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Abstract

Estimating hand-object manipulations is essential for in-

terpreting and imitating human actions. Previous work has

made significant progress towards reconstruction of hand

poses and object shapes in isolation. Yet, reconstructing

hands and objects during manipulation is a more challeng-

ing task due to significant occlusions of both the hand and

object. While presenting challenges, manipulations may

also simplify the problem since the physics of contact re-

stricts the space of valid hand-object configurations. For

example, during manipulation, the hand and object should

be in contact but not interpenetrate. In this work, we regu-

larize the joint reconstruction of hands and objects with ma-

nipulation constraints. We present an end-to-end learnable

model that exploits a novel contact loss that favors phys-

ically plausible hand-object constellations. Our approach

improves grasp quality metrics over baselines, using RGB

images as input. To train and evaluate the model, we also

propose a new large-scale synthetic dataset, ObMan, with

hand-object manipulations. We demonstrate the transfer-

ability of ObMan-trained models to real data.

1. Introduction

Accurate estimation of human hands, as well as their in-

teractions with the physical world, is vital to better under-

stand human actions and interactions. In particular, recov-

ering the 3D shape of a hand is key to many applications

including virtual and augmented reality, human-computer

interaction, action recognition and imitation-based learning

of robotic skills.

Hand analysis in images and videos has a long history

in computer vision. Early work focused on hand estima-

tion and tracking using articulated models [15, 44, 58, 71]

or statistical shape models [26]. The advent of RGB-D sen-

sors brought remarkable progress to hand pose estimation

from depth images [13, 20, 36, 60, 62]. While depth sen-

sors provide strong cues, their applicability is limited by

the energy consumption and environmental constrains such

Figure 1: Our method jointly reconstructs hand and object meshes

from a monocular RGB image. Note that the model generating

the predictions for the above images, which we captured with an

ordinary camera, was trained only on images from our synthetic

dataset, ObMan.

as distance to the target and exposure to sunlight. Recent

work obtains promising results for 2D and 3D hand pose es-

timation from monocular RGB images using convolutional

neural networks [7, 16, 32, 40, 55, 56, 73]. Most of this

work, however, targets sparse keypoint estimation which is

not sufficient for reasoning about hand-object contact. Full

3D hand meshes are sometimes estimated from images by

fitting a hand mesh to detected joints [40] or by tracking

given a good initialization [6]. Recently, the 3D shape or

surface of a hand using an end-to-end learnable model has

been addressed with depth input [28].

Interactions impose constraints on relative configura-

tions of hands and objects. For example, stable object

grasps require contacts between hand and object surfaces,

while solid objects prohibit penetration. In this work we

exploit constraints imposed by object manipulations to re-

construct hands and objects as well as to model their in-

teractions. We build on a parametric hand model, MANO

[50], derived from 3D scans of human hands, that provides

anthropomorphically valid hand meshes. We then propose
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Figure 2: Our model predicts the hand and object meshes in a

single forward pass in an end-to-end framework. The repulsion

loss LR penalizes interpenetration while the attraction loss LA

encourages the contact regions to be in contact with the object.

a differentiable MANO network layer enabling end-to-end

learning of hand shape estimation. Equipped with the dif-

ferentiable shape-based hand model, we next design a net-

work architecture for joint estimation of hand shapes, ob-

ject shapes and their relative scale and translation. We also

propose a novel contact loss that penalizes penetrations and

encourages contact between hands and manipulated objects.

An overview of our method is illustrated in Figure 2.

Real images with ground truth shape for interacting

hands and objects are difficult to obtain in practice. Existing

datasets with hand-object interactions are either too small

for training deep neural networks [64] or provide only par-

tial 3D hand or object annotations [57]. The recent dataset

by Garcia-Hernando et al. [8] provides 3D hand joints and

meshes of 4 objects during hand-object interactions.

Synthetic datasets are an attractive alternative given their

scale and readily-available ground truth. Datasets with syn-

thesized hands have been recently introduced [28, 32, 73]

but they do not contain hand-object interactions. We gener-

ate a new large-scale synthetic dataset with objects manipu-

lated by hands: ObMan (Object Manipulation). We achieve

diversity by automatically generating hand grasp poses for

2.7K everyday object models from 8 object categories. We

adapt MANO to be able to interface it with an automatic

grasp generation tool based on the GraspIt software [30].

ObMan is sufficiently large and diverse to support training

and ablation studies of our deep models, and sufficiently re-

alistic to generalize to real images. See Figure 1 for recon-

structions obtained for real images when training our model

on ObMan.

In summary we make the following contributions. First,

we design the first end-to-end learnable model for joint 3D

reconstruction of hands and objects from RGB data. Sec-

ond, we propose a novel contact loss penalizing penetra-

tions and encouraging contact between hands and objects.

Third, we create a new large-scale synthetic dataset, Ob-

Man, with hand-object manipulations. The ObMan dataset

and our pre-trained models and code are publicly available1.

1http://www.di.ens.fr/willow/research/obman/

2. Related work

In the following, we review methods that address hand

and object reconstructions in isolation. We then present re-

lated works that jointly reconstruct hand-object interactions.

Hand pose estimation. Hand pose estimation has attracted

a lot of research interest since the 90s [15, 44]. The avail-

ability of commodity RGB-D sensors [21, 43, 54] led to sig-

nificant progress in estimating 3D hand pose given depth or

RGB-D input [13, 20, 34, 35]. Recently, the community has

shifted its focus to RGB-based methods [16, 32, 40, 55, 73].

To overcome the lack of 3D annotated data, many meth-

ods employed synthetic training images [7, 28, 32, 33, 73].

Similar to these approaches, we make use of synthetic ren-

derings, but we additionally integrate object interactions.

3D hand pose estimation has often been treated as pre-

dicting 3D positions of sparse joints [16, 32, 73]. Unlike

methods that predict only skeletons, our focus is to out-

put a dense hand mesh to be able to infer interactions with

objects. Very recently, Panteleris et al. [40] and Malik et

al. [28] produce full hand meshes. However, [40] achieves

this as a post-processing step by fitting to 2D predictions.

Our hand estimation component is most similar to [28]. In

contrast to [28], our method takes not depth but RGB im-

ages as input, which is more challenging and more general.

Regarding hand pose estimation in the presence of ob-

jects, Mueller et al. [32, 33] grasp 7 objects in a merged

reality environment to render synthetic hand pose datasets.

However, objects only serve the role of occluders, and the

approach is difficult to scale to more object instances.

Object reconstruction. How to represent 3D objects in a

CNN framework is an active research area. Voxels [29, 70],

point clouds [59], and mesh surfaces [11, 19, 67] have

been explored. We employ the latter since meshes allow

better modeling of the interaction with the hand. Atlas-

Net [11] inputs vertex coordinates concatenated with im-

age features and outputs a deformed mesh. More recently,

Pixel2Mesh [67] explores regularizations to improve the

perceptual quality of predicted meshes. Previous works

mostly focus on producing accurate shape and they output

the object in a normalized coordinate frame in a category-

specific canonical pose. We employ a view-centered vari-

ant of [11] to handle generic object categories, without any

category-specific knowledge. Unlike existing methods that

typically input simple renderings of CAD models, such as

ShapeNet [4], we work with complex images in the pres-

ence of hand occlusions. In-hand scanning [39, 51, 65, 69],

while performed in the context of manipulation, focuses on

object reconstruction and requires RGB-D video inputs.

Hand-object reconstruction. Joint reconstruction of hands

and objects has been studied with multi-view RGB [2, 37,

68] and RGB-D input with either optimization [12, 13, 38,

42, 57, 63–65] or classification [46–49] approaches. These

works use rigid objects, except for a few that use articu-

lated [64] or deformable objects [63]. Focusing on contact
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points, most works employ proximity metrics [57, 63, 64],

while [46] directly regresses them from images, and [42]

uses contact measurements on instrumented objects. [64]

integrates physical constraints for penetration and contact,

attracting fingers onto the object uni-directionally. On the

contrary, [63] symmetrically attracts the fingertips and the

object surface. The last two approaches evaluate all possi-

ble configurations of contact points and select the one that

provides the most stable grasp [64] or best matches visual

evidence [63]. Most related to our work, given an RGB

image, Romero et al. [49] query a large synthetic dataset

of rendered hands interacting with objects to retrieve con-

figurations that match the visual evidence. Their method’s

accuracy, however, is limited by the variety of configura-

tions contained in the database. In parallel work to ours

[61] jointly estimates hand skeletons and 6DOF for objects.

Our work differs from previous hand-object reconstruction

methods mainly by incorporating an end-to-end learnable

CNN architecture that benefits from a differentiable hand

model and differentiable physical constraints on penetration

and contact.

3. Hand-object reconstruction

As illustrated in Figure 2, we design a neural network ar-

chitecture that reconstructs the hand-object configuration in

a single forward pass from a rough image crop of a left hand

holding an object. Our network architecture is split into two

branches. The first branch reconstructs the object shape in

a normalized coordinate space. The second branch predicts

the hand mesh as well as the information necessary to trans-

fer the object to the hand-relative coordinate system. Each

branch has a ResNet18 [14] encoder pre-trained on Ima-

geNet [52]. At test time, our model can process 20fps on a

Titan X GPU. In the following, we detail the three compo-

nents of our method: hand mesh estimation in Section 3.1,

object mesh estimation in Section 3.2, and the contact be-

tween the two meshes in Section 3.3.

3.1. Differentiable hand model

Following the methods that integrate the SMPL para-

metric body model [25] as a network layer [17, 41], we

integrate the MANO hand model [50] as a differentiable

layer. MANO is a statistical model that maps pose (θ) and

shape (β) parameters to a mesh. While the pose parameters

capture the angles between hand joints, the shape param-

eters control the person-specific deformations of the hand;

see [50] for more details.

Hand pose lives in a low-dimensional subspace [23, 50].

Instead of predicting the full 45-dimensional pose space, we

predict 30 pose PCA components. We found that perfor-

mance saturates at 30 PCA components and keep this value

for all our experiments (see Appendix A.2).

Supervision on vertex and joint positions (LVHand
,LJ ).

The hand encoder produces an encoding ΦHand from an

image. Given ΦHand , a fully connected network regresses

θ and β. We integrate the mesh generation as a differen-

tiable network layer that takes θ and β as inputs and outputs

the hand vertices VHand and 16 hand joints. In addition to

MANO joints, we select 5 vertices on the mesh as fingertips

to obtain 21 hand keypoints J . We define the supervision on

the vertex positions (LVHand
) and joint positions (LJ ) to en-

able training on datasets where a ground truth hand surface

is not available. Both losses are defined as the L2 distance

to the ground truth. We use root-relative 3D positions as

supervision for LVHand
and LJ . Unless otherwise specified,

we use the wrist defined by MANO as the root joint.

Regularization on hand shape (Lβ). Sparse supervi-

sion can cause extreme mesh deformations when the hand

shape is unconstrained. We therefore use a regularizer,

Lβ = ‖β‖2, on the hand shape to constrain it to be close

to the average shape in the MANO training set, which cor-

responds to β = ~0 ∈ R
10.

The resulting hand reconstruction loss LHand is the sum-

mation of all LVHand
, LJ and Lβ terms:

LHand = LVHand
+ LJ + Lβ . (1)

Our experiments indicate benefits for all three terms (see

Appendix A.1). Our hand branch also matches state-of-the-

art performance on a standard benchmark for 3D hand pose

estimation (see Appendix A.3).

3.2. Object mesh estimation

Following recent methods [19, 67], we focus on genus 0

topologies. We use AtlasNet [11] as the object prediction

component of our neural network architecture. AtlasNet

takes as input the concatenation of point coordinates sam-

pled either on a set of square patches or on a sphere, and

image features ΦObj . It uses a fully connected network to

output new coordinates on the surface of the reconstructed

object. AtlasNet explores two sampling strategies: sam-

pling points from a sphere and sampling points from a set

of squares. Preliminary experiments showed better gener-

alization to unseen classes when input points were sampled

on a sphere. In all our experiments we deform an icosphere

of subdivision level 3 which has 642 vertices. AtlasNet was

initially designed to reconstruct meshes in a canonical view.

In our model, meshes are reconstructed in view-centered

coordinates. We experimentally verified that AtlasNet can

accurately reconstruct meshes in this setting (see Appendix

B.1). Following AtlasNet, the supervision for object ver-

tices is defined by the symmetric Chamfer loss between

the predicted vertices and points randomly sampled on the

ground truth external surface of the object.

Regularization on object shape (LE ,LL). In order to rea-

son about the inside and outside of the object, it is impor-

tant to predict meshes with well-defined surfaces and good

quality triangulations. However AtlasNet does not explic-

itly enforce constraints on mesh quality. We find that when
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learning to model a limited number of object shapes, the tri-

angulation quality is preserved. However, when training on

the larger variety of objects of ObMan, we find additional

regularization on the object meshes beneficial. Following

[10, 18, 67] we employ two losses that penalize irregular

meshes. We penalize edges with lengths different from

the average edge length with an edge-regularization loss,

LE . We further introduce a curvature-regularizing loss, LL,

based on [18], which encourages the curvature of the pre-

dicted mesh to be similar to the curvature of a sphere (see

details in Appendix B.2). We balance the weights of LE

and LL by weights µE and µL respectively, which we em-

pirically set to 2 and 0.1. These two losses together improve

the quality of the predicted meshes, as we show in Figure

A.4 of the appendix. Additionally, when training on the Ob-

Man dataset, we first train the network to predict normalized

objects, and then freeze the object encoder and the AtlasNet

decoder while training the hand-relative part of the network.

When training the objects in normalized coordinates, noted

with n, the total object loss is:

Ln
Object = Ln

VObj
+ µLLL + µELE . (2)

Hand-relative coordinate system (LS ,LT ). Following

AtlasNet [11], we first predict the object in a normalized

scale by offsetting and scaling the ground truth vertices so

that the object is inscribed in a sphere of fixed radius. How-

ever, as we focus on hand-object interactions, we need to

estimate the object position and scale relative to the hand.

We therefore predict translation and scale in two branches,

which output the three offset coordinates for the translation

(i.e., x, y, z) and a scalar for the object scale. We define

LT = ‖T−T̂‖22 and LS = ‖S−Ŝ‖22, where T̂ and Ŝ are the

predicted translation and scale. T is the ground truth object

centroid in hand-relative coordinates and S is the ground

truth maximum radius of the centroid-centered object.

Supervision on object vertex positions (Ln
VObj

,LVObj
). We

multiply the AtlasNet decoded vertices by the predicted

scale and offset them according to the predicted transla-

tion to obtain the final object reconstruction. Chamfer

loss (LVObj
) is applied after translation and scale are ap-

plied. When training in hand-relative coordinates the loss

becomes:

LObject = LT + LS + LVObj
. (3)

3.3. Contact loss

So far, the prediction of hands and objects does not lever-

age the constraints that guide objects interacting in the phys-

ical world. Specifically, it does not account for our prior

knowledge that objects can not interpenetrate each other

and that, when grasping objects, contacts occur at the sur-

face between the object and the hand. We formulate these

contact constraints as a differentiable loss, LContact, which

can be directly used in the end-to-end learning framework.

We incorporate this additional loss using a weight parame-

ter µC , which we set empirically to 10.

Figure 3: Left: Estimated contact regions from ObMan. We find

that points that are often involved in contacts can be clustered into

6 regions on the palmar surface of the hand. Right: Generic shape

of the penalization function emphasizing the role of the character-

istic distances.

We rely on the following definition of distances between

points. d(v, VObj ) = infw∈VObj
‖v−w‖2 denotes distances

from point to set and d(C, VObj ) = infv∈C d(v, VObj ) de-

notes distances from set to set. Moreover, we define a com-

mon penalization function lα(x) = α tanh
(

x
α

)

, where α is

a characteristic distance of action.

Repulsion (LR). We define a repulsion loss (LR) that pe-

nalizes hand and object interpenetration. To detect inter-

penetration, we first detect hand vertices that are inside the

object. Since the object is a deformed sphere, it is water-

tight. We therefore cast a ray from the hand vertex and count

the number of times it intersects the object mesh to deter-

mine whether it is inside or outside the predicted mesh [31].

LR affects all hand vertices that belong to the interior of the

object, which we denote Int(Obj). The repulsion loss is

defined as:

LR(VObj , VHand) =
∑

v∈VHand

1v∈Int(VObj )lr(d(v, VObj )),

where r is the repulsion characteristic distance, which we

empirically set to 2cm in all experiments.

Attraction (LA). We further define an attraction loss (LA)

to penalize cases in which hand vertices are in the vicinity

of the object but the surfaces are not in contact. This loss is

applied only to vertices which belong to the exterior of the

object Ext(Obj).
We compute statistics on the automatically-generated

grasps described in the next section to determine which

vertices on the hand are frequently involved in contacts.

We compute for each MANO vertex how often across the

dataset it is in the immediate vicinity of the object (defined

as less than 3mm away from the object’s surface). We find

that by identifying the vertices that are close to the objects

in at least 8% of the grasps, we obtain 6 regions of con-

nected vertices {Ci}i∈[[1,6]] on the hand which match the 5
fingertips and part of the palm of the hand, as illustrated in

Figure 3 (left). The attraction term LA penalizes distances

from each of the regions to the object, allowing for sparse

guidance towards the object’s surface:

LA(VObj , VHand) =

6
∑

i=1

la(d(Ci∩Ext(Obj), VObj )). (4)
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We set a to 1cm in all experiments. For regions that are

further from the hand than a threshold a, the attraction will

significantly decrease and become negligible as the distance

to the object further increases, see Figure 3 (right).

Our final contact loss LContact is a weighted sum of the

attraction LA and the repulsion LR terms:

LContact = λRLR + (1− λR)LA, (5)

where λR ∈ [0, 1] is the contact weighting coefficient, e.g.,

λR = 1 means only the repulsion term is active. We show

in our experiments that the balancing between attraction and

repulsion is very important for physical quality.

Our network is first trained with LHand + LObject . We

then continue training with LHand +LObject +µCLContact

to improve the physical quality of the hand-object interac-

tion. Appendix C.1 gives further implementation details.

4. ObMan dataset

To overcome the lack of adequate training data for our

models, we generate a large-scale synthetic image dataset

of hands grasping objects which we call the ObMan dataset.

Here, we describe how we scale automatic generation of

hand-object images.

Objects. In order to find a variety of high-quality meshes of

frequently manipulated everyday objects, we selected mod-

els from the ShapeNet [4] dataset. We selected 8 object

categories of everyday objects (bottles, bowls, cans, jars,

knifes, cellphones, cameras and remote controls). This re-

sults in a total of 2772 meshes which are split among the

training, validation and test sets.

Grasps. In order to generate plausible grasps, we use the

GraspIt software [30] following the methods used to collect

the Grasp Database [9]. In the robotics community, this

dataset has remained valuable over many years [53] and is

still a reference for the fast synthesis of grasps given known

object models [22, 27].

We favor simplicity and robustness of the grasp genera-

tion over the accuracy of the underlying model. The soft-

ware expects a rigid articulated model of the hand. We

transform MANO by separating it into 16 rigid parts, 3 parts

for the phalanges of each finger, and one for the hand palm.

Given an object mesh, GraspIt produces different grasps

from various initializations. Following [9], our generated

grasps optimize for the grasp metric but do not necessarily

reflect the statistical distribution of human grasps. We sort

the obtained grasps according to a heuristic measure (see

Appendix C.2) and keep the two best candidates for each

object. We generate a total of 21K grasps.

Body pose. For realism, we render the hand and the full

body (see Figure 4). The pose of the hand is transferred to

hands of the SMPL+H [50] model which integrates MANO

to the SMPL [25, 50] statistical body model, allowing us

to render realistic images of embodied hands. Although

we zoom our cameras to focus on the hands, we vary the

Figure 4: ObMan: large-scale synthetic dataset of hand-object

interactions. We pose the MANO hand model [50] to grasp [30]

a given object mesh. The scenes are rendered with variation in

texture, lighting, and background.

body poses to provide natural occlusions and coherent back-

grounds. Body poses and shapes are varied by sampling

from the same distribution as in SURREAL [66]; i.e., sam-

pling poses from the CMU MoCap database [1] and shapes

from CAESAR [45]. In order to maximize the viewpoint

variability, a global rotation uniformly sampled in SO(3) is

also applied to the body. We translate the hand root joint

to the camera’s optical axis. The distance to the camera is

sampled uniformly between 50 and 80cm.

Textures. Object textures are randomly sampled from the

texture maps provided with ShapeNet [4] models. The body

textures are obtained from the full body scans used in SUR-

REAL [66]. Most of the scans have missing color values

in the hand region. We therefore combine the body textures

with 176 high resolution textures obtained from hand scans

from 20 subjects. The hand textures are split so that tex-

tures from 14 subjects are used for training and 3 for test

and validation sets. For each body texture, the skin tone of

the hand is matched to the subject’s face color. Based on

the face skin color, we query in the HSV color space the

3 closest hand texture matches. We further shift the HSV

channels of the hand to better match the person’s skin tone.

Rendering. Background images are sampled from both the

LSUN [72] and ImageNet [52] datasets. We render the im-

ages using Blender [3]. In order to ensure the hand and ob-

jects are visible we discard configurations if less than 100
pixels of the hand or if less than 40% of the object is visible.

For each hand-object configuration, we render object-

only, hand-only, and hand-object images, as well as the cor-

responding segmentation and depth maps.

5. Experiments

We first define the evaluation metrics and the datasets

(Sections 5.1, 5.2) for our experiments. We then analyze

the effects of occlusions (Section 5.3) and the contact loss

(Section 5.4). Finally, we present our transfer learning ex-

periments from synthetic to real domain (Sections 5.5, 5.6).

5.1. Evaluation metrics

Our output is structured, and a single metric does not

fully capture performance. We therefore rely on multiple
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evaluation metrics.

Hand error. For hand reconstruction, we compute the

mean end-point error (mm) over 21 joints following [73].

Object error. Following AtlasNet [11], we measure the ac-

curacy of object reconstruction by computing the symmet-

ric Chamfer distance (mm) between points sampled on the

ground truth mesh and vertices of the predicted mesh.

Contact. To measure the physical quality of our joint re-

construction, we use the following metrics.

Penetration depth (mm), Intersection volume (cm3):

Hands and objects should not share the same physical space.

To measure whether this rule is violated, we report the inter-

section volume between the object and the hand as well as

the penetration depth. To measure the intersection volume

of the hand and object we voxelize the hand and object us-

ing a voxel size of 0.5cm. If the hand and the object collide,

the penetration depth is the maximum of the distances from

hand mesh vertices to the object’s surface. In the absence

of collision, the penetration depth is 0.

Simulation displacement (mm): Following [64], we use

physics simulation to evaluate the quality of the produced

grasps. This metric measures the average displacement of

the object’s center of mass in a simulated environment [5]

assuming the hand is fixed and the object is subjected to

gravity. Details on the setup and the parameters used for

the simulation can be found in [64]. Good grasps should be

stable in simulation. However, stable simulated grasps can

also occur if the forces resulting from the collisions balance

each other. For estimating grasp quality, simulated displace-

ment must be analyzed in conjunction with a measure of

collision. If both displacement in simulation and penetra-

tion depth are decreasing, there is strong evidence that the

physical quality of the grasp is improving (see Section 5.4

for an analysis). The reported metrics are averaged across

the dataset.

5.2. Datasets

We present the datasets we use to evaluate our models.

Statistics for each dataset are summarized in Table 1.

First-person hand benchmark (FHB). This dataset [8] is

a recent video collection providing 3D hand annotations for

a wide range of hand-object interactions. The joints are au-

tomatically annotated using magnetic sensors strapped on

the hands, and which are visible on the RGB images. 3D

mesh annotations are provided for four objects: three differ-

ent bottles and a salt box. In order to ensure that the object

being interacted with is unambiguously defined, we filter

frames in which the manipulating hand is further than 1cm
away from the manipulated object. We refer to this filtered

dataset as FHB. As the milk bottle is a genus-1 object and

is often grasped by its handle, we exclude this object from

the experiments we conduct on contacts. We call this subset

FHBC . We use the same subject split as [8], therefore, each

object is present in both the training and test splits.

The object annotations for this dataset suffer from some

ObMan FHB FHBC HIC

#frames 141K/6K 8420/9103 5077/5657 251/307
#video sequences - 115/127 76/88 2/2
#object instances 1947/411 4 3 2
real no yes yes yes

Table 1: Dataset details for train/test splits.

Evaluation images

Training H-img HO-img

H-img (LH ) 10.3 14.1

HO-img (LH ) 11.7 11.6

Evaluation images

Training O-img HO-img

O-img (LO) 0.0242 0.0722

HO-img (LO) 0.0319 0.0302

Table 2: We first show that training with occlusions is important

when targeting images of hand-object interactions.

imprecisions. To investigate the range of the object ground

truth error, we measure the penetration depth of the hand

skeleton in the object for each hand-object configuration.

We find that on the training split of FHB, the average pene-

tration depth is 11.0mm (std=8.9mm). While we still report

quantitative results on objects for completeness, the ground

truth errors prevent us from drawing strong conclusions

from reconstruction metric fluctuations on this dataset.

Hands in action dataset (HIC). We use a subset of the HIC

dataset [64] which has sequences of a single hand interact-

ing with objects. This gives us 4 sequences featuring ma-

nipulation of a sphere and a cube. We select the frames in

which the hand is less than 5mm away from the object. We

split this dataset into 2 training and 2 test sequences with

each object appearing in both splits and restrict our predic-

tions to the frames in which the minimal distance between

hand and object vertices is below 5mm. For this dataset the

hand and object meshes are provided. We fit MANO to the

provided hand mesh, allowing for dense point supervision

on both hands and objects.

5.3. Effect of occlusions

For each sample in our synthetic dataset, in addition to

the hand-object image (HO-img) we render two images of

the corresponding isolated and unoccluded hand (H-img)

or object (O-img). With this setup, we can systematically

study the effect of occlusions on ObMan, which would be

impractical outside of a synthetic setup.

We study the effect of objects occluding hands by train-

ing two networks, one trained on hand-only images and one

on hand-object images. We report performance on both

unoccluded and occluded images. A symmetric setup is

applied to study the effect of hand occlusions on objects.

Since the hand-relative coordinates are not applicable to ex-

periments with object-only images, we study the normal-

ized shape reconstruction, centered on the object centroid,

and scaled to be inscribed in a sphere of radius 1.

Unsurprisingly, the best performance is obtained when

both training and testing on unoccluded images as shown in

Table 2. When both training and testing on occluded im-
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Figure 5: Qualitative comparison between with (bottom) and without (top) contact on FHBC . Note the improved contact and reduced

penetration, highlighted with red regions, with our contact loss.

ObMan Dataset FHBC Dataset

Hand Object Maximum Simulation Intersection Hand Object Maximum Simulation Intersection

Error Error Penetration Displacement Volume Error Error Penetration Displacement Volume

No contact loss 11.6 641.5 9.5 31.3 12.3 28.1 ± 0.5 1579.2 ± 66.2 18.7 ±0.6 51.2 ± 1.7 26.9 ± 0.2

Only attraction (λR = 0) 11.9 637.8 11.8 26.8 17.4 28.4 ± 0.6 1586.9 ± 58.3 22.7 ±0.7 48.5 ± 3.2 41.2 ± 0.3

Only repulsion (λR = 1) 12.0 639.0 6.4 38.1 8.1 28.6 ± 0.8 1603.7 ± 49.9 6.0 ± 0.3 53.9 ± 2.3 7.1 ± 0.1

Attraction + Repulsion (λR = 0.5) 11.6 637.9 9.2 30.9 12.2 28.8 ±0.8 1565.0 ± 65.9 12.1 ± 0.7 47.7 ±2.5 17.6 ± 0.2

Table 3: We experiment with each term of the contact loss. Attraction (LA) encourages contacts between close points while repulsion (LR)

penalizes interpenetration. λR is the repulsion weight, balancing the contribution of the two terms.
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Figure 6: We examine the relative importance between the contact

terms on the grasp quality metrics. Introducing a well-balanced

contact loss improves upon the baseline on both max penetration

and simulation displacement.

ages, reconstruction errors for hands and objects drop sig-

nificantly, by 12% and 25% respectively. This validates the

intuition that estimating hand pose and object shape in the

presence of occlusions is a harder task.

We observe that for both hands and objects, the most

challenging setting is training on unoccluded images while

testing on images with occlusions. This shows that train-

ing with occlusions is crucial for accurate reconstruction of

hands-object configurations.

5.4. Effect of contact loss

In the absence of explicit physical constraints, the pre-

dicted hands and objects have an average penetration depth

of 9mm for ObMan and 19mm for FHBC (see Table 3).

The presence of interpenetration at test time shows that the

model is not implicitly learning the physical rules governing

hand-object manipulation. The differences in physical met-

rics between the two datasets can be attributed to the higher

reconstruction accuracy for ObMan but also to the noisy ob-

ject ground truth in FHBC which produces penetrated and

likely unstable ‘ground truth’ grasps.

In Figure 6, we study the effect of introducing our con-

tact loss as a fine-tuning step. We linearly interpolate λR in

[[0, 1]] to explore various relative weightings of the attrac-

tion and repulsion terms.

We find that using LR in isolation efficiently minimizes

the maximum penetration depth, reducing it by 33% for Ob-

Man and 68% for FHBC . This decrease occurs at the ex-

pense of the stability of the grasp in simulation. Symmet-

rically, LA stabilizes the grasps in simulation, but produces

more collisions between hands and objects. We find that

equal weighting of both terms (LR = 0.5) improves both

physical measures without negatively affecting the recon-

struction metrics on both the synthetic and the real datasets,

as is shown in Table 3 (last row). For FHBC , for each metric

we report the means and standard deviations for 10 random

seeds.

We find that on the synthetic dataset, decreased pen-

etration is systematically traded for simulation instability

whereas for FHBC increasing λR from 0 to 0.5 decreases

depth penetration without affecting the simulation stability.

Furthermore, for λR = 0.5, we observe significant qualita-

tive improvements on FHBc as seen in Figure 5.

5.5. Synthetic to real transfer

Large-scale synthetic data can be used to pre-train mod-

els in the absence of suitable real datasets. We investigate

the advantages of pre-training on ObMan when targeting

FHB and HIC. We investigate the effect of scarcity of real

data on FHB by comparing pairs of networks trained using

subsets of the real dataset. One is pre-trained on ObMan

while the other is initialized randomly, with the exception

of the encoders, which are pre-trained on ImageNet [52].

For these experiments, we do not add the contact loss and

report means and standard deviations for 5 distinct random

seeds. We find that pre-training on ObMan is beneficial in

low data regimes, especially when less than 1000 images

from the real dataset are used for fine-tuning, see Figure 8.
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Figure 7: Qualitative results on CORe50. Our model, trained only on synthetic data, shows robustness to various hand poses, objects and

scenes. Global hand pose and object outline are well estimated while fine details are missed. We present failure cases in the red box.
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Figure 8: We compare training on FHB only (Real) and

pre-training on synthetic, followed by fine-tuning on FHB

(Synth2Real). As the amount of real data decreases, the benefit

of pre-training increases. For both the object and the hand recon-

struction, synthetic pre-training is critical in low-data regimes.

The HIC training set consists of only 250 images. We

experiment with pre-training on variants of our synthetic

dataset. In addition to ObMan, to which we refer as (a)

in Figure 9, we render 20K images for two additional syn-

thetic datasets, (b) and (c), which leverage information from

the training split of HIC (d). We create (b) using our grasp-

ing tool to generate automatic grasps for each of the object

models of HIC and (c) using the object and pose distribu-

tions from the training split of HIC. This allows to study

the importance of sampling hand-object poses from the tar-

get distribution of the real data. We explore training on (a),

(b), (c) with and without fine-tuning on HIC. We find that

pre-training on all three datasets is beneficial for hand and

object reconstructions. The best performance is obtained

when pre-training on (c). In that setup, object performance

outperforms training only on real images even before fine-

tuning, and significantly improves upon the baseline after.

Hand pose error saturates after the pre-training step, leav-

ing no room for improvement using the real data. These

results show that when training on synthetic data, similarity

to the target real hand and pose distribution is critical.

5.6. Qualitative results on CORe50

FHB is a dataset with limited backgrounds, visible mag-

netic sensors and a very limited number of subjects and ob-

jects. In this section, we verify the ability of our model

trained on ObMan to generalize to real data without fine-

tuning. CORe50 [24] is a dataset which contains hand-

object interactions with an emphasis on the variability of

objects and backgrounds. However no 3D hand or object

annotation is available. We therefore present qualitative re-
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Figure 9: We compare the effect of training with and without fine-

tuning on variants of our synthetic dataset on HIC. We illustrate

each dataset (a, b, c, d) with an image sample, see text for defini-

tions. Synthetic pre-training, whether or not the target distribution

is matched, is always beneficial.

sults on this dataset. Figure 7 shows that our model gen-

eralizes across different object categories, including light-

bulb, which does not belong to the categories our model

was trained on. The global outline is well recovered in the

camera view while larger mistakes occur in the perpendicu-

lar direction. More results can be found in Appendix D.

6. Conclusions

We presented an end-to-end approach for joint recon-

struction of hands and objects given a single RGB image

as input. We proposed a novel contact loss that enforces

physical constraints on the interaction between the two

meshes. Our results and the ObMan dataset open up new

possibilities for research on modeling object manipulations.

Future directions include learning grasping affordances

from large-scale visual data, and recognizing complex and

dynamic hand actions.
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