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Abstract

Both accuracy and efficiency are of significant impor-

tance to the task of semantic segmentation. Existing deep

FCNs suffer from heavy computations due to a series of

high-resolution feature maps for preserving the detailed

knowledge in dense estimation. Although reducing the fea-

ture map resolution (i.e., applying a large overall stride) via

subsampling operations (e.g., polling and convolution strid-

ing) can instantly increase the efficiency, it dramatically de-

creases the estimation accuracy. To tackle this dilemma,

we propose a knowledge distillation method tailored for

semantic segmentation to improve the performance of the

compact FCNs with large overall stride. To handle the in-

consistency between the features of the student and teacher

network, we optimize the feature similarity in a transferred

latent domain formulated by utilizing a pre-trained autoen-

coder. Moreover, an affinity distillation module is proposed

to capture the long-range dependency by calculating the

non-local interactions across the whole image. To validate

the effectiveness of our proposed method, extensive experi-

ments have been conducted on three popular benchmarks:

Pascal VOC, Cityscapes and Pascal Context. Built upon a

highly competitive baseline, our proposed method can im-

prove the performance of a student network by 2.5% (mIOU

boosts from 70.2 to 72.7 on the cityscapes test set) and can

train a better compact model with only 8% float opera-

tions (FLOPS) of a model that achieves comparable per-

formances.

1. Introduction

Semantic segmentation is a crucial and challenging task

for image understanding [3, 5, 4, 33, 14, 33, 16, 17, 24]. It

aims to predict a dense labeling map for the input image,

which assigns each pixel a unique category label. Semantic

segmentation has shown great potential in many applica-

tions like autonomous driving and video surveillance. Re-

cently, deep fully convolution network (FCN) based meth-

ods [3, 5] have achieved remarkable results in semantic seg-

mentation. Extensive methods have been investigated to im-
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Figure 1 – The relation between FLOPS and performance. Blue dots are

the performance of student model (MobilNetV2), while red dots are the

performance of student model with our proposed knowledge distillation

method. The performance is trained on the PASCAL VOC trainaug set

and tested on the val set. OS means output stride. With the help of our

proposed method, the student model with low resolution (16s) of the fea-

ture maps outperforms the model with large feature maps (4s) by using

only 8% FLOPS.

prove the performance by introducing sophisticated models

with a large number of parameters. To preserve the detailed

semantic structures in the dense estimation, many state-of-

the-art FCN based methods [31, 3, 4, 5] maintain a series

of high-resolution feature maps by applying a small over-

all stride [5], which causes heavy computations and limits

the practicability of semantic segmentation. For example,

Chen proposed DeepLabV3+ [5] and achieved state-of-the-

art performance on many open benchmarks such as Pas-

cal VOC [8] and Cityscapes [7]. However, this is obtained

back-boned on a large model: Xception-65 [6], which con-

tains more than 41.0M parameters and 1857G FLOPS and

runs at 1.3 FPS on a single 1080Ti GPU card if the out-

put stride is set to 16. Even worse, 6110G FLOPS will be

needed and running at 0.4 FPS with output stride of 8. Simi-

lar situation can be found in lightweight models (see Fig. 1).

One instant way to address this limitation is to reduce

the resolution of a series of feature maps via sub-sampling

operations like pooling and convolution striding. However,

unsatisfactory estimation accuracy will be incurred for the
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huge loss of detailed information.

How to solve the dilemma and find a better trade-off be-

tween the accuracy and efficiency have been discussed for

a long time. Knowledge distillation (KD), introduced by

Hinton [11] to the field of deep learning, has attracted much

attention for its simplicity and efficiency. The knowledge

in [11] is defined as soft label output from a large teacher

network, which contains more useful information, such as

intra-class similarity, than one-hot encoding. The student

network is supervised by both soft labels and hard one-hot

labels simultaneously, reconciled by a hyper-parameter to

adjust the loss weight. Following KD [11], many methods

[20, 12, 30, 28, 13] are proposed to regulate the intermedi-

ate features. However, these methods are mainly designed

for the image-level classification task without considering

the spatial context structures. Moreover, in the semantic

segmentation task, the feature maps from the teacher and

student usually have inconsistent context and mismatched

features. Thus these methods are improper to be used for

semantic segmentation directly.

In this paper, we propose a new knowledge distillation

method tailored for semantic segmentation. We aim to learn

efficient compact FCNs (i.e. student) by distilling the rich

and powerful knowledge from the accurate but heavy teach-

ers with larger overall stride. Firstly, unlike other meth-

ods that force the student to mimic the output values from

the teacher network directly, we rephrase the rich seman-

tic knowledge from the teacher into a compact representa-

tion. The student is trained to match this implicit informa-

tion. The knowledge translating is achieved relying on an

auto-encoder pre-trained on the teacher features in an unsu-

pervised manner, which reformulates the knowledge from

the teacher to a compact format that is more easier to be

comprehended by the student network. The behind intu-

itions are quite straightforward: Directly transferring the

outputs from teacher overlooks the inherent differences of

network architecture between two models. Compact repre-

sentation, on the other hand, can help the student focus on

the most critical part by removing redundancy knowledge

and noisy information. Furthermore, we also propose an

affinity distillation module to regulate relationships among

widely separated spatial regions between teacher and stu-

dent. Compared to large models, small models with fewer

parameters are hard to capture long-term dependencies and

can be statistically brittle, due to the limited receptive field.

The proposed affinity module alleviate the situation by ex-

plicitly computing pair-wise non-local interactions cross the

whole image.

To summarize, our main contributions are as follows.

• We propose a new knowledge distillation method tai-

lored for semantic segmentation that reinterprets the

output from the teacher network to a re-represented la-

tent domain, which is easier to be learned by the com-

pact student model.

• We come up with an affinity distillation module to help

the student network capture long-term dependencies

from the teacher network.

• We validate the effectiveness of methods under various

settings. (1) Our method improves the performance of

the student model by a large margin (%2) without in-

troducing extra parameters or computations. (2) Our

model achieves at least comparable or even better re-

sults with only 8% FLOPS compared to the model with

large resolution outputs.

2. Related Work

In this section, we review the literatures that are most rel-

evant to our work, including the state-of-the-art researches

for semantic segmentation and related methods for knowl-

edge distillation.

Semantic Segmentation Semantic segmentation is a

fundamental and challenging task in computer vision. With

the advent of fully convolution networks, lots of progress

have been made. Among all the factors for these successes,

rich spatial information and sizable receptive fields are two

important clues [4, 3, 5].

Chen et al. proposed DeepLab-CRF [3], which applies

a dense CRF as a post processing step to refine the seg-

mentation results and capture better boundaries on the top

of CNN. This method is extended by CRF-RNN [34], in

which CRF is implemented as an inner layer embedded

in a network for end-to-end learning. Lin et al. [14] pro-

posed a multi-path RefineNet to output high-resolution re-

sults, by exploiting long-range residual modules to cap-

ture all information when down sample operations is per-

formed. Recently, Chen et al. proposed DeepLabV3 [4]

and DeepLabV3+ [5] that applied atrous convolution op-

eration to effectively enlarge the reception field and cap-

ture rich semantic information. These methods improve the

performance by outputting high resolution feature maps to

alleviate the loss of details and boundaries. However, con-

sidering the limit of GPU resources and computational ef-

ficiency, 1
8

or even more denser 1
4

size of inputs resolution

are not realistic in current model design. For example, when

ResNet-101 [10] uses the atrous convolution to output 16

times smaller feature maps, much more computation and

storages will be used in the last 9 convolution layers. Even

worse, 26 residual blocks (78 layers!) will be affected if

the output features that are 8 times smaller than the input

are desired. In this paper, we propose a novel method that

successfully compresses these dense information from the

teacher network and distill the compact knowledge to the

student network with a low-resolution output.

Knowledge Distillation The research of [11] is the pi-

oneering work that exploits knowledge distillation for the
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Figure 2 – The detailed framework of our knowledge adaptation method tailored for semantic segmentation. The teacher network is frozen and outputs high

resolution feature maps. The student network outputs small size of feature maps and is updated by both ground truth labels and the knowledge defined in a

compressed space and affinity information.

image classification task. The knowledge is defined as the

soft output from the teacher network which provides much

more useful information, such as intra-class similarity and

inner-class diversity, than one-hot encoding. The soften de-

gree is controlled by a hyper-parameter temperature, T . The

student network is supervised by two losses reconciled by

a loss weight. Despite of its effectiveness on image clas-

sification, there are some limitations for its application in

the semantic segmentation task: (1) Authors in [20] tried

to force the student to mimic the output distribution of a

teacher network in the decision space, where useful context

information are cascaded. (2) The knowledge required for

image-level classification are similar between two models,

because both models capture global information. But the

decision space may different for semantic segmentation, be-

cause two models have different abilities to capture context

and long range dependencies, depending on the network ar-

chitecture. (3) The hyper-parameter temperature is sensitive

to tasks and is hard to tune, especially on large benchmarks.

Following [11], many other methods are proposed for

knowledge distillation. Romero et al. proposed FitNet [20],

for the purpose of learning intermediate representation by

directly aligning feature maps, which may not be a good

choice for overlooking the inherent differences between two

models, such as spatial resolution, channel numbers, and

network architecture. Meanwhile, significantly different ab-

stracting capability between two models may make this sit-

uation severe. Attention transfer [30] (AT) aims to mimic

the attention map between student and teacher models. It

is based on the assumption that the summation of feature

maps across channel dimension can represent attention dis-

tribution in the image classification task. However, this

assumption may not suit pixel-wise segmentation task, be-

cause different channels are representing activations of dif-

ferent classes and simply summing up across channels will

end up with mixed attention maps. In our work, we propose

a new affinity distill module to transfer these long-rage de-

pendencies among widely separated spatial regions from a

teacher model to a student model.

3. Proposed Method

With the help of the atrous convolution operation, a net-

work with a small overall output stride often outperforms

the one with a large overall output stride for capturing de-

tailed informations, as shown in Figure 1. Inspired by

this, we propose a novel knowledge distillation method tai-

lored for semantic segmentation. As shown in Figure 2,

the whole framework involves two separate networks: one

is the teacher network, which outputs features with larger

resolution (e.g., 8s overall stride), the other is the student

network, which has smaller outputs (e.g., 16s overall stride)

for fast inference. The knowledge is defined as two parts:

(1) The first part is designed for translating the knowledge

from the teacher network to a compressed space that is more

informative. The translator is achieved by training an auto-

encoder to compress the knowledge to a compact format
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that is easier to be learned by the student network, other-

wise much harder due to the inherent structure differences.

(2) The second part is designed to capture long-range de-

pendencies from the teacher network, which is difficult to

be learned for small models due to the limited receptive field

and abstracting capability. More details are provided in the

following sections.

3.1. Knowledge Translation and Adaptation

Benefiting from the atrous convolution operation, FCNs

can maintain detailed information while capturing a large

receptive field. Although the performance is improved,

large computation overheads are introduced and will grow

exponentially as the output stride becomes smaller, as

shown in Figure 1. In this section, we propose to utilize

a large teacher model with high feature resolution to teach

a lightweight student network with low feature resolution.

An auto-encoder, which tries to reconstruct the input, is

capable of capturing useful and important information. We

train an auto-encoder for mining the implicit structure in-

formation and translating the knowledge to a format that

is easier to be comprehended and replicated by the student

network. Compared with low-level and middle-level fea-

tures, which are either general across different models or

challenging to be transferred due to the inherent network

differences, high-level features are more suitable for our

situation. In our method, the auto-encoder takes the last

convolution features from the teacher model as input and

is composed of three strided convolution layers and sym-

metrical deconvolution layers. Suppose that we have two

networks, namely, the student network S and the teacher

network T and the last feature maps of the two models are

Φs and Φt, respectively. The training process is completed

by using a reconstruction loss in Eq. (1),

Lae = ‖Φt −D(E (Φt))‖
2 + α‖E (Φt)‖1 (1)

where E (·) and D(·) represent encoder and decoder, re-

spectively. One common issue in training the auto-encoder

is that the model may learn little more than an identity func-

tion, implying the extracted structure knowledge is more

likely to share the same pattern with the input features. As

the l1 norm is known to produce sparse representations,

similar strategy [1] is utilized by regularizing both weights

and the re-represented space. The weight for regularization

loss α is set to 10−7 for all experiments. In order to solve

the problem of feature mismatching and decrease the effect

of the inherent network difference of two models, the fea-

ture adapter is utilized by adding a convolution layer.

Relying on the pre-trained auto-encoder, the transferring

process is formalized in Eq. (2),

Ladapt =
1

|I|

∑

j∈I

∥

∥

∥

∥

∥

Cf (Φ
j
s)

‖Cf (Φ
j
s)‖q

−
E(Φj

t )

‖E(Φj
t )‖q

∥

∥

∥

∥

∥

p

(2)

(a) (b) (c)

Figure 3 – The effect of affinity distillation module (better visualized in

color). (a) input image and random selected point with red ’+’. (b) affin-

ity map of the given point of student model without affinity distillation

module. (c) affinity map enhanced by our affinity distillation module.

where E represents the pre-trained auto-encoder. I denotes

the indices of all student-teacher pairs in all positions. Cf is

the adapter for the student features, which uses a 3 × 3 ker-

nel with stride of 1, padding of 1, BN layer and ReLU acti-

vation function. The features are normalized before match-

ing. p and q are different normalization types to normalize

the knowledge for stability.

3.2. Affinity Distillation Module

Capturing long-range dependency is important and can

benefit the task of semantic segmentation. As described in

[26], it is easier to be captured by deep stacked convolution

layers with large receptive field. Small networks, on the

other hand, have limited ability to learn this knowledge due

to the deficient abstracting capability. We propose a new

affinity distillation module by explicitly extracting long-

range, non-local dependencies from the big teacher model.

Details are described below.

In the case of studying, sometimes it would be more ef-

ficient to learn new knowledge by providing extra differ-

ence or affinity information. Inspired by this, we define the

affinity in the network by directly computing interactions

between any two positions, regardless of their spatial dis-

tances. As a result, the pixels with different labels will gen-

erate a low response and a high response for the pixels with

the same labels. Let feature maps of the last layer to be Φ
with size of h×w× c, where h, w and c represent the num-
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ber of height, width, and channels, respectively. The affinity

matrix A ∈ R
m∗m can be calculated by Eq. (3), where m

equals to h×w, i and j are the indexes for vectorized Φ:

A(Φ)i,j =
1

h× w
·

Φi

‖Φi‖2
·

Φj

‖Φj‖2
, (3)

where A(Φ) denotes the affinity matrix corresponding to the

feature map Φ with spectral normalization.

We use ℓ2 loss to match affinity matrix between teacher

and student models, which is defined as Eq. (4)

Laff =
∑

i

‖(As(Ca(Φs)))−At(E (Φt))‖2 (4)

where E (Φt) is the translated knowledge from teacher, Ca

is the adapter for student affinity and i is the location index

of the feature map.

To visualize the effect of the affinity distillation module,

some examples are presented in Figure 3. Given one ran-

dom selected point, the response between this point and all

other separated spatial regions are shown in (b) and (c). As

can be seen, the student network fails to capture this long-

range dependency and only local similar patterns are high-

lighted. With the help of our method, long-range or even

global information are captured and can be used to make

more robust decision.

3.3. Training Process

Our proposed method involves a teacher net and a stu-

dent net. As is presented in Algorithm 1, the teacher net

is pre-trained and the parameters are kept frozen during the

training the transferring process. The student net is super-

vised by three losses: cross entropy loss Lce with ground

truth label, adaptation loss Ladapt in Eq. (2) and affinity

transferring loss Laff in Eq. (4). Three losses are recon-

ciled by the loss weights of β and γ, which are set to 50

and 1 respectively in all our experiments. WE , WD and WS

denote parameters for encoder, decoder and student model,

respectively.

Algorithm 1 Training Process of Our Method

Require: Already trained teacher network T .

STAGE 1: Training auto-encoder for teacher network.

INPUTS: Knowledge from teacher network Φt;Wt

WE = argminWE ,WD
Lae (Φt;Wt

)

STAGE 2: Training student network.

INPUTS: Encoder Parameters WE

WS = argminWS
Lce + βLadapt + γLaff

4. Experiments

In this section, we first introduce the datasets and the im-

plementation details of our experiments. Extensive ablation

Table 1 – Ablations for the proposed method. T: Teacher model has a

output stride of 8s. S: Student model (following the implementation of

[21], without ASPP and decoder) has a output stride of 16s. KA represents

knowledge adaption. The FLOPS is estimated with input size of 513×513.

For fair comparison, all the models are trained on the Pascal VOC train-

aug set [9] tested on the val set without pre-training on the COCO dataset.

As can be seen, our proposed method with small feature resolution outper-

forms the student model with large feature resolution by only 31% FLOPS.

Method mIOU%) FLOPS Params

T: ResNet-50-8s [10] 76.21 90.24B 26.82M

S1: MobileNetV2-16s [21] 70.57 5.50B 2.11M

S2: MobileNetV2-8s [21] 71.90 17.70B 2.11M

S1+affinit-16s 71.53 5.5B 2.11M

S1+KA+affinity-16s 72.50 5.5B 2.11M

studies are followed to investigate the effectiveness of our

proposed methods. Finally, we report our results and make

a comparison with other lightweight models on three popu-

lar benchmarks: Pascal VOC [8], Cityscapes [7] and Pascal

Context [18].

4.1. Datasets

Pascal VOC. This dataset contains 1,464 images for

training, 1,449 for validation, and 1,456 for testing. It con-

tains 20 foreground objects classes and an extra background

class. In addition, the dataset is augmented by extra coarse

labeling provided by [9]. The final performance is measured

in terms of pixel intersection-over-union (mIOU) averaged

across the 21 classes.

Cityscapes. This dataset focuses on semantic under-

standing of urban street scenes, which contains high-

resolution images with 1024×2048 pixels and sense pixel-

wise annotations. The dataset includes 5,000 finely anno-

tated images collected from 50 cities, and is split with 2,975

for training, 500 for validation, and 1,525 for testing. Fol-

lowing the evaluation protocol, 19 output of 30 semantic

labels are used for evaluation.

Pascal Context. The dataset contains 10,103 images in

total, out of which 4,998 are used for training and 5,105 are

used for validation. Following [18], methods are evaluated

on the most frequent 59 classes with one background class.

4.2. Implementation Details

The MobileNetV2, recently proposed by Sandler et

al. [21], has attracted much attention for its computa-

tion efficiency and optimal trade-offs between accuracy

and the number of operations measured by FLOPS, ac-

tual latency, and the number of parameters. There are also

MobileNetV2-1.3 and MobileNetV2-1.4, which are model

variants with a width multiplier of 1.3 and 1.4, respectively.

The mobile segmentation models in [21] use a reduced

form of DeepLabV3 [4]. Built on this strong baseline, our
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Table 2 – The performance on the Pascal VOC 2012 val data set with dif-

ferent student and teacher networks. MobilNetV2 is tailored with a width-

multiplier. Performances are obtained by training on trainaug set.

Method mIOU(%) FLOPS Params

T1: ResNet-50 [10] 76.21 90.24B 26.82M

T2: Xception-41 [6] 77.2 74.69B 27.95

S1: MobileNetV2-1.0 [21] 70.57 5.50B 2.11M

S2: MobileNetV2-1.3 [21] 72.60 9.02B 3.38M

S3: MobileNetV2-1.4 [21] 73.36 10.29B 3.88M

T1+S1+our method 72.50 5.5B 2.11M

T2+S1+our method 72.40 5.5B 2.11M

T1+S2+our method 74.26 9.02B 3.38M

T1+S3+our method 74.07 10.29B 3.88M

method significantly boosts the performance without intro-

ducing extra parameters and computation overheads.

Training teacher network. To demonstrate the ef-

fectiveness of our method, we select two totally differ-

ent teacher models, ResNet-50 [10] and Xception-41 [6].

Both atrous convolution and atrous spatial pyramid pooling

(ASPP) are utilized to obtain a series of feature maps with

large size.

We use mini-batch stochastic gradient descent (SGD)

with batch size 16 (at least 12), momentum 0.9, and weight

decay 4 × 10−5 in training. Similar to [5], we apply the

poly learning rate strategy with power 0.9. The initial learn-

ing rate is 0.007. General data augmentation methods are

also used in network training, such as randomly flipping

the images and randomly performing scale jitter. For the

Pascal VOC dataset, the training process can be split into

two steps. First, we train 300K iterations on the COCO

dataset, then 30K iterations on the trainaug dataset [9]. For

the Cityscapes dataset, we do not pre-train our model on the

COCO dataset for fair comparison. We train 90K iterations

on the train-fine dataset, which is fine tuned on trainval and

train-coarse to evaluate on test dataset. For the Pascal Con-

text dataset, the COCO dataset is not used for pre-training.

30k iterations are trained on the train set and evaluated on

the val set.

Training auto encoder. We finished the auto-encoder

training within one epoch with a learning rate of 0.1. Large

weight decay of 10−4 is used to attribute low energy to a

smaller portion of the input points.

Training the whole system. Most of the training pa-

rameters are similar to the process of training the teacher

network, except that our student network does not involve

the ASPP and the decoder, which are exactly the same with

[21]. With the help of atrous convolution, low resolution

feature maps are generated. During the training process,

the parameters of the teacher net WT and the parameters

for auto-encoder WE are fixed without updating.

4.3. Ablation Study

In this section, we describe the effectiveness of every

component of our proposed method with different settings.

Ablation for the knowledge adaption and the affinity

distillation module. In order to make use of rich spatial in-

formation, we propose to translate the knowledge from the

teacher and force the student to mimic this compact format.

The affinity distillation module is also proposed to make

up the limited receptive field of the small student model.

To show a better understanding, we visualize the effect of

the affinity distillation module in Figure 3. It can be seen

from Figure 3, that more context and long-range dependen-

cies are captured with the help of our proposed method. We

show the statistic results in Table 1, where performance is

evaluated using mIOU. The model is tested in one single

scale on the Pascal VOC val set without pretraining on the

COCO dataset. As can be seen, the affinity distillation mod-

ule boosts the performance from 70.57 to 71.53, and another

0.97 point with the help of knowledge adaption. Because

the affinity matrix mismatches if two models have different

output features, in order to show the effect of a single affin-

ity module, we resize the feature maps to the same dimen-

sion. Our MobileNetV2 with output stride of 16 even out-

performs MobileNetV2 with output stride of 8, using only

31% FLOPS. More comparisons with different output stride

settings can be found in Figure 2, where our 16s model per-

forms even better than the baseline model with 4s output by

using only 8% FLOPS without introducing extra parame-

ters.

Ablation for different networks. From [21], Mo-

bileNetV2 tailors the framework to achieve different ac-

curacies, by using width-multiplier as a tunable hyper-

parameter, which is used to adjust the trade-off between ac-

curacy and efficiency. In our experiments, we choose width-

multipliers of 1.3 and 1.4, which are implemented with of-

ficial pre-trained models on ImageNet. In order to validate

the effectiveness of our proposed method, we choose two

totally different network architectures, ResNet-50 [10] and

Xception-41 [6]. The results are shown in Table 2. The

Table 3 – The performance on the Pascal VOC 2012 val set in comparison

with KD [11] and FitNet [20]. All the results are achieved by training only

on the Pascal VOC trainaug set.

Method mIOU(%)

T: ResNet-50 [10] 76.21

S: MobileNetV2 [21] 70.57

S+KD [11] (t=2) 71.32

S+KD [11] (t=4) 71.21

S+KD [11] (t=8) 70.74

S+FitNet [21] 71.30

S+Ours 72.50

583



(a) Input (b) GT (c) S (d) KD (e) Ours (f) T

Figure 4 – Comparison of segmentation results. (a) Input image. (b) Ground truth. (c) The results of the student network, MobileNetV2 [21]. (d) Results

of the knowledge distillation [11] with MobileNetV2 [21]. (e) Results of our proposed method with MobileNetV2 [21]. (f) Results of the teacher network,

which is ResNet50 [10].

Figure 5 – The L1 loss curve for knowledge transferring process. Our

method using translator and adapter makes it easier for student network to

learn and replicate the knowledge.

performance of MobileNetV2-1.0 gains 1.93 and 1.83 im-

provements under the guidance of ResNet-50 and Xception-

Table 4 – Comparison with other lightweight models on the Pascal Context

val set. “-” means not provided.

Method FLOPS Params mIOU(%)

FCN-8s [17] 135.21G 1.48M 37.8

ParseNet [16] 162.82G 21.53M 40.4

Piecewise CRF [15] >100G - 43.3

DAG RNN [22] >100G - 42.6

MobileNetV2 [21] 5.52G 2.12M 39.9

Ours 5.52G 2.12M 41.2

41, respectively. Improvements of 1.66 and 0.71 are also

observed with different student networks: MobileNetV2-

1.3 and MobileNetV2-1.4.

Ablation for other method for knowledge distillation.

Table 5 – Comparison with other lightweight models on the Pascal VOC

2012 val data set. Speed is tested on single 1080Ti GPU with input size of

513 × 513. The baseline is our implementation of MobileNetV2.

Method basemodel FPS mIOU(%)

CRF-RNN [34] VGG-16 [23] 7.6 72.9

MultiScale [29] VGG-16 [23] 16.7 73.9

DeeplabV2 [3] VGG-16 [23] 16.7 75.2

MobileNetV2 [21] MobileNet 120.7 75.3

Baseline MobileNet 120.7 74.8

Ours MobileNet 120.7 75.8

Table 6 – Performance and computation comparisons of our proposed

method against other light-weight models on the Cityscapes val and test

data sets. The running times are all computed with input size of 1025 ×

2049. “-” means not provided.

Method Year Time
mIOU(%)

val test

DeepLabV2 [3] 2016 652.9ms - 71.4

Dilation-10 [29] 2017 3549.5ms - 67.1

PSPNet [33] 2017 2647.4ms - 80.2

ResNet38 [27] 2017 3089.9ms 77.86 78.4

SegNet [2] 2015 89.2ms - 57.0

ENet [19] 2016 19.3ms - 58.3

SQ [25] 2016 - - 59.8

ICNet [32] 2018 33.0ms 67.7 70.6

MobilenetV2 [21] 2018 38.0ms 68.9 70.2

Ours - 38.0ms 71.0 72.7
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Figure 6 – Example results on the Cityscapes dataset. From left to right are: (1) Input images, (2) Ground truth, (3) The results of the student net (4) The

results of our proposed method.

In this experiment, we make comparisons with other knowl-

edge distillation methods: KD [11] and FitNet [20], which

are designed for image-level classification. The knowledge

defined in [11] is the soft label output by a teacher network.

The soften degree is controlled by a hyper-parameter tem-

perature t, which has a significant influence on the distilla-

tion and learning processes. We set t to 2, 4, 6. To make

fair comparisons, we bilinearly upsample the logits map to

the size of the teacher network. The results are evaluated on

the Pascal VOC val dataset. All results are achieved without

pre-training on COCO dataset. FitNet [20], different from

KD, tries to match the intermediate representation between

two models. But this requires similar network design. In

our experiments, we directly upsample the feature map of

the last layer and add a ℓ2 loss. The loss curve is shown

in Figure 5. Our proposed method successfully translate

the knowledge from teacher to a format that is easier to be

learned. As shown in Table 3, fluctuation of mIOU is ob-

served with different settings of T . Our method achieves

better performances than KD, with all the hyper-parameters

fixed across all experiments and datasets. Our method also

outperforms FitNet by 1.2 points, indicating that the knowl-

edge defined by our method alleviates the inherent differ-

ence of two networks. Compared with the traditional meth-

ods, the qualitative segmentation results in Figure 4 visually

demonstrate the effectiveness of our distillation method for

objects that require more context information, which is cap-

tured by our proposed affinity transfer module. On the other

hand, the knowledge translator and adapter reduce the loss

of the detailed information and produce more consistent and

detail-preserving predictions, as shown in Figure 6.

Comparing with other lightweight models. We first

test our method on the Pascal Context dataset. The results

are shown in Table 4. Our proposed method boosts the base-

line by 1.3 points.

Then we compare our proposed method with other state-

of-the-art light weight models on the Pascal VOC val

dataset. The results are shown in Table 5. Our model

yields mIOU 75.8, which is quantitatively better than sev-

eral methods that do not care about speed. It also improves

the baseline of MobileNetV2 by about 1 point.

Finally, we testify the effectiveness of our method on the

Cityscapes dataset. It achieves 70.3 and 72.7 mIOU on the

val and test data sets, respectively. Even built on a highly

competitive baseline, our method boosts the performance

by 2.1 and 2.5 points, without introducing extra parameters

and computations overheads, as shown in Table 6.

5. Conclusion

In this paper, we present a novel knowledge distill frame-

work tailored for semantic segmentation. We improve the

performance of the student model by translating the high-

level feature to a compact format that is easier to be learned.

Extensive experiments have been done to testify the effec-

tiveness of our proposed method. Even built upon a highly

competitive baseline, our method (1) improves the perfor-

mance of student model by a large margin without intro-

ducing extra parameters or computations (2) achieves better

results with much less computation overheads.
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