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Abstract

Exploiting multi-scale representations is critical to im-

prove edge detection for objects at different scales. To ex-

tract edges at dramatically different scales, we propose a

Bi-Directional Cascade Network (BDCN) structure, where

an individual layer is supervised by labeled edges at its spe-

cific scale, rather than directly applying the same supervi-

sion to all CNN outputs. Furthermore, to enrich multi-scale

representations learned by BDCN, we introduce a Scale En-

hancement Module (SEM) which utilizes dilated convolu-

tion to generate multi-scale features, instead of using deep-

er CNNs or explicitly fusing multi-scale edge maps. These

new approaches encourage the learning of multi-scale rep-

resentations in different layers and detect edges that are

well delineated by their scales. Learning scale dedicated

layers also results in compact network with a fraction of

parameters. We evaluate our method on three datasets, i.e.,

BSDS500, NYUDv2, and Multicue, and achieve ODS F-

measure of 0.828, 1.3% higher than current state-of-the art

on BSDS500. The code has been available1.

1. Introduction

Edge detection targets on extracting object boundaries

and perceptually salient edges from natural images, which

preserve the gist of an image and ignore unintended detail-

s. Thus, it is important to a variety of mid- and high-level

vision tasks, such as image segmentation [1, 41], object de-

tection and recognition [13, 14], etc. Thanks to research

efforts ranging from exploiting low-level visual cues with

hand-crafted features [4, 22, 1, 28, 10] to recent deep mod-

els [3, 30, 23, 47], the accuracy of edge detection has been

significantly boosted. For example, on the Berkeley Seg-

mentation Data Set and Benchmarks 500 (BSDS500) [1],

the detection performance has been boosted from 0.598 [7]

to 0.815 [47] in ODS F-measure.

Nevertheless, there remain some open issues worthy of

studying. As shown in Fig. 1, edges in one image stem

1https://www.pkuvmc.com/dataset.html.

Figure 1. Some images and their ground truth edge maps in BSD-

S500 dataset. The scale of edges in one image varies considerably,

like the boundaries of human body and hands.

from both object-level boundaries and meaningful local de-

tails, e.g., the silhouette of human body and the shape of

hand gestures. The variety of scale of edges makes it cru-

cial to exploit multi-scale representations for edge detec-

tion. Recent neural net based methods [2, 42, 49] utilize hi-

erarchal features learned by Convolutional Neural Network-

s (CNN) to obtain multi-scale representations. To generate

more powerful multi-scale representation, some researchers

adopt very deep networks, like ResNet50 [18], as the back-

bone model of the edge detector. Deeper models generally

involve more parameters, making the network hard to train

and expensive to infer. Another way is to build an image

pyramid and fuse multi-level features, which may involve

redundant computations. In another word, can we use a

shallow or light network to achieve a comparable or even

better performance?

Another issue is about the CNN training strategy for

edge detection, i.e., supervising predictions of different net-

work layers by one general ground truth edge map [49, 30].

For instance, HED [49, 50] and RCF [30] compute edge

prediction on each intermediate CNN output to spot edges

at different scales, i.e., the lower layers are expected to de-

tect more local image patterns while higher layers capture

object-level information with larger receptive fields. Since

different network layers attend to depict patterns at different

scales, it is not optimal to train those layers with the same

supervision. In another word, existing works [49, 50, 30]

enforce each layer of CNN to predict edges at all scales and

ignore that one specific intermeadiate layer can only focus

on edges at certain scales. Liu et al. [31] propose to re-

lax the supervisions on intermediate layers using Canny [4]

detectors with layer-specific scales. However, it is hard to

decide layer-specific scales through human intervention.
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Figure 2. The overall architecture of BDCN. ID Block denotes the

Incremental Detection Block, which is the basic component of B-

DCN. Each ID Block is trained by layer-specific supervisions in-

ferred by a bi-directional cascade structure. This structure trains

each ID Block to spot edges at a proper scale. The predictions of

ID Blocks are fused as the final result.

Aiming to fully exploit the multiple scale cues with a

shallow CNN, we introduce a Scale Enhancement Mod-

ule (SEM) which consists of multiple parallel convolutions

with different dilation rates. As shown in image segmen-

tation [5], dilated convolution effectively increases the size

of receptive fields of network neurons. By involving mul-

tiple dilated convolutions, SEM captures multi-scale spatial

contexts. Compared with previous strategies, i.e., introduc-

ing deeper networks and explicitly fusing multiple edge de-

tections, SEM does not significantly increase network pa-

rameters and avoids the repetitive edge detection on image

pyramids.

To address the second issue, each layer in CNN shall be

trained by proper layer-specific supervision, e.g., the shal-

low layers are trained to focus on meaningful details and

deep layers should depict object-level boundaries. We pro-

pose a Bi-Directional Cascade Network (BDCN) architec-

ture to achieve effective layer-specific edge learning. For

each layer in BDCN, its layer-specific supervision is in-

ferred by a bi-directional cascade structure, which propa-

gates the outputs from its adjacent higher and lower layers,

as shown in Fig. 2. In another word, each layer in BD-

CN predicts edges in an incremental way w.r.t scale. We

hence call the basic block in BDCN, which is constructed

by inserting several SEMs into a VGG-type block, as the In-

cremental Detection Block (ID Block). This bi-directional

cascade structure enforces each layer to focus on a specific

scale, allowing for a more rational training procedure.

By combining SEM and BDCN, our method achieves

consistent performance on three widely used datasets, i.e.,

BSDS500, NYUDv2, and Multicue. It achieves ODS F-

measure of 0.828, 1.3% higher than current state-of-the art

CED [47] on BSDS500. It achieves 0.806 only using the

trainval data of BSDS500 for training, and outperforms the

human perception (ODS F-measure 0.803). To our best

knowledge, we are the first that outperforms human percep-

tion by training only on trainval data of BSDS500. More-

over, we achieve a better trade-off between model compact-

ness and accuracy than existing methods relying on deeper

models. With a shallow CNN structure, we obtain compara-

ble performance with some well-known methods [3, 42, 2].

For example, we outperform HED [49] using only 1/6 of

its parameters. This shows the validity of our proposed

SEM, which enriches the multi-scale representations in C-

NN. This work is also an original effort studying a rational

training strategy for edge detection, i.e., employing the B-

DCN structure to train each CNN layer with layer-specific

supervision.

2. Related Work

This work is related to edge detection, multi-scale rep-

resentation learning, and network cascade structure. We

briefly review these three lines of works, respectively.

Edge Detection: Most edge detection methods can be

categorized into three groups, i.e., traditional edge oper-

ators, learning based methods, and the recent deep learn-

ing, respectively. Traditional edge operators [22, 4, 45, 34]

detect edges by finding sudden changes in intensity, col-

or, texture, etc. Learning based methods spot edges by u-

tilizing supervised models and hand-crafted features. For

example, Dollár et al. [10] propose structured edge which

jointly learns the clustering of groundtruth edges and the

mapping of image patch to clustered token. Deep learning

based methods use CNN to extract multi-level hierarchical

features. Bertasius et al. [2] employ CNN to generate fea-

tures of candidate contour points. Xie et al. [49] propose

an end-to-end detection model that leverages the output-

s from different intermediate layers with skip-connections.

Liu et al. [30] further learn richer deep representations by

concatenating features derived from all convolutional lay-

ers. Xu et al. [51] introduce a hierarchical deep model to

extract multi-scale features and a gated conditional random

field to fuse them.

Multi-Scale Representation Learning: Extraction and fu-

sion of multi-scale features are fundamental and critical for

many vision tasks, e.g., [19, 52, 6]. Multi-scale repre-

sentations can be constructed from multiple re-scaled im-

ages [12, 38, 11], i.e., an image pyramid, either by comput-

ing features independently at each scale [12] or using the

output from one scale as the input to the next scale [38, 11].

Recently, innovative works DeepLab [5] and PSPNet [55]

use dilated convolutions and pooling to achieve multi-scale

feature learning in image segmentation. Chen et al. [6]

propose an attention mechanism to softly weight the multi-

scale features at each pixel location.

Like other image patterns, edges vary dramatically in s-

cales. Ren et al. [39] show that considering multi-scale cues

does improve performance of edge detection. Multiple s-

cale cues are also used in many approaches [48, 39, 24, 50,

30, 34, 51]. Most of those approaches explore the scale-
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space of edges, e.g., using Gaussian smoothing at multiple

scales [48] or extracting features from different scaled im-

ages [1]. Recent deep based methods employ image pyra-

mid and hierarchal features. For example, Liu et al. [30]

forward multiple re-scaled images to a CNN independently,

then average the results. Our approaches follow a similar

intuition, nevertheless, we build SEM to learn multi-scale

representations in an efficient way, which avoids repetitive

computation on multiple input images.

Network Cascade: Network cascade [21, 37, 25, 46, 26]

is an effective scheme for many vision applications like

classification [37], detection [25], pose estimation [46]

and semantic segmentation [26]. For example, Murthy

et al. [37] treat easy and hard samples with different net-

works to improve classification accuracy. Yuan et al. [54]

ensemble a set of models with different complexities to pro-

cess samples with different difficulties. Li et al. [26] pro-

pose to classify easy regions in a shallow network and train

deeper networks to deal with hard regions. Lin et al. [29]

propose a top-down architecture with lateral connection-

s to propagate deep semantic features to shallow layers.

Different from previous network cascade, BDCN is a bi-

directional pseudo-cascade structure, which allows an inno-

vative way to supervise each layer individually for layer-

specific edge detection. To our best knowledge, this is an

early and original attempt to adopt a cascade architecture in

edge detection.

3. Proposed Methods

3.1. Formulation

Let (X , Y ) denote one sample in the training set T,

where X = {xj , j = 1, · · · , |X|} is a raw input image

and Y = {yj , j = 1, · · · , |X|}, yj ∈ {0, 1} is the corre-

sponding groundtruth edge map. Considering the scale of

edges may vary considerably in one image, we decompose

edges in Y into S binary edge maps according to the scale

of their depicted objects, i.e.,

Y =

S
∑

s=1

Ys, (1)

where Ys contains annotated edges corresponding to a scale

s. Note that, we assume the scale of edges is in proportion

to the size of their depicted objects.

Our goal is to learn an edge detector D(·) capable of de-

tecting edges at different scales. A natural way to design

D(·) is to train a deep neural network, where different layers

correspond to different sizes of receptive field. Specifically,

we can build a neural network N with S convolutional lay-

ers. The pooling layers make adjacent convolutional layers

depict image patterns at different scales.

For one training image X , suppose the feature map gen-

erated by the s-th convolutional layer is Ns(X) ∈ Rw×h×c.

Using Ns(X) as input, we design a detector Ds(·) to spot

edges at scale s. The training loss for Ds(·) is formulated

as

Ls =
∑

X∈T

|Ps − Ys|, (2)

where Ps = Ds(Ns(X)) is the edge prediction at scale s.

The final detector D(·) hence is derived as the ensemble of

detectors learned from scale 1 to S.

To make the training with Eq. (2) possible, Ys is re-

quired. It is not easy to decompose the groundtruth edge

map Y manually into different scales, making it hard to ob-

tain the layer-specific supervision Ys for the s-th layer. A

possible solution is to approximate Ys based on ground truth

label Y and edges predicted at other layers, i.e.,

Ys ∼ Y −
∑

i �=s

Pi. (3)

However, Ys computed in Eq. (3) is not an appropriate

layer-specific supervision. In the following paragraph, we

briefly explain the reason.

According to Eq. (3), for a training image, its predict-

ed edges Ps at layer s should approximate Ys, i.e., Ps ∼
Y −

∑

i �=s Pi. In other words, we can pass the other layers’

predictions to layer s for training, resulting in an equiva-

lent formulation, i.e., Y ∼
∑

i Pi. The training objective

can thus become L = L(Ŷ , Y ), where Ŷ =
∑

i Pi. The

gradient w.r.t the prediction Ps of layer s is

∂(L)

∂(Ps)
=

∂(L(Ŷ , Y ))

∂(Ps)
=

∂(L(Ŷ , Y ))

∂(Ŷ )
·
∂(Ŷ )

∂(Ps)
. (4)

According to Eq. (4), for edge predictions Ps, Pi at any two

layers s and i, s �= i, their loss gradients are equal because
∂(Ŷ )
∂(Ps)

= ∂(Ŷ )
∂(Pi)

= 1. This implies that, with Eq. (3), the

training process dose not necessarily differentiate the scales

depicted by different layers, making it not appropriate for

our layer-specific scale learning task.

To address the above issue, we approximate Ys with two

complementary supervisions. One ignores the edges with

scales smaller than s, and the other ignores the edges with

larger scales. Those two supervisions train two edge detec-

tors at each scale. We define those two supervisions at scale

s as

Y s2d
s = Y −

∑

i<s

Pi
s2d,

Y d2s
s = Y −

∑

i>s

Pi
d2s,

(5)

where the superscript s2d denotes information propagation

from shallow layers to deeper layers, and d2s denotes the

prorogation from deep layers to shallower layers.
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Figure 3. The detailed architecture of BDCN and SEM. For illus-

tration, we only show 3 ID Blocks and the cascade from shallow

to deep. The number of ID Blocks in our network can be flexibly

set from 2 to 5 (see Fig. 9).

For scale s, the predicted edges Ps
s2d and Ps

d2s approx-

imate to Y s2d
s and Ys

d2s, respectively. Their combination is

a reasonable approximation to Ys, i.e.,

Ps
s2d + Ps

d2s ∼ 2Y −
∑

i<s

Pi
s2d −

∑

i>s

Pi
d2s, (6)

where the edges predicted at scales i �= s are depressed.

Therefore, we use Ps
s2d + Ps

d2s to interpolate the edge

prediction at scale s.

Because different convolutional layers depict different s-

cales, the depth of a neural network determines the range

of scales it could model. A shallow network may not be

capable to detect edges at all of the S scales. However,

a large number of convolutional layers involves too many

parameters and makes the training difficult. To enable edge

detection at different scales with a shallow network, we pro-

pose to enhance the multi-scale representation learned in

each convolutional layer with the Scale Enhancement Mod-

ule (SEM). The detail of SEM will be presented in Sec. 3.2.

3.2. Architecture of BDCN

Based on Eq. (6), we propose a Bi-Directional Cascade

Network (BDCN) architecture to achieve layer-specific

training for edge detection. As shown in Fig. 2, our network

is composed of multiple ID Blocks, each of which is learned

with different supervisions inferred by a bi-directional cas-

cade structure. Specifically, the network is based on the

VGG16 [44] by removing its three fully connected layers

and last pooling layer. The 13 convolutional layers in VG-

G16 are then divided into 5 blocks, each follows a pooling

layer to progressively enlarge the receptive fields in the next

block. The VGG blocks evolve into ID Blocks by inserting

several SEMs. We illustrate the detailed architecture of B-

DCN and SEM in Fig. 3.

ID Block is the basic component of our network. Each

ID block produces two edge predictions. As shown in

Fig. 3, an ID Block consists of several convolutional lay-

ers, each is followed by a SEM. The outputs of multiple

SEMs are fused and fed into two 1×1 convolutional layers

to generate two edges predictions P d2s and P s2d, respec-

tively. The cascade structure shown in Fig. 3 propagates the

edge predictions from the shallow layers to deep layers. For

the s-th block, P s2d
s is trained with supervision Y s2d

s com-

puted in Eq. (5). P d2s
s is trained in a similar way. The final

edge prediction is computed by fusing those intermediate

edge predictions in a fusion layer using 1×1 convolution.

Scale Enhancement Module is inserted into each ID

Block to enrich the multi-scale representations in it. SEM

is inspired by the dilated convolution proposed by Chen

et al. [5] for image segmentation. For an input two-

dimensional feature map x ∈ RH×W with a convolution

filter w ∈ Rh×w, the output y ∈ RH′×W ′

of dilated convo-

lution at location (i, j) is computed by

yij =

h,w
∑

m,n

x[i+r·m,j+r·n] · w[m,n], (7)

where r is the dilation rate, indicating the stride for sam-

pling input feature map. Standard convolution can be treat-

ed as a special case with r = 1. Eq. (7) shows that dilated

convolution enlarges the receptive field of neurons without

reducing the resolution of feature maps or increasing the

parameters.

As shown on the right side of Fig. 3, for each SEM we

apply K dilated convolutions with different dilation rates.

For the k-th dilated convolution, we set its dilation rate as

rk = max(1, r0 × k), which involves two parameters in

SEM: the dilation rate factor r0 and the number of convolu-

tion layers K. They are evaluated in Sec. 4.3.

3.3. Network Training

Each ID Block in our network is trained with two layer-

specific side supervisions. Besides that, we fuse the inter-

mediate edge predictions with a fusion layer as the final re-

sult. Therefore, BDCN is trained with three types of loss.

We formulate the overall loss L as,

L = wside · Lside + wfuse · Lfuse(P, Y ), (8)

Lside =

S
∑

s=1

L(P d2s
s , Y d2s

s ) + L(P s2d
s , Y s2d

s ), (9)

where wside and wfuse are weights for the side loss and fu-

sion loss, respectively. P denotes the final edge prediction.

The function L(·) is computed at each pixel with respect

to its edge annotation. Because the distribution of edge/non-

edge pixels is heavily biased, we employ a class-balanced

cross-entropy loss as L(·). Because of the inconsistency of

annotations among different annotators, we also introduce

a threshold γ for loss computation. For a groudtruth Y =
(yj , j = 1, ..., |Y |), yj ∈ (0, 1), we define Y+ = {yj , yj >
γ} and Y− = {yj , yj = 0}. Only pixels corresponding to

Y+ and Y− are considered in loss computation. We hence
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Figure 4. Examples of edges detected by different ID Blocks (IDB

for short). Each ID Block generates two edge predictions, P s2d

and P
d2s, respectively.

define L(·) as

L
(

Ŷ , Y
)

= −α
∑

j∈Y−

log(1− ŷj)−β
∑

j∈Y+

log(ŷj), (10)

where Ŷ = (ŷj , j = 1, ..., |Ŷ |), ŷj ∈ (0, 1) denotes a

predicted edge map, α = λ · |Y+|/(|Y+| + |Y−|), β =
|Y−|/(|Y+| + |Y−|) balance the edge/non-edge pixels. λ
controls the weight of positive over negative samples.

Fig. 4 shows edges detected by different ID blocks. We

observe that, edges detected by different ID Blocks corre-

spond to different scales. The shallow ID Blocks produce

strong responses on local details and deeper ID Blocks are

more sensitive to edges at larger scale. For instance, de-

tailed edges on the body of zebra and butterfly can be de-

tected by shallow ID Block, but are depressed by deeper ID

Block. The following section tests the validity of BDCN

and SEM.

4. Experiments

4.1. Datasets

We evaluate the proposed approach on three public

datasets: BSDS500 [1], NYUDv2 [43], and Multicue [35].

BSDS500 contains 200 images for training, 100 images

for validation, and 200 images for testing. Each image

is manually annotated by multiple annotators. The final

groundtruth is the averaged annotations by the annotators.

We also utilize the strategies in [49, 30, 47] to augment

training and validation sets by randomly flipping, scaling

and rotating images. Following those works, we also adopt

the PASCAL VOC Context dataset [36] as our training set.

NYUDv2 consists of 1449 pairs of aligned RGB and

depth images. It is split into 381 training, 414 validation,

and 654 testing images. NYUDv2 is initially used for scene

understanding, hence is also used for edge detection in pre-

vious works [15, 40, 49, 30]. Following those works, we

augment the training set by randomly flipping, scaling, and

rotating training images.

Multicue [35] contains 100 challenging natural scenes.

Each scene has two frame sequences taken from left and

right view, respectively. The last frame of left-view se-

quence is annotated with edges and boundaries. Follow-

ing [35, 30, 50], we randomly split 100 annotated frames

into 80 and 20 images for training and testing, respective-

ly. We also augment the training data with the same way

in [49].

4.2. Implementation Details

We implement our network using PyTorch. The VG-

G16 [44] pretrained on ImageNet [8] is used to initialize

the backbone. The threshold γ used for loss computation

is set as 0.3 for BSDS500. γ is set as 0.3 and 0.4 for Mul-

ticue boundary and edges datasets, respectively. NYUDv2

provides binary annotations, thus does not need to set γ for

loss computation. Following [30], we set the parameter λ
as 1.1 for BSDS500 and Multicue, set λ as 1.2 for NYUDv2.

SGD optimizer is adopted to train our network. On B-

SDS500 and NYUDv2, we set the batch size to 10 for all

the experiments. The initial learning rate, momentum and

weight decay are set to 1e-6, 0.9, and 2e-4 respectively. The

learning rate decreases by 10 times after every 10k itera-

tions. We train 40k iterations for BSDS500 and NYUDv2,

2k and 4k iterations for Multicue boundary and edge, re-

spectively. wside and wfuse are set as 0.5, and 1.1, respec-

tively. Since Multicue dataset includes high resolution im-

ages, we randomly crop 500×500 patches from each image

in training. All the experiments are conducted on a NVIDIA

GeForce1080Ti GPU with 11GB memory.

We follow previous works [49, 30, 47, 51], and perform

standard Non-Maximum Suppression (NMS) to produce the

final edge maps. For a fair comparison with other work,

we report our edge detection performance with commonly

used evaluation metrics, including Average Precision (AP),

as well as F-measure at both Optimal Dataset Scale (ODS)

and Optimal Image Scale (OIS). The maximum tolerance

allowed for correct matches between edge predictions and

groundtruth annotations is set to 0.0075 for BSDS500 and

Multicue dataset, and is set to 0.011 for NYUDv2 dataset as

in previous works [30, 35, 50].

4.3. Ablation Study

In this section, we conduct experiments on BSDS500 to

study the impact of parameters and verify each component

in our network. We train the network on the BSDS500 train-

ing set and evaluate on the validation set. Firstly, we test the

impact of the parameters in SEM, i.e., the number of dilated

convolutions K and the dilation rate factor r0. Experimen-

tal results are summarized in Table 1.

Table 1 (a) shows the impact of K with r0=4. Note that,
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Table 1. Impact of SEM parameters to the edge detection perfor-

mance on BSDS500 validation set. (a) shows the impact of K with

r0=4. (b) shows the impact of r0 with K=3.

(a)

K ODS OIS AP

0 .7728 .7881 .8093

1 .7733 .7845 .8139

2 .7738 .7876 .8169

3 .7748 .7894 .8170

4 .7745 .7896 .8166

(b)

r0 rate ODS OIS AP

0 1,1,1 .7720 .7881 .8116

1 1,2,3 .7721 .7882 .8124

2 2,4,6 .7725 .7875 .8132

4 4,8,12 .7748 .7894 .8170

8 8,16,24 .7742 .7889 .8169

Table 2. Validity of components in BDCN on BSDS500 validation

set. (a) tests different cascade architectures. (b) shows the validity

of SEM and the bi-directional cascade architecture.

(a)

Architecture ODS OIS AP

baseline .7681 .7751 .7912

S2D .7683 .7802 .7978

D2S .7710 .7816 .8049

S2D+D2S
.7762 .7872 .8013

(BDCN w/o SEM)

(b)

Method ODS OIS AP

baseline .7681 .7751 .7912

SEM .7748 .7894 .8170

S2D+D2S
.7762 .7872 .8013

(BDCN w/o SEM)

BDCN .7765 .7882 .8091

K=0 means directly copying the input as output. The re-

sults demonstrate that setting K larger than 1 substantially

improves the performance. However, too large K does not

constantly boost the performance. The reason might be that,

large K produces high dimensional outputs and makes edge

extraction from such high dimensional data difficult. Table

1 (b) also shows that larger r0 improves the performance.

But the performance starts to drop with too large r0, e.g.,

r0=8. In our following experiments, we fix K=3 and r0=4.

Table 2 (a) shows the comparison among different cas-

cade architectures, i.e., single direction cascade from shal-

low to deep layers (S2D), from deep to shallow layers

(D2S), and the bi-directional cascade (S2D+D2S), i.e., the

BDCN w/o SEM. Note that, we use the VGG16 network

without fully connected layer as baseline. It can be observed

that, both S2D and D2S structures outperform the baseline.

This shows the validity of the cascade structure in network

training. The combination of these two cascade structures,

i.e., S2D+D2S, results in the best performance. We fur-

ther test the performance of combining SEM and S2D+D2S

and summarize the results in Table 2 (b), which shows that

SEM and bi-directional cascade structure consistently im-

prove the performance of baseline, e.g., improve the ODS F-

measure by 0.7% and 0.8% respectively. Combining SEM

and S2D+D2S results in the best performance. We can con-

clude that, the components introduced in our method are

valid in boosting edge detection performance.

4.4. Comparison with Other Works

Performance on BSDS500: We compare our ap-

proach with recent deep learning based methods includ-

ing CED [47], RCF [30], DeepBoundary [23], DCD [27],

COB [32], HED [49], HFL [3], DeepEdge [2] and Deep-

Table 3. Comparison with other methods on BSDS500 test

set. †indicates trained with additional PASCAL-Context data.

‡indicates the fused result of multi-scale images.

Method ODS OIS AP

Human .803 .803 –

SCG [40] .739 .758 .773

PMI [20] .741 .769 .799

OEF [17] .746 .770 .820

DeepContour [42] .757 .776 .800

HFL [3] .767 .788 .795

HED [49] .788 .808 .840

CEDN [53] † .788 .804 –

COB [32] .793 .820 .859

DCD [27] .799 .817 .849

AMH-Net [51] .798 .829 .869

RCF [30] .798 .815 –

RCF [30] † .806 .823 –

RCF [30] ‡ .811 .830 –

Deep Boundary [23] .789 .811 .789

Deep Boundary [23] ‡ .809 .827 .861

Deep Boundary [23] ‡ + Grouping .813 .831 .866

CED [47] .794 .811 .847

CED [47] ‡ .815 .833 .889

LPCB [9] .800 .816 –

LPCB [9] † .808 .824 –

LPCB [9] ‡ .815 .834 –

BDCN .806 .826 .847

BDCN † .820 .838 .888

BDCN ‡ .828 .844 .890

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

isi
on

Figure 5. The precision-recall curves of our method and other

works on BSDS500 test set.

Contour [42], and traditional edge detection methods, in-

cluding SCG [40], PMI [20] and OEF [17]. The comparison

on BSDS500 is summarized in Table 3 and Fig. 5, respec-

tively.

As shown in the results, our method obtains the F-

measure ODS of 0.820 using single scale input, and

achieves 0.828 with multi-scale inputs, both outperform al-

l of these competing methods. Using a single-scale input,

our method still outperforms the recent CED [47] and Deep-

Boundary [23] that use multi-scale inputs. Our method also

outperforms the human perception by 2.5% in F-measure

ODS. The F-measure OIS and AP of our approach are also

higher than the ones of the other methods.

Performance on NYUDv2: NYUDv2 has three types of

inputs, i.e., RGB, HHA, and RGB-HHA, respectively. Fol-
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Table 4. Comparison with recent works on NYUDv2.

Method ODS OIS AP

gPb-UCM [1]

RGB

.632 .661 .562

gPb+NG [15] .687 .716 .629

OEF[17] .651 .667 –

SE [10] .695 .708 .679

SE+NG+ [16] .706 .734 .738

HED [49]

RGB .720 .734 .734

HHA .682 .695 .702

RGB-HHA .746 .761 .786

RCF [30]

RGB .729 .742 –

HHA .705 .715 –

RGB-HHA .757 .771 –

AMH-Net-ResNet50 [51]

RGB .744 .758 .765

HHA .716 .729 .734

RGB-HHA .771 .786 .802

LPCB [9]

RGB .739 .754 –

HHA .707 .719 –

RGB-HHA .762 .778 –

COB-ResNet50[33] RGB-HHA .784 .805 825

BDCN

RGB .748 .763 .770

HHA .707 .719 .731

RGB-HHA .765 .781 .813
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[F=.765] Ours

[F=.757] RCF

[F=.741] HED

[F=.706] SE+NG+

[F=.695] SE

[F=.687] gPb+NG

[F=.651] OEF

[F=.631] gPb-UCM

Figure 6. The precision-recall curves of our method and compared

works on NYUDv2.

lowing previous works [49, 30], we perform experiments

on all of them. The results of RGB-HHA are obtained by

averaging the edges detected on RGB and HHA. Table 4

shows the comparison of our method with several recent ap-

proaches, including gPb-ucm [1], OEF [17], gPb+NG [15],

SE+NG+ [16], SE [10], HED [49], RCF [30] and AMH-

Net [51]. Fig. 6 shows the precision-recall curves of our

method and other competitors. All of the evaluation results

are based on a single scale input.

As shown in Table 4 and Fig. 6, our performance is com-

petitive, i.e., outperforms most of the compared works ex-

cept AMH-Net [51]. Note that, AMH-Net applies the deep-

er ResNet50 to construct the edge detector. With a shal-

lower network, our method still outperforms AMH-Net on

the RGB image, i.e., our 0.748 vs. 0.744 of AMH-Net in

F-measure ODS. Compared with previous works, our im-

provement over existing works is actually more substantial,

e.g., on NYUDv2 our gains over RCF [30] and HED [49]

are 0.019 and 0.028 in ODS, higher than the 0.009 gain of

Table 5. Comparison with recent works on Multicue. ‡indicates

the fused result of multi-scale images.

Cat. Method ODS OIS AP

Boundary

Human [35] .760 (0.017) – –

Multicue [35] .720 (0.014) – –

HED [50] .814 (0.011) .822 (0.008) .869(0.015)

RCF [30] .817 (0.004) .825 (0.005) –

RCF [30] ‡ .825 (0.008) .836 (0.007) –

BDCN .836 (0.001) .846(0.003) .893(0.001)

BDCN ‡ .838(0.004) .853(0.009) .906(0.005)

Edge

Human [35] .750 (0.024) – –

Multicue [35] .830 (0.002) – –

HED [50] .851 (0.014) .864 (0.011) –

RCF [30] .857 (0.004) .862 (0.004) –

RCF [30] ‡ .860 (0.005) .864 (0.004) –

BDCN .891 (0.001) .898 (0.002) .935(0.002)

BDCN ‡ .894(0.002) .901(0.004) .941(0.005)

image GT-Boundary BDCN-Boundary BDCN-EdgeGT-Edge

Figure 7. Examples of our edge detection results before Non-

Maximum Suppression on Multicue dataset.
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Figure 8. Comparison of edge detection accuracy as we decrease

the number of ID Blocks from 5 to 2. HED learned with VGG16

is denoted as the solid line for comparison.

RCF [30] over HED [49].

Performance on Multicue: Multicue consists of two sub

datasets, i.e., Multicue boundary and Multicue edge. As

done in RCF [30] and the recent version of HED [50], we

average the scores of three independent experiments as the

final result. We show the comparison with recent works

in Table 5, where our method achieves substantially higher

performance than RCF [30] and HED [49]. For boundary

detection task, we outperform RCF and HED by 1.3% and

2.4%, respectively in F-measure ODS. For edge detection

task, our performance is 3.4% and 4.3% higher than the

ones of RCF and HED. Moreover, the performance fluc-

tuation of our method is considerably smaller than those

two methods, which means our method delivers more sta-

ble results. Some edge detection results generated by our

approach on Multicue are presented in Fig. 7.

Discussions: The above experiments have shown the
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Figure 9. Comparison of parameters and performance with other

methods. The number behind “BDCN” indicates the number of ID

Block. ‡means the multiscale results.

competitive performance of our proposed method. We fur-

ther test the capability of our method in learning multi-

scale representations with shallow networks. We test our

approach and RCF with different depth of networks, i.e.,

using different numbers of convolutional block to construct

the edge detection model. Fig. 8 presents the results on B-

SDS500. As shown in Fig. 8, the performance of RCF [30]

drops more substantially than our method as we decrease

the depth of networks. This verifies that our approach is

more effective in detecting edges with shallow networks.

We also show the performance of our approach without the

SEM and the BDCN structure. These ablations show that

removing either BDCN or SEM degrades the performance.

It is also interesting to observe that, without SEM, the per-

formance of our method drops substantially. This hence

verifies the importance of SEM to multi-scale representa-

tion learning in shallow networks.

Fig. 9 further shows the comparison of parameters vs.

performance of our method with other deep net based meth-

ods on BSDS500. With 5 convolutional blocks in VGG16,

HED [49], RCF [30], and our method use similar number

of parameters, i.e., about 16M. As we decrease the number

of ID Blocks from 5 to 2, our number of parameters de-

creases dramatically, drops to 8.69M, 2.26M, and 0.28M,

respectively. Our method still achieves F-measure ODS of

0.766 using only two ID Blocks with 0.28M parameters. It

also outperforms HED and RCF with a more shallow net-

work, i.e., with 3 and 4 ID Blocks respectively. For exam-

ple, it outperforms HED by 0.8% with 3 ID Blocks and just

1/6 parameters of HED. We thus conclude that, our method

can achieve promising edge detection accuracy even with a

compact shallow network.

To further show the advantage of our method, we evalu-

ate the performance of edge predictions by different inter-

mediate layers, and show the comparison with HED [49]

and RCF [30] in Table 6. It can be observed that, the in-

termediate predictions of our network also consistently out-

Table 6. The performance (ODS) of each layer in BDCN, R-

CF [30], and HED [49] on BSDS500 test set.

Layer ID. HED [49] RCF [30] BDCN

1 0.595 0.595 0.727

2 0.697 0.710 0.762

3 0.750 0.766 0.771

4 0.748 0.761 0.802

5 0.637 0.758 0.815

fuse 0.790 0.805 0.820

image GT PMI [19] HED [47] CED [45]RCF [29] BDCN

Figure 10. Comparison of edge detection results on BSDS500 test

set. All the results are raw edge maps computed with a single scale

input before Non-Maximum Suppression.

perform the ones from HED and RCF, respectively. With

5 ID Blocks, our method runs at about 22fps for edge de-

tection, on par with most DCNN-based methods. With 4, 3

and 2 ID Blocks, it accelerates to 29 fps, 33fps, and 37fps,

respectively. Fig. 10 compares some edge detection results

generated by our approach and several recent ones.

5. Conclusions

This paper proposes a Bi-Directional Cascade Network

for edge detection. By introducing a bi-directional cascade

structure to enforce each layer to focus on a specific scale,

BDCN trains each network layer with a layer-specific su-

pervision. To enrich the multi-scale representations learned

with a shallow network, we further introduce a Scale En-

hancement Module (SEM). Our method compares favor-

ably with over 10 edge detection methods on three datasets,

achieving ODS F-measure of 0.828, 1.3% higher than cur-

rent state-of-art on BSDS500. Our experiments also show

that learning scale dedicated layers results in compact net-

works with a fraction of parameters, e.g., our approach out-

performs HED [49] with only 1/6 of its parameters.

6. Acknowledgement

This work is supported in part by Beijing Natu-
ral Science Foundation under Grant No. JQ18012, in
part by Natural Science Foundation of China under
Grant No. 61620106009, 61572050, 91538111. We
also thank NVIDIA’s generosity for providing DGX-1
super-computer and support through the NVAIL program.

83835



References

[1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour

detection and hierarchical image segmentation. IEEE Trans.

Pattern Anal. Mach. Intell., 33(5):898–916, 2011. 1, 3, 5, 7

[2] G. Bertasius, J. Shi, and L. Torresani. Deepedge: A multi-

scale bifurcated deep network for top-down contour detec-

tion. In CVPR, pages 4380–4389, 2015. 1, 2, 6

[3] G. Bertasius, J. Shi, and L. Torresani. High-for-low and low-

for-high: Efficient boundary detection from deep object fea-

tures and its applications to high-level vision. In ICCV, 2015.

1, 2, 6

[4] J. Canny. A computational approach to edge detection. IEEE

Trans. Pattern Anal. Mach. Intell., 8(6):679–698, June 1986.

1, 2

[5] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected crfs. arXiv preprint arXiv:1606.00915, 2016. 2, 4

[6] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. At-

tention to scale: Scale-aware semantic image segmentation.

In CVPR, pages 3640–3649, 2016. 2

[7] D. Comaniciu and P. Meer. Mean shift: A robust approach

toward feature space analysis. IEEE Trans. Pattern Anal.

Mach. Intell., 24(5):603–619, 2002. 1

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

CVPR, pages 248–255. IEEE, 2009. 5

[9] R. Deng, C. Shen, S. Liu, H. Wang, and X. Liu. Learning to

predict crisp boundaries. In ECCV, pages 562–578, 2018. 6,

7

[10] P. Dollár and C. L. Zitnick. Fast edge detection using

structured forests. IEEE Trans. Pattern Anal. Mach. Intel-

l., 37(8):1558–1570, 2015. 1, 2, 7

[11] D. Eigen and R. Fergus. Predicting depth, surface normals

and semantic labels with a common multi-scale convolution-

al architecture. In ICCV, pages 2650–2658, 2015. 2

[12] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning

hierarchical features for scene labeling. IEEE Trans. Pattern

Anal. Mach. Intell., 35(8):1915–1929, 2013. 2

[13] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid. Groups of

adjacent contour segments for object detection. IEEE Trans.

Pattern Anal. Mach. Intell., 30(1):36–51, 2008. 1

[14] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, pages 580–587, 2014. 1

[15] S. Gupta, P. Arbelaez, and J. Malik. Perceptual organiza-

tion and recognition of indoor scenes from rgb-d images. In

CVPR, 2013. 5, 7

[16] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning
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