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Abstract

Hashing based approximate nearest neighbor search em-

beds high dimensional data to compact binary codes, which

enables efficient similarity search and storage. However,

the non-isometry sign(·) function makes it hard to project

the nearest neighbors in continuous data space into the

closest codewords in discrete Hamming space. In this work,

we revisit the sign(·) function from the perspective of s-

pace partitioning. In specific, we bridge the gap between

k-nearest neighbors and binary hashing codes with Shan-

non entropy. We further propose a novel K-Nearest Neigh-

bors Hashing (KNNH) method to learn binary representa-

tions from KNN within the subspaces generated by sign(·).
Theoretical and experimental results show that the KNN re-

lation is of central importance to neighbor preserving em-

beddings, and the proposed method outperforms the state-

of-the-arts on benchmark datasets.

1. Introduction

Similarity search is a fundamental problem in machine

learning applications, such as clustering, matching, and

classification. With the explosive growth of data size, tra-

ditional methods such as exhaustive search and Kd-tree,

find themselves constrained by the huge size and high di-

mensionality. These problems lead to the boom of hashing

based approximate nearest neighbor search [7, 28, 29, 20].

Hashing methods encode high dimensional data into ver-

tices of binary hypercube while preserving the similarity in

original data space. Due to its low computational cost and

storage efficiency, the learning of similarity preserving bi-

nary codes has attracted much attention.

Traditional hashing methods consist of data independen-

t and data dependent approaches. The classic data inde-

pendent schemes include locality sensitive hashing (LSH)

family [1, 6, 26, 8], using random projections to construc-

t hashing functions. There is no doubt that LSH attains

the preponderant influence in the context of extremely high-

dimensional information retrieval. Nonetheless, LSH is still

an inefficient learning strategy. Without considering the in-

put data, the efficacy of LSH heavily relies on the coding

length. In contrast with the limitations of data independen-

t hashing, data dependent methods exploit the structure of

data or semantic information to learn the compact binary

representations.

Existing data dependent approaches can be further cate-

gorized into supervised and unsupervised schemes. Label-

based hashing, such as supervised hashing with kernels

[34], binary reconstruction embedding [25], supervised dis-

crete hashing [39] and order preserving hashing [42] utilize

semantic labels to optimize the binary hash codes or Ham-

ming distances between clusters. Recently, deep learning

has dramatically advanced the state-of-art [44, 46, 4, 45, 31,

30]. Both semantic representation and label information are

used in deep neural networks to learn hash codes. However,

high performance has been coupled with high computation-

al and storage overhead. As pointed out in [12], hashing al-

gorithms for learning binary codes and for encoding a new

test image should be efficient and scalable.

Label-free hashing methods focus on the natural struc-

ture of data with no requirement on labels. Representa-

tive works include iterative quantization [12], anchor graph

hashing [35], spectral hashing [43], spherical hashing [18],

k-means hashing [17] and binary autoencoder [5]. Due to

the redundancy of input features, a common initial tech-

nique in hashing schemes is principal component analysis

(PCA) [43, 13, 22]. To deal with the variance (i.e., informa-

tion) imbalance among different PCA directions, ITQ [12]

utilizes an orthogonal rotation based on minimizing the

quantization error. Although ITQ is still the seminal method

in hashing, it is still unclear whether distortion minimiza-

tion leads to optimal binary codes.

In this paper, we demonstrate that learning hashing func-

tion only from quantization error minimization may remain

suboptimal. Inspired by Shannon entropy, we propose the
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Figure 1: Toy illustration of K-Nearest Neighbors Hashing (KNNH). The basic idea of binary embedding is to quantize

data points to the closest vertex of the Hamming cube. (a) PCA leaves out the binary repesentation and splits each cluster

to different vertices. (b) ITQ found the optimized rotation, in the context of lowest quantization error. (c) KNN Hashing

endeavors to maintain the k-nearest neighbors within the same subspace during rotation (detailed in Section 2.4). Although

it yields even larger quantization error than ITQ, the proposed transfomation is closer to ideal space partitioning.

conditional entropy minimization, which eludes analysis on

sign(·) by transforming the hashing problem into a space

partitioning problem. With Kozachenko-Leonenko estima-

tor, we further prove that the conditional entropy minimiza-

tion encourages the data point and its k-nearest neighbors to

share the same hashing codes. As illustrated in Figure.1, the

proposed K-Nearest Neighbors Hashing (KNNH) transfor-

mation approaches optimum by preserving KNN within the

same subspaces (i.e., the same codewords). Extensive ex-

periments show that our method outperforms the state-of-

the-arts on benchmark datasets, which indicates the effec-

tiveness of the proposed theory in real-world applications.

2. Approach

2.1. Preliminary

Formally, denote input matrix X ∈ R
n×d as the con-

catenation of n vectors X = {xi}
n
i=1. The vertices of an

axis-aligned c-dimensional hypercube is {−1,+1}c, denot-

ed as B
c. In general, the encoder bi = sign(xi) maps a

vector xi ∈ R
d to the closest vertexes bj ∈ B

c; hence, we

split Rd into 2c disjoint subspaces {S1,S2, ...,S2c} where

Sj = {x|sign(x) = bj}. Given i.i.d. samples {xi}
n
i=1 from

the underlying probability density function p(x) for x ∈
R

d, we apply KNN estimator and re-substitution to non-

parametric estimation (described in Section 2.3). Then, we

have p(bj) =
∫

x
p(x, sign(x) = bj)dx =

∫

x∈Sj
p(x)dx.

For a discrete random variable Y with probability mass

function p(Y ), Shannon entropy is defined as H(Y ) =
−E{log p(y)} = −

∑

y p(y) log p(y).

2.2. Meansquare minimization

The authors of [11] formulated a variety of hashing

methods [12, 41, 43] and some other approximate nearest

neighbor search schemes [36, 21] within a unified frame-

work:

E =
∑

x

||x− d(e(x))||22

where e(·) and d(·) refers to encoder and decoder, e.g., x

is XR; e(·) is sign(·) and d(·) refers to scalar matrix in

ITQ [12]. A quantizer that minimizes E should map any x

to its nearest codeword in the codebook. We argure that this

objective is simple and intuitive but may not straight to the

hashing target.

It is common practice to turn E into well-known signal-

to-noise ratio (or signal-to-quantization-noise ratio) [14] :

SNR = 10 log10
E(||x||2)

E(||x− d(e(x))||2)
.

This target alone reflects the compressibility of data instead

of codewords similarity. In another word, distortion mini-

mization is a data compression system where E and SNR

focus on the minimization of reconstruction error. However,

hashing aims at the approximation of nearest neighbors us-

ing codewords. There is no guarantee that optimized com-

pression leads to the closest codewords since a cluster near

the endpoints of a quantization interval can be split into d-

ifferent codewords.

2.3. Conditional entropy minimization

Under the constraint of orthogonal transformation, the

relation of nearest neighbors can be preserved during rota-

tion. However, this benefit may bring us to another pitfal-

l: orthogonality is the guarantee of order-preserving. This

condition holds when we relax our discrete hashing codes

to be a continuous variable b̃ ∈ R
c. It is obvious that

||Rxi−Rxj ||
2 = ||xi−xj ||

2 whenRTR = I . But the exis-

tence of non-smooth encoder makes ||e(Rxi)−e(Rxj)||
2 ≤

2840



-1 0 1
-1

0

1
Estimated H(B|V): 0.078 bit

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) Random rotation.

-1 0 1
-1

0

1
Estimated H(B|V): 0.074 bit

0

0.2

0.4

0.6

0.8

1

1.2

(b) ITQ rotation.

-1 0 1
-1

0

1
Estimated H(B|V): 0.042 bit

0

0.2

0.4

0.6

0.8

1

1.2

(c) KNNH transformation.

Figure 2: The contribution (i.e., ln
ǫ(vi;Svi

)

ǫ(vi)
) of each data point to Ĥ(B|V ), shown in colormap. KNN based shrinkage leads

to lower conditional entropy than ITQ rotation due to less confusing points near boundary.

||xi − xj ||
2 an open problem (i, j in a neighborhood). To

overcome this issue, early works turn to relaxed hashing

function such as Sigmoid(·) [42] and tanh(·) [33] to ap-

proximate original problem. We show that it is feasible

to create the direct relation between features and hashing

codes without approximation.

To directly model the connections between binary code-

words and real-valued features, we circumvent the non-

smooth sign(·) function and become interested in the sub-

spaces partitioned by sign(·). Note that the number of com-

ponents in a space partition usually plays a central role in

probability and statistical learning theory, and the relation-

ship between minimum mean-square and mutual informa-

tion have been discussed in [38, 15, 16]. All those works

inspire us to describe the hashing process in information-

theoretic criteria :

minH(B|V ); V = f(X)

where B = sign(V ), the feature vi is from a continuous

distribution and bj is the discrete output gallery codes. This

target minimizes the uncertainty in B when V is known. In

other words, the optimal feature representation should make

it easy to determine their codewords.

The objective conforms to our intuition, but the plug-in

method heavily relies on the approximation of probability

density function over bins. Formally,

H(B|V ) ≡

∫

v

p(v)H(B|V = v)dv (1)

≈ −
∑

i,j

pv,b(i, j) log
pv,b(i, j)

pv(i)
(2)

where pv(i) =
∫

i
µi(v)dv, the integration of estimated den-

sity µ(v) over ith bin and pv,b(i, j) =
∫

i
µi(v ∈ Sj)dv.

Clearly, it would be impractical to set the right side of E-

q.(1) as the optimization target. To bridge over the obstacle,

we utilize the alternate format of H(B|V ),

H(B)−H(B|V ) = I(B;V ) = H(V )−H(V |B)

H(B|V ) = H(B)−H(V ) +H(V |B).
(3)

For the estimation of differential entropy, we further intro-

duce the well-known Kozachenko-Leonenko estimator [23]

Ĥ(V ) = −ψ(k) + ψ(n) + ln cd +
d

n

n∑

i=1

ln ǫk(vi) (4)

where ψ(·) is the digamma function, cd is the volume of the

d-dimensional unit ball and ǫk(vi) is twice the disance from

vi to its kth nearest neighbor. Compared with conventional

estimators based on binnings, Eq.(4) has minimal bias and

estimates only from KNN distances. This property will ease

the later derivations and lead to our hashing method.

From Eq.(4), we further estimate Ĥ(V |B) =
∑

j p(v ∈

Sj)Ĥ(V |v ∈ Sj) in disjoint subspaces, which erases the

error made in the individual integration over definite bins

(E.q. (2)), so that

Ĥ(B|V ) =
(
−

2c∑

j=1

|Sj |

n
ln
|Sj |

n

)
−

(
− ψ(k) + ψ(n) + ln cd +

d

n

n∑

i=1

ln ǫk(vi)
)
+

(
2c∑

j=1

|Sj |

n

(
− ψ(k) + ψ(|Sj |) + ln cd+

d

|Sj |

n∑

i=1

ln ǫk(vi; v ∈ Sj)
))
.

(5)

Here |Sj | refers to the number of data points in space Sj
and ǫk(vi; v ∈ Sj) is twice the distance from vi to its KNN

in Sj , given sign(vi) = bj . Note that ǫk(vi; v ∈ Sj) makes
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Algorithm 1: Unconstrained KNN Hashing.

Data: A set of data points {Xi}
n
i=1 ∈ R

d in the form

of X ∈ R
n×d.

Result: Codewords B ∈ {−1,+1}n×c and

transformation matrix W ∈ R
c×c.

X ∈ R
n×c ← φ(X);

// Dimensional reduction, PCA in this work;

while W not converged do

V = XW ; // Here, f(·) is a linear projection;

Ω← Euclidean-KNNSearch(V ) ∈ N
n×k;

// Return the indexes of KNN;

for j = 1 : n do

Vj ← mean(V [Ωj ]) ∈ R
1×c;

// Update V , i.e. KNN Shrinkage;

end

W = argmin ||sign(V )−XW ||2F ;

end

B = sign(V );
return B,W ;

each feature point hold its KNN only when its KNN is in the

same space as vi. In this case, we simplify the double sum-

mation
∑

j

∑

i ln ǫk(vi; v ∈ Sj) to
∑

i ln ǫk(vi;Svi
) where

Svi = {v|sign(v) = bj = sign(vi)}. By substituting this

term into Eq.(5) and approximating digamma function as

ψ(n) = lnn − 1
2n −

1
12n2 + O( 1

n4 ) [2], H(B|V ) can be

further written as

Ĥ(B|V ) =
d

n

n∑

i=1

ln
ǫk(vi;Svi

)

ǫk(vi)
︸ ︷︷ ︸

term I

+

1−m

2n
−

1

n

m∑

j=1

1

12|Sj |
+O(

1

n2
)

︸ ︷︷ ︸

term II

(6)

where m is the number of Sj satisfying |Sj | 6= 0. For m≪

n, it is clear that Ĥ(B|V ) dominated by term I with term II

approaching zero. This result leaves us two insights: 1) the

information loss of binarization comes from the data near

the boundary, as shown in Figure.2 where warm colors are

distributed among coordinate axes; and 2) Ĥ(B|V ) should

decrease when KNN of vi all come from the same space.

As for m < n, the second term is still lower bounded by
1−n
2n −

n/12
n ≈ − 7

12 , and we can define a larger ǫk(vi;Svi)
when k > |Sj | to penalize the singletons (spaces with few

samples) and to balance the contribution to the uncertainty

between two terms.

2.4. Knearest neighbors hashing

Although Eq.(6) has been more concrete than Eq.(1), it is

still hard to put criteria into practice. Therefore, we propose

Algorithm 2: Orthogonal KNN Hashing.

Data: A set of data points {Xi}
n
i=1 ∈ R

d in the form

of X ∈ R
n×d.

Result: Codewords B ∈ {−1,+1}n×c and rotation

matrix R ∈ R
c×c.

X ∈ R
n×c ← φ(X);

// Dimensional reduction, PCA in this work;

Ω← Euclidean-KNNSearch(X) ∈ N
n×k;

// Return the indexes of KNN;

for j = 1 : n do

Xj ← mean(X[Ωj ]) ∈ R
1×c;

// Update X , i.e. KNN Shrinkage;

end

B,R = argmin
RTR=I

||sign(XR)−XR||2F ;

// Classical hashing problem;

return B,R;

a simple heuristic method to construct V , which reduces

Ĥ(B|V ) from the view of KNN distance. This idea begins

with an unconstrained method and refined by an orthogonal

constraint.

Unconstrained method As shown in Eq.(6), the outlier

of the cluster is more likely to drop into different spaces

and is far more sensitive to its KNN than center points. In

another word, ǫ(vi;Svi) of outliers may hugely change in a

small step towards cluster center, especially for each feature

dimension V (i) ∼ N (0, σ2). Hence, we propose the reduc-

tion in the volume of the cluster based on KNN, i.e., KNN

shrinkage. To alleviate the impact of outliers, we recon-

struct each feature point by the mean value of its k-nearest

neighbors recursively (from 2-nn to k+1-nn in case 1-nn

is still an outlier). That is, updated feature points v̂ will be

used in the following iterations (for loop in Algorithm 1,2).

In fact, every feature point can be viewed as the weight-

ed average with all the others. As illustrated in Figure.2,

shrinkage step plays a key role in the decrease of Ĥ(B|V ).
Benefiting from this information gain, min ||sign(v̂)− v||2

will better preserve the relation between original feature s-

pace and Hamming space. So far, we obtain the uncon-

strained KNNH, shown in Algorithm 1.

Orthogonal method Although the unconstrained method

has taken ǫ(vi;Svi) into consideration, there are two in-

evitable problems in practice: 1) computational time, e.g.,

KNN search and shrinkage inwhile loop will take plenty of

time due to massive computation and memory read/writes;

and 2) without constraint, the only solution is the trivial one.

Transformation matrix W minimizes ||sign(V ) −XW ||F
at the cost of losing KNN relations, where most data points
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Table 1: Comparsions of different representative unsupervised hashing methods on the MNIST dataset. Each image was

represented as a 784-D (28× 28) gray-scale feature vector by using its intensity.

Method
Hamming Ranking (mAP,%) precision (%)@N=1000 precision (%)@r=2

16 32 64 16 32 64 16 32

LSH[1] 20.88 25.83 31.71 37.77 50.16 61.73 25.10 55.61

SH[43] 26.64 25.72 24.10 56.29 61.29 61.98 57.52 65.31

PCAH[41] 27.33 24.85 21.47 56.56 59.99 57.97 36.36 65.54

SpH[18] 25.81 30.77 34.75 49.48 61.27 69.85 51.71 64.26

KMH[17] 32.12 33.29 35.78 60.43 67.19 72.65 61.88 68.85

ITQ[12] 41.18 43.82 45.37 66.39 74.04 77.42 65.73 73.14

KNNH 47.33 53.25 56.03 67.95 75.89 79.04 71.82 69.08

are packed into few buckets. Fortunately, an orthogonal

constraint does address both problems simultaneously.

Since orthogonal transformation preserves lengths of

vectors and angles between vectors, the KNN relation

should be maintained during iterations. In this context,
∑

i∈Ωj
(XR)i is equivalent to (

∑

i∈Ωj
Xi)R and we can

move KNN search and shrinkage outside of the loop. Note

that, the objective then becomes min ||sign(v̂)− v̂||2. That

is a natural two-stage scheme: KNN based shrinkage and

classical hashing problem, shown in Algorithm 2. Intuitive-

ly, one may argue that we just replace v by v̂ in original

hashing problem, but on the other hand, if we have V which

satisfies H(B|V ) = 0, a single ”sign(·)” should solve the

hashing problem. At inference time, we directly apply the

learned linear projections to unseen data points, i.e., testing

samples, without KNN shrinkage.

3. Results

3.1. Datasets & Evaluation protocol

We evaluate the proposed K-Nearest Neighbors Hashing

(KNNH) on three balanced benchmark datasets: CIFAR-

10 [24], MNIST [27] and Places205 [47, 3], and we fur-

ther verify the performance on an extremely imbalanced

dataset: LabelMe-12-50K [40]. CIFAR-10 dataset con-

sists of 60,000 images of 10 classes. Each class contains

6,000 32x32 colour images. MNIST is a dataset containing

70,000 gray handwritten digit images in 10 classes. Each

image is represented by a 28x28 gray-scale intensity matrix.

Different from former ones, LabelMe-12-50K consists of

50,000 256x256 JPEG images of 12 classes, the data dis-

tribution among classes is imbalanced. Five large sample

classes take 91% images and the smallest class contains on-

ly 0.6% samples. Besides, 50% of the images show a cen-

tered object and remaining 50% show a randomly selected

region of a randomly selected image. This attribute matches

the real-world challenge of image retrieval. As instances of

other object classes may also be present in the image, we

choose the object class with the largest label value as image

labels. Places205 is a very challenging dataset due to its

large size and number of categories, which contains 2.5M

images from 205 scene categories. Following [3], we use

the CNN features extracted from the fc7 layer of ImageNet

pre-trained AlexNet and reduce the dimensionality to 128

using PCA.

We use the following evaluation metrics to measure the

performance of methods: 1) mean Average Precision (mAP)

which evaluates the overall performance on different ob-

ject classes; 2) precision of Hamming radius of 2 (preci-

sion@r=2) which measures precision on retrieved images

having Hamming distance to query≤2 (we report zero pre-

cision for the queries if no image satisfy); 3) precision at

N samples (precision@N) which refers to the percentage of

true neighbors on top N retrieved samples. In our experi-

ments, we strictly follow the same comparison settings in

previous works, most of the results are directly reported by

the authors. Besides, in order to improve the statistical sta-

bility, we repeated the experiments 10 times and took the

average as the final result. Since the performance on small

sample classes is more sensitive to the queries, we execute

the experiments on LabelMe-12-50K 50 times to get the re-

sults. To prove that minH(B|X) leads to better codewords

than straightforward quantization minimization, the hashing

problem in KNNH was solved by ITQ, and we fully com-

pare both methods on different datasets.

3.2. Results on balanced datasets

Following the same setting in [32, 9], we randomly se-

lected 1000 samples from CIFAR-10, 100 per class, as the

query data, and the remaining 59000 images as the gallery

set. For MNIST dataset, we randomly sampled 100 per

class, 1000 images in total, as the query data, and used

the remaining 69000 images as the gallery set. The ground

truths of queries are based on their class labels. Since hash-

ing methods are independent of input features, we compare

our method with representative hashing by using both hand-

crafted and deep features. In this subsection, we set k as 20

and make no effort on the fine-tuning.
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Table 2: Comparsions of different representative unsupervised hashing methods on the CIFAR-10 dataset. Each image was

represented as a 512-D GIST feature vector.

Method
Hamming Ranking (mAP,%) precision (%)@N=1000 precision (%)@r=2

16 32 64 16 32 64 16 32

LSH[1] 12.55 13.76 15.07 16.21 19.10 22.25 16.73 7.07

SH[43] 13.19 12.97 13.18 17.74 17.93 18.43 19.42 21.73

PCAH[41] 13.23 12.89 12.30 17.86 17.91 16.91 21.80 3.00

SpH[18] 14.54 15.16 15.90 19.68 21.30 23.00 21.92 14.53

KMH[17] 16.05 16.19 15.79 21.21 22.56 22.83 23.48 12.80

ITQ[12] 16.57 17.34 17.91 22.08 23.98 25.21 23.92 16.90

KNNH 17.32 18.76 19.54 22.52 25.48 27.08 23.36 15.05

Table 3: Comparsions with deep learning methods and supervised methods. The top section are the unsupervised methods

and the bottom section are the supervised methods (start from SDH).

Method
Hamming Ranking (mAP,%) precision (%)@N=1000 precision (%)@r=2

16 32 64 16 32 64 16 32

CIFAR-10 Query=1,000

Deepbit[31] 14.35 16.33 17.97 – – – – –

DH[32] 16.17 16.62 16.96 23.79 26.00 27.70 23.33 15.77

UHBDNN[9] 17.83 18.52 – – – – 24.97 18.85

KNNH 17.32 18.76 19.54 22.52 25.48 27.08 23.36 15.05

MNIST Query=1,000

DH[32] 43.14 44.97 46.74 67.89 74.72 78.63 66.10 73.29

UHBDNN[9] 45.38 47.21 – – – – 69.13 75.26

KNNH 47.33 53.25 56.03 67.95 75.89 79.04 71.82 69.08

SDH[32] 46.75 51.01 52.50 65.19 70.18 72.33 63.92 77.07

SPLH[41] 44.20 48.29 48.34 62.98 67.89 67.99 63.71 74.06

BRE[25] 33.34 35.09 36.80 60.72 68.86 73.08 34.09 64.21

Table 1 shows the retrieval results of different hashing

methods on the MNIST dataset. Each image is represented

by a 784-dimensional gray-scale feature vector by using its

intensity [37]. It is obvious that KNNH outperforms other

representative unsupervised hashing methods on nearly ev-

ery criteria. Table 2 obtains the same results on the CIFAR-

10 dataset. KNNH mainly contributes to the increase of

mAP, which directly reflects the changes in the order of re-

calls. Note that the precision@r=2 values by KNNH are

not very good but p@r=2 is actually different from the

well-known R-precision which describes one point on the

precision-recall curve (we use p@r=2 because it is popular

in recent deep hashings). In our experiments, though the

p@r=2 values by KNNH are rather poor, the recall@r=2

of KNNH are much higher than baselines. It is common to

compare the precision of two points on different PR curves

with the same recall, otherwise the comparison is unfair.

Here is the same case. Since r=2 can be an empirical set-

ting to reduce the number of retrieval results, we also show

the values of precision@1K as an alternative.

Although deep unsupervised hashing methods have at-

tracted much attention, we show that linear transforma-

tion can achieve competitive results. Since Deepbit report-

ed mAP@1K rather than mAP in [31], we rerun the open

source codes and report the updated mAP in Table 3. Com-

pared with deep hashing, our approach is still in the lead of

mAP at 32/64bit. It is interesting that KNNH even surpasses

a few supervised methods on MNIST.

In [46, 45, 9, 19], the authors use pre-trained CNN fea-

tures as input for non-CNN-based hashing methods, all ap-

proaches achieve higher performances in most of evaluation

metrics. Follow that setting, we use VGG features as input

for CIFAR-10 and set up similar experiments. The query

set contains 6,000 randomly sampled images (10% images

per class) and the rest 54,000 image are used as the gallery

set. For MNIST dataset, we evaluate the performances on

GIST 512-D descriptor since MNIST is grayscale. Sim-

ilar to CIFAR-10, we randomly sample 10% images per

class, as the query data, and use the remaining images as

the training set and retrieval database. Table 4 shows that
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Table 4: mAP (%) for different unsupervised methods using high-level features. We reported the results on RGB dataset-

s (CIFAR-10, LabelMe) using VGG-FC7 descriptor and MNIST using GIST 512-D descriptor.

Method
CIFAR-10 LabelMe-12-50K MNIST

16 32 64 16 32 64 16 32 64

VGG+SH[43] 18.31 16.54 15.78 12.60 12.59 12.24 32.59 33.23 30.65

VGG+SpH[18] 18.82 20.93 23.40 13.59 15.10 17.03 31.27 36.80 41.40

VGG+KMH[17] 18.68 20.82 22.87 13.36 15.47 16.58 31.96 37.39 41.11

VGG+BA[5] 25.38 26.16 27.99 16.96 18.42 20.80 48.48 51.72 52.73

VGG+ITQ[12] 26.82 27.38 28.73 18.06 19.40 20.71 46.37 50.59 53.69

VGG+KNNH 29.06 30.82 32.60 20.13 23.79 26.22 53.07 61.11 65.55

Table 5: Comparsions with ITQ[12] on the small sample classes of imbalanced dataset. mAP (%, 32-bit) using GIST 512-D

and VGG-FC7 descriptor was reported. Proportion reflects the number of each class accounts for the whole samples.

All Small Sample Classes in LabelMe-12-50K

Class sign door bookshelf chair table keyboard head

Proportion 2.5% 2.2% 1.0% 1.1% 0.6% 0.9% 0.7%

Hamming Ranking (mAP,%)

ITQ[12] 3.46 4.76 2.43 1.38 0.74 6.94 1.56

KNNH 3.80 4.82 2.50 1.42 0.75 12.75 1.86

VGG+ITQ[12] 5.44 4.05 12.33 3.72 1.31 9.76 7.92

VGG+KNNH 7.19 4.79 19.42 4.99 1.42 20.48 14.61

Increase 1.32× 1.18× 1.58× 1.34× 1.08× 2.10× 1.84×

our method consistently outperforms others along with the

increase of bit-width.

3.3. Results on imbalanced dataset

Imbalanced data problem has always been a hot topic in

the machine learning community. In this section, we evalu-

ate the performance of KNNH on an extremely imbalanced

dataset: LabelMe-12-50K. As the smallest class contains

only ∼ 300 images, we randomly selected 10% images per

class, as the query data, and used the ∼ 45, 000 images as

the gallery set. The ground truths of queries are based on

their class labels. In this subsection, we set k as 20 and

make no effort on the fine-tuning.

To avoid the results dominated by the large sample class-

es, we report the mAP in Table 4 which is the macro aver-

age results for all classes. There is no doubt that KNNH

takes the lead at 16/32/64 bits. However, the overall perfor-

mance is not sufficiently convincing, we further report the

mAP at all small classes in Table 5. The results show that

KNNH does outperform the state-of-art method on difficult

retrieval tasks. Besides, in combination with discriminating

features, KNNH further enhances the hashing quality with

the increase of bit-width. In some cases, we achieve 200%
improvement, but to be honest, our results are still poor.

1.42% mAP is clearly a large space to investigate.

3.4. Results on largescale dataset

To meet the real-world challenge, we further evaluate

KNNH on the large-scale Places205 dataset [47]. We ran-

domly sample 100 images from each class to construct a

test set of 20,500 images and use the rest∼ 2.5M images as

the retrieval set. The ground truths of queries are based on

their class labels. Since Places205 is much larger than pre-

vious datasets, we change k to 200 and make no effort on

the fine-tuning. As shown in Table 6, our approach consis-

tently surpasses representative unsupervised hashing meth-

ods on mAP .

3.5. Performance under various k

The performance of k-nn algorithms can be severely de-

graded by the selection of k. But, an effective method

should achieve the consistent performance in a wide range

of k. Figure.3 shows the robustness of our approach.

KNNH consistently outperforms the leading method by

a large margin. The results are compelling that our 16-

bit KNNH has already surpassed 64-bit ITQ on MNIST

datasets.

3.6. Computation time

Lastly, we analyze the computation time in practice. S-

ince we did not introduce extra computation or storage at
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Table 6: Comparsions of different representative unsupervised hashing methods on the Places205 dataset. Each image was

represented by CNN features extracted from the AlexNet-FC7, and reduce the dimensionality to 128 using PCA.

Method
Hamming Ranking (mAP,%) precision (%)@N=1000 precision (%)@r=2

16 32 64 16 32 64 16 32

SpH[18] 3.36 5.15 7.45 8.83 14.35 19.54 5.67 18.84

SH[43] 4.44 6.67 8.50 11.38 17.57 22.11 7.36 22.44

PCAH[41] 4.66 7.60 10.74 11.89 19.28 25.63 8.22 24.60

KMH[17] 4.78 7.65 10.60 12.10 19.22 25.32 8.29 24.65

BA[5] 5.73 9.65 13.44 12.40 20.24 26.03 7.96 23.65

ITQ[12] 5.89 9.69 13.53 12.53 20.16 26.28 7.99 23.32

KNNH 7.60 12.17 15.92 13.45 21.04 26.43 8.76 19.99
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(a) CIFAR-10.

5 10 15 20 25

k

46

48

50

52

54

56

m
A

P 64 bits KNNH

32 bits KNNH

16 bits KNNH

64 bits ITQ

(b) MNIST.

Figure 3: Comparsions on CIFAR-10 and MNIST with ITQ under different k. We reported the results on CIFAR-10 dataset

using GIST 512-D descriptor and MNIST using 784-D (28× 28) intensity feature vector. Since ITQ has no connection with

k, the performance remains the same as the blue solid line depicted in both figures.

inference time, KNNH keeps the same speed as the algo-

rithm to solve the second stage hashing problem. In our

experiments, the testing time of KNNH on 32-bit Cifar-10

is 1.7 × 10−6 seconds with an Intel 3.0GHz CPU. Hence,

we focus on the training time of KNN search and KNN

shrinkage. Formally, given d dimensional features, KNN

shrinkage has the linear time complexity: O(n) (approx-

imately kn memory reads, n memory writes, (k − 1)nd
additions/subtractions and nd multiplications). Therefore,

the main issue of KNNH is its huge complexity in exhaus-

tive KNN search: O(n2d) for the distances computing and

O(n2 log n) for sortings.

By utilizing the power of GPU on parallel computing

[10], we reduce the search time on CIFAR-10 (32-bit) from

27.06s to 1.81s (3.00GHz Intel CPU vs. Nvidia TITAN

Xp). MNIST and LabelMe share a similar computation

time on 32-bit, which is 2.43s and 1.09s, respectively. For

Places205, the training time is about 110 minutes, since k is

10× larger than training on small datasets and the huge da-

ta size limits the further GPU speedup. Besides, we noticed

that the dimension of the feature points has only a smal-

l impact on the computation time, which makes it possible

to increase the bit-width to achieve higher performance. In

general, our training method can be implemented within a

reasonable time without losing the performance of runtime

speed.

4. Conclusion

We have introduced a hidden factor in learning hashing

codes, which is the k-nearest neighbors’ relation in sub-

spaces. By adopting the view of conditional entropy mini-

mization, we further propose a simple but effective method

to enhance hashing quality. In a word, we create a direc-

t connection between binary codewords and input features

through k-nearest neighbors. Future works should extend

those results to other datasets. The direct minimization of

H(B|V ) is also worthy of further discussions.
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