real world, due to

degenerated solution observed in the common features. The

performance of our method will be greatly improved with

the clearer feature disentanglement. A possible next step to

achieve this is to avoid degenerated solution by introducing

adversarial training as used in [17], or maximizing mutual

information between the common feature and input images

[8]. Also, in the future, we intend to apply the learned in-

variant features to various types of event detection tasks in-

cluding change mask estimation and change localization.
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