
Modulating Image Restoration with Continual Levels

via Adaptive Feature Modification Layers

Jingwen He1,∗ Chao Dong1,∗ Yu Qiao1,2,†

1ShenZhen Key Lab of Computer Vision and Pattern Recognition, SIAT-SenseTime Joint Lab,

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
2The Chinese University of Hong Kong

Abstract

In image restoration tasks, like denoising and super-

resolution, continual modulation of restoration levels is

of great importance for real-world applications, but has

failed most of existing deep learning based image restora-

tion methods. Learning from discrete and fixed restoration

levels, deep models cannot be easily generalized to data of

continuous and unseen levels. This topic is rarely touched

in literature, due to the difficulty of modulating well-trained

models with certain hyper-parameters. We make a step for-

ward by proposing a unified CNN framework that consists

of little additional parameters than a single-level model yet

could handle arbitrary restoration levels between a start

and an end level. The additional module, namely AdaFM

layer, performs channel-wise feature modification, and can

adapt a model to another restoration level with high accu-

racy. By simply tweaking an interpolation coefficient, the

intermediate model – AdaFM-Net could generate smooth

and continuous restoration effects without artifacts. Exten-

sive experiments on three image restoration tasks demon-

strate the effectiveness of both model training and modula-

tion testing. Besides, we carefully investigate the properties

of AdaFM layers, providing a detailed guidance on the us-

age of the proposed method.

1. Introduction

Deep learning methods have achieved great success in

image restoration tasks, such as denoising, super-resolution,

compression artifacts reduction, etc [12, 10, 5, 4, 22]. How-

ever, there still exists a large gap of restoration perfor-

mance between research environment mand real-world ap-

plications. In this work, we focus on two main issues that

prevent CNN based restoration methods from wide usages.

First, the degradation levels of real-world images are

∗The first two authors are co-first authors. (e-mail: jw.he@siat.ac.cn;

dong.chao@siat.ac.cn).
†Corresponding author (e-mail: yu.qiao@siat.ac.cn).

q80 q10

model model

q30 DeJPEG

over-sharpening over-smoothed

Is it possible to achieve a compromise ?

Figure 1. Applying q10 or q80 DeJPEG model on images (LIVE1

[15]) with degradation q30 tends to produce either over-sharpening

(left) or over-smoothed (right) images.

generally continuous, such as JPEG quality q27 and q34.

On the other hand, the deep restoration models are usually

trained with discrete and fix levels (e.g., q20, q30). Ap-

plying models with mismatched restoration levels tends to

produce either over-sharpening or over-smoothed images,

as shown in Figure 11. A straightforward solution is to train

a sufficiently large model to handle all degradation levels.

However, regardless of the computational burden, this gen-

eral model is not optimal for each individual level. When

we want to slightly adjust the output effects, we have to

retrain a new model by refining the model structure, param-

eters or (and) loss functions, which is a tedious procedure

with unpredictable results.

Second, in industrial and commercial scenarios (e.g.,

human-interactive softwares), it is often necessary to con-

secutively modulate the restoration strength/effect to meet

different requirements. For example, the users always ex-

pect a tool bar to flexibly adjust the restoration level, as

1DeJPEG is also known as JPEG deblocking and compression artifacts

reduction.

11056

 λ= 0.0 0.4 0.7 1.0

Modulateλ to obtain continual restoration effects

 from DeJPEG q80 to q10

 PSNR: 32.24 33.32 33.04 32.18

tool bar

 from Denoisingσ15 toσ75 σ45 Denoising

×3.4 SR from Super Resolution ×3 to ×4

q30 DeJPEG

Figure 2. We can modulate the tool bar to obtain continual restora-

tion effect in DeJPEG, Super Resolution and Denoising.

shown in Figure 2. However, current deep models are

trained on fixed degradation levels, and contain no hyper-

parameters for users to change the final results.

To fill in the gaps, our goal is to achieve arbitrary-level

image restoration and continual model modulation in a u-

nified CNN framework. More formally, the task is to deal

with images of degradation levels between a “start” level

and an “end” level in a user controllable manner. To facili-

tate practical usages, we should avoid building a very large

model or model zoo, and prevent another training stage at

test time. In other words, the solution should contain a s-

mall amount of additional parameters and allow continual

tuning of parameters in testing.

This task is non-trivial and rarely studied in literature.

Perhaps the most relevant topic to modifying the network

outputs is arbitrary style transfer. Specifically, we can treat

different levels of degradation as different kinds of styles.

A representative approach is the Conditional Instance Nor-

malization (IN) [6], which allows users to mix up differ-

ent styles by tuning IN parameters. Nevertheless, image

restoration has higher and finer request on the output image

quality. Directly applying Conditional IN in image restora-

tion could produce obvious and large-scale artifacts in the

output image (see Figure 6). Another similar concept is do-

main adaptation, which generally appears in high-level vi-

sion problems (e.g., image classification and object detec-

tion). It adapts/transfers the model trained on the source

domain to the target domain. However, domain adaptation

cannot easily generalize to unseen data, thus is not appro-

priate to address our problem.

In this work, we present a simple yet effective approach

that for the first time enables consecutive modulation of the

restoration strength with little computation cost. This ap-

proach stems from the observation that filters among net-

works of different restoration levels are similar at patterns

while varying on scales and variances. Furthermore, the

model outputs could change continuously by modulating

the statistics of features/filters. The proposed framework is

built upon a novel Adaptive Feature Modification (AdaFM)

layer that modifies the middle-layer features with depth-

wise convolution filters. In practice, we first train a standard

restoration CNN for the start level, and then insert AdaFM

layers and optimize it to the end level. After the training

stage, we fix the CNN parameters, and interpolate the filters

of AdaFM layers according to testing restoration level. By

tuning a controlling coefficient (ranging from 0 to 1), we

can interactively and consecutively manipulate the restora-

tion results/effects. Note that we only need to train the CNN

and AdaFM layers once, and no further training is required

in the test time.

To ensure the output quality, we demonstrate that the

model with AdaFM layers achieves comparable perfor-

mance to the single-level image restoration network in both

start and end level. Then, we show that the modulated-

network outputs are noise-free with consecutive restoration

effects (see Figure 2). Besides, we also examine the prop-

erties of AdaFM layers - complexity, range and direction,

providing a detailed instruction on the usage of the pro-

posed method. Notably, the added AdaFM layers contribute

to less than 4% parameters of the CNN model yet achieves

excellent modulation performance.

2. Related Work

The proposed Adaptive Feature Modification (AdaFM)

layers are inspired by the recent normalization methods in

deep CNNs, thus we give a brief review of these works.

Normalization has been demonstrated effective in facilitat-

ing training very deep neural networks. The most represen-

tative method is batch normalization (BN) [8] that is pro-

posed to address the problem of Internal Covariate Shift

in the training process. In particular, BN layer normalizes

the output of each neuron using the mean and variance of

each batch calculated during the feed-forward process. Lat-

er on, Dmitry Ulyanov et al. [17] achieved significant im-

provement in style transfer by replacing all the BN layers

with their proposed instance normalization (IN) layers. The

core idea is to normalize the features based on the statis-

tics across the spatial dimensions of each sample instead

of each batch. Recently, several alternative normalization

methods have been proposed, such as instance weight nor-

malization [14], layer normalization [2], group normaliza-

tion (GN) [20] and etc. The spatial feature transformation

11057

(SFT) layer proposed by Wang et al. [18] further extends the

normalization operation to a more general spatial-variant

transformation. Specifically, they apply a feature spatial-

wise transformation on the feature maps according to the

semantic segmentation priors. This approach indeed helps

generate more realistic textures compared with those pop-

ular GAN-based methods. We will compare the proposed

AdaFM layer with BN and SFT layers in Section 3.3.

Furthermore, recent works show that BN and IN have the

ability to adapt the model to a different domain with little

computation cost. Specifically, Li et al. [11] propose AdaB-

N (Adaptive Batch Normalization) to alleviate domain shift-

s, and show that AdaBN is effective for domain adaptation

task by re-computing the statistics of all BN layers across

the network. Huang et al. [7] show that instance normaliza-

tion (IN) can perform as style normalization by aligning the

mean and variance of content features with those style fea-

tures. In such way, they realize arbitrary style transfer at test

time. Moreover, Dumoulin et al. [6] extended IN to enable

multiple style transfer by learning different sets of param-

eters in normalization layers while the convolution param-

eters are shared. Our method is different from these works

in that 1) the proposed AdaFM layer is independent of ei-

ther batch or instance samples, 2) the filter size and position

of AdaFM layers are flexible, indicating that AdaFM is be-

yond a normalization operation, 3) the interpolation proper-

ty of AdaFM layers could achieve continual modulation of

restoration levels, which has not been revealed before.

3. Method

3.1. Problem Formulation.

The problem of consecutive modulation of restoration

levels can be formulated as follows. Suppose we have a

“start” restoration level – La and an “end” restoration level

– Lb, the objective is to construct a deep network to han-

dle images with arbitrary degradation level Lc (La ≤ Lc ≤
Lb). Our solution pipeline consists of two stages – model

training and modulation testing. In model training, we train

a basic model and an adaptive model that could deal with

level La and Lb, respectively. While in modulation testing,

we propose a new network that can realize arbitrary restora-

tion effects between level La and Lb by modulating certain

hyper-parameters. In the following sections, we first show

two important observations that inspire our method. Then

we propose the AdaFM layer and compare it with BN [8]

and SFT [18]. At last, we describe how to use AdaFM lay-

ers in model training and modulation testing.

3.2. Observation

Observation 1. We find that the learned filters of restora-

tion models trained with different restoration levels are pret-

ty similar at visual patterns, but their weights have different

 c) a) b)

Figure 3. Filter visualization.

statistics (e.g., mean and variance). An example is shown

in Figure 3, the filter fa of level La is like a 2-D Gaussian

filter, then the corresponding filter fb finetuned from level

La to level Lb will also look like a Gaussian filter but with

different mean and variance. We use the Gaussian Denois-

ing problem for illustration. The start level is noise level

σ = 15, and the end level is σ = 50. We adopt a simple

and standard CNN structure ARCNN [4] to do the experi-

ments. We first learn the model with noise level σ = 15 and

obtain ARCNN-15, then finetune the network on σ = 50
to obtain ARCNN-50. The first layer filters of these two

models are visualized in Figure 3. In the first glance, these

filters look similar with only slight differences. Their mean

cosine distance between the corresponding filters is 0.12,

indicating that they are very close to each other. To further

reveal their relationship, we use a filter to bridge the corre-

sponding filters. Specifically, each filter f15 in ARCNN-15

is convoluted with another filter g to approximate the corre-

sponding filter f50 in ARCNN-50. According to the com-

mutative law, we have (g ∗ f15) ∗x = g ∗ (f15 ∗x), where ∗
is convolution. Thus for each feature map x, the parameters

of g are optimized with

min
g
||f50 ∗ x− g ∗ (f15 ∗ x)||

2. (1)

The above operation is equivalent to adding a depth-wise

convolution layer after each layer of ARCNN-15, and fine-

tuning the added parameters on the σ = 50 problem. When

g is of size 1× 1, it is equal to a scaling and shift operation,

changing the mean and variance of the original filter. We

use the PSNR gap between their network outputs to show

the fitting error. From Table 2, we can see that the value

of fitting error decreases when the filter size of g increases.

The gap is already very small at 1× 1, which demonstrates

our primal assumption. The 5 × 5 filters are also visual-

ized in Figure 3, where one can see the differences between

f15 and f50. Similar experiments for super resolution and

compression artifacts reduction are presented in the supple-

mentary file.

Observation 2. We find that the network output could

change continuously by modulating the statistics of fea-

tures/filters. As the filter g is gradually updated by gradient

descent, what if we control the updating process by interpo-

lating the intermediate results? Specifically, we can obtain

the intermediate filter fmid by the following function:

fmid = f15 + λ(g − I) ∗ f15, 0 ≤ λ ≤ 1, (2)

11058

stride 2

C
o

n
v

Conv

Conv

Relu

+

Conv

Relu

AdaFM

Conv

AdaFM

Conv

Relu

AdaFM

Conv

AdaFM

Residual

block
...

16 residual blocks

C
o

n
v

A
d

a
F

M
-N

e
t

u
p

sa
m

p
lin

g

C
o

n
v

C
o

n
v

C
o

n
v

A
d

a
F

M

Upscale: 2

+

+

b
a

s
ic

 m
o

d
e

l

+

R
e

lu

Figure 4. The left part presents the basic model and the AdaFM-Net. The right part shows how AdaFM works in the adaptation process

and the modulation testing.

where λ is an interpolation coefficient. When we modulate

λ gradually from 0 to 1, fmid will also change continuously

from f15 to g ∗ f15. After putting fmid back to the network,

we find that the network output will also change continuous-

ly in visualization, as shown in Figure 2. Detailed analysis

can be found in Section 3.5 and 4.

3.3. Adaptive Feature Modification

Inspired by the above observations, we propose a contin-

ual modulation method by introducing an Adaptive Feature

Modification layer and the corresponding modulating strat-

egy. The overall framework is depicted in Figure 4.

Our aim is to add another layer to manipulate the statis-

tics of the filters, so that they could be adapted to another

restoration level. As indicated in Observation 1, we can add

a depth-wise convolution layer (or a group convolution lay-

er with the group number equal to the number of feature

maps) after each convolution layer and before the activa-

tion function (e.g., ReLU). We name the added layer as the

Adaptive Feature Modification layer, which is formulated

as
AdaFM(xi) = gi ∗ xi + bi, 0 < i ≤ N, (3)

where xi is the input feature map and N is the number of

feature maps. gi and bi are the corresponding filter and bias,

respectively. It is worth noting that gi depends on the degra-

dation level of input images. To further understand its be-

haviour, we compare the proposed layer with batch normal-

ization (BN) [8] and spatial feature transformation (SFT)

[18] layers.

Comparison with BN layer. When we set the filter size

of gi to 1× 1, the feature modification reduces to a normal-

ization operation. Note that BN [8] is also put directly after

the convolution layer. We compare it with BN as

AdaFM(xi) = gixi+bi, BN(xi) = γ(
xi − µ

σ
)+β, (4)

where µ, β are the mean and standard deviation of an input

batch, γ, β are affine parameters. The 1 × 1 AdaFM filter

performs similar to BN without using the batch informa-

tion. As a special case, we can also use BN to do feature

modification and finetune γ, β as gi, bi. Experiments show

that using BN achieves almost the same results as the 1× 1
AdaFM filter.

Comparison with SFT layer. When the filter size of g
is as large as the feature map, it will perform spatial feature

transform as SFT layer [18]. The formulations are shown as

AdaFM(xi) = gi⊙xi+ bi, SFT (xi) = γ⊙xi+β, (5)

where γ, β are affine parameters. AdaFM and SFT layer

share the same function, but different on the parameters.

Specifically, γ, β are calculated from another sub-network

based on an additional prior, while gi, bi are directly learned

with the network.

3.4. Model Training

In this subsection, we discuss how to utilize the proposed

AdaFM layer for model training. The entire model, name-

ly AdaFM-Net, consists of a basic network and the AdaFM

layers. First, we train the basic network Na
bas, which can

be any standard CNN model, for the start restoration level

La. Then we insert AdaFM layers to Na
bas and form the

AdaFM-Net Nada. By fixing the parameters of Na
bas, we

optimize the parameters of AdaFM layers on the end lev-

el Lb. Experiments demonstrate that by only finetuning the

AdaFM layers, the model N b
ada could achieve comparable

performance with a basic model N b
bas trained from scratch

on level Lb. As the AdaFM-Net is optimized from La to

Lb, we name this process as adaptation, and use adaptation

accuracy to denote its performance. Specifically, we can

use the PSNR distance between PSNR of N b
ada and N b

bas

as the measurement of adaptation accuracy. There are three

factors that affect the adaptation accuracy – filter size, di-

rection, and range.

(1) For filter size, a larger filter size or more parameter-

s will lead to better adaptation accuracy. We try filter size

from 1 × 1 to 7 × 7. From convergence curves shown in

Figure 5, we find that 3×3 performs much better than 1×1
while 7× 7 is only comparable to 5× 5. Further increasing

the filter size could not continuously improve the perfor-

11059

mance. (2) For direction, different restoration levels have

different degrees of difficulty for the same network. Then

should we modulate the model from an easy level to a hard

level or the opposite direction? Experimentally, we find that

from easy to hard is a better choice (see Section 4.2). (3)

For range, the smaller of the range/gap |Lb−La|, the better

the adaptation accuracy. For example, in super resolution

problem, transferring the filters from ×2 to ×3 is easier

than from ×2 to ×4. In Section 4, we conduct numerous

experiments to choose the best range for super-resolution,

denoising and compression artifacts reduction.

3.5. Modulation testing

After the training process, we discuss how to modulate

the AdaFM layers according to degradation level at test

time. As the features remain the same after convolution

with an identity filter, we initialize AdaFM layers with i-

dentity filters I and zero biases, which is regarded as the

start point of AdaFM layers. Based on Observation 2, we

can linearly interpolate the parameters of AdaFM layers as

g∗i = I + λ(gi − I), b∗i = λbi, 0 < i ≤ N, (6)

where g∗i , b
∗

i are the filter and bias of the interpolated

AdaFM layers, λ(0 ≤ λ ≤ 1) is the interpolation coeffi-

cient determined by the degradation level of input image.

After adding the interpolated AdaFM layers back to the ba-

sic network Na
bas, we can get the AdaFM-Net N c

ada for a

middle level Lc(La ≤ Lc ≤ Lb). The effects of changing

the coefficient λ from 0 to 1 are shown in Figure 2, 6, where

the output effects change continuously along with λ.

Interestingly, we find that the interpolated network could

fairly deal with any restoration level Lc between level La

and Lb by adjusting the coefficient λ, which behaves like a

strength controller in traditional methods. Experimentally,

we find that the relationship between the coefficient λ and

restoration level Lc can be formulated/approximated as a

polynomial function:

λ = f(Lc) =
M∑

j=0

wjL
j
c, (7)

where M is the order and {wj}
M
0 are coefficients. To fit

this polynomial function, we need to determine at least M
points {Li

c, λ
i}Mi=0. Specially, the start point is {L0

c =
La, λ

0 = 0} and the end point is {λM = 1, LM
c = Lb}.

Furthermore, we require a test set with degraded images

and ground truth to measure the adaptation accuracy. For

a middle level Li
c , we use the test images of level Li

c as in-

puts. By adjusting the coefficient λ, the AdaFM-Net could

generate a series of outputs. We select the λ that achieves

the highest PSNR (evaluated on the test set) as the best co-

efficient, recorded as λi for Li
c. It is worth noticing that the

modulation process and curve fitting require no additional

training.

Extensive experiments show that the fitting curve varies

a lot with ranges and problems. Take compression artifacts

reduction as an example. If the range is small, such as JPEG

quality from q80 to q50, then the fitting function is linear

(order M = 1) as shown in Figure 7. On the other hand, if

the range is large, such as from q80 to q10, then we have to

use a curve (order M = 3) for approximation. Similar trend

is observed for denoising and super resolution (see details

in Section 4.3 and the supplementary file).

As an alternative choice, we can also use the piece-wise

linear function for approximation. Actually, when the range

is small enough, the relationship between λ and Lc is almost

linear. We can train a set of AdaFM-Nets on middle levels

{Li
c}. For a given level Lc (Li

c < Lc < Li+1
c), we can use

the coefficient λ = (Lc−L
i
c)/(L

i+1
c −Li

c) to interpolate the

AdaFM-Nets between Li
c and Li+1

c . This strategy needs to

train and store more AdaFM-Nets on middle levels, but the

adaptation accuracy is comparably higher due to the small

range.

4. Experiments

4.1. Experimental Setup

Training settings. We use the DIV2K [1] dataset for all

the image restoration tasks. The training data is augmented

by horizontal flipping and 90-degree rotations. Following

SRResNet [10], the mini-batch size is set to 16 and the HR

patch size is 96 × 96. The L1 loss [19] is adopted as the

loss function. For model training, the initial learning rate

is set to 1 × 10−4 and then decayed by a factor of 10 after

5 × 105 iterations. We adopt the Adam [9] optimizer with

β1 = 0.9, β2 = 0.999. All models are built on the PyTorch

framework and trained with NVIDIA 1080Ti GPUs.

The structure of basic model. Based on the widely used

SRResNet and DnCNN [22], the basic model Nbas adopts

a general CNN structure that consists of a pair of down-

sampling (convolution with stride 2) and up-sampling (pix-

elshuffle [16] with upscaling factor 2) layers, 16 residual

blocks, and several convolution layers. Specifically, the fil-

ter number is 64 and the filter size is 3 × 3 for all convo-

lution layers. The residual block contains two convolution

layers and a ReLU activation layer. The middle features

are processed in a low-resolution (1/4 of the input size) s-

pace, while the output size remains the same as the input

size. For super-resolution, we can upsample the LR image

to the HR image size as SRCNN [5]. As shown in Table 1,

the basic model achieves better PSNR results than SRRes-

Net, DnCNN and ARCNN on super-resolution, denoising

and compression artifacts reduction, respectively. As stated

in Section 3.4 and 3.5, the basic model is also trained on d-

ifferent levels (as the baseline) to evaluate the performance

of AdaFM-Nets.

The position of AdaFM layers. As indicated in Sec-

11060

Super resolution SRResNet basic model

Set5×4 32.05 32.13

Denoising DnCNN basic model

CBSD68 σ15 33.89 34.10

DeJPEG ARCNN basic model

LIVE1 q10 29.13 29.55

Table 1. Comparisons with the state-of-the-art methods in PSNR.

0 5 10 15 20 25 30
iteration (104)

29.00

29.20

29.40

29.60

29.80

30.00

30.20

PS
NR

Super Resolution

kernel size: 1
kernel size: 3
kernel size: 5
kernel size: 7

Figure 5. The performances of adaptation with different filter sizes

of AdaFM layers in super resolution on Set5 dataset.

tion 3.3, we can insert the AdaFM layers after all convolu-

tion layers or just in the residual blocks (the same as BN and

IN). Moreover, an alternative choice is to add AdaFM layers

after all activation layers. To evaluate the above three ap-

proaches, we conduct experiments for super resolution task

×3→ ×4 with filter size 5× 5. From the experimental re-

sults, we observe that adding AdaFM layers after activation

is inferior to that before activation (32.00 dB, 31.84 dB eval-

uated on Set5 [3]). The results of inserting AdaFM layers

after all convolution layers and in the residual blocks make

little difference (32.01 dB, 32.00 dB evaluated on Set5). To

save computation, we insert AdaFM layers just in residual

blocks before activation for all experiments.

Complexity analysis. We calculate the parameters of

the basic model and AdaFM layers. Following previous

works, we exclude the number of biases that perform add

operation in network. The total parameters in basic model

include the parameters of 16 residual blocks, 4 convolution

layers and a pixelshuffle layer. As we insert the AdaFM

layers in residual blocks, the number of AdaFM layers is

equal to the number of convolution layers in residual block-

s. Thus there are 16 × 2 × 64 = 2048 filters in AdaFM

layers. When the filter size is 1 × 1, 3 × 3, 5 × 5, the

number of parameters is 2048, 18432, 51200, respectively,

accounting for 0.15% 1.31% 3.65% of the total parameters

in the basic model. Note that these numbers are even s-

maller than the parameter number of a single residual block

(2×64×64×9 = 73728). Nevertheless, as AdaFM-Net is

comparably larger than the basic model, we still need to ver-

ify whether it significantly improves the model capacity. In

super resolution ×4, we train an AdaFM-Net with AdaFM

layers of a large filter size 5 × 5 from scratch. The PSNR

value on DIV2K (30.39 dB) is almost the same as that of

the basic model (30.37 dB), indicating that the performance

is not influenced by AdaFM layers. We can safely use the

PSNR(dB) 1×1 3×3 5×5 7×7 baseline

SR Set5 31.42 31.88 32.00 32.03 32.13

DIV2K100 29.89 30.20 30.28 30.30 30.37

DeJPEG LIVE1 29.35 29.39 29.41 29.42 29.55

Denoising CBSD68 26.35 26.38 26.39 26.40 26.49

Table 2. The PSNR results of adaptation with different kernel sizes

of AdaFM layers in three tasks.

PSNR(dB) AdaBN Conditional IN AdaFM-Net

Set5×3 34.04 33.53 34.34

×4 28.70 31.30 32.00

LIVE1 q80 38.29 36.99 38.81

q10 27.61 28.89 29.35

CBSD68 σ15 33.83 31.33 34.10

σ75 19.68 24.15 26.35

Table 3. Comparisons with AdaBN [11] and conditional IN [6]

basic model as baseline to test the AdaFM-Nets. In anoth-

er perspective, this also demonstrates the effectiveness of

the proposed strategy, which adapts the model to different

restoration levels with little additional computation cost.

4.2. Evaluation of Model Training

In this section, we evaluate our proposed method on

three image restoration tasks, super resolution, denoising,

and compression artifacts reduction (JPEG Deblocking or

DeJPEG). The basic settings are shown below.

For super-resolution, we train our models in RGB chan-

nels and calculate the PSNR in y-channel on two widely

used benchmark datasets – Set5 [3] and the test set of DI-

V2K [1]. We evaluate our methods on upscaling factors

×2,×3,×4,×5,×6. All other settings remain the same

as SRCNN [5]. In denoising, we use Gaussian noise and

consider 5 noise levels, i.e., σ = 15, 25, 35, 50, 75. Fol-

lowing DnCNN [22], the models are trained with RGB

channels and evaluated in RGB channels on CSBD68 [13]

dataset. For DeJPEG, we use the JPEG quality q =
80, 60, 40, 20, 10 in MATLAB JPEG encoder. Similar as

ARCNN [4], our models are trained and tested in y channel

only. LIVE1 [15] dataset is used for evaluation.

Filter Size. First, we need to determine the filter size

of AdaFM layers for different problems. We denote the

adaptation from the start level La to the end level Lb as

La → Lb. The basic model is trained on La, and AdaFM-

Net is tested on Lb.

For the super resolution task ×3→ ×4, we compare the

performance of AdaFM-Net with various filter sizes – 1×1,

3×3, 5×5 and 7×7. The convergence curves on Set5 are

plotted in Figure 5 , and the quantitative results are present-

ed in Table 2. In general, larger filters can achieve better

performance. Notably, the PSNR gap between 1 × 1 and

3 × 3 is larger than 0.4 dB. However, this trend does not

always hold when the filter size is expanded to 7×7. There-

fore, we use the filter size 5×5 to conduct the following

experiments for the super resolution tasks.

11061

Adaptation in Super Resolution

range1 range2 direction

×2→ ×3 ×3→ ×4 ×4→ ×5 ×5→ ×6 ×2⇒ ×4 ×3⇒ ×5 ×4⇒ ×6 ×3← ×4 ×2⇐ ×4

Set5 34.34 32.13 30.26 28.74 32.13 30.26 28.74 34.34 37.84
AdaFM-Net 33.98 32.00 30.16 28.73 31.66 29.98 28.61 34.11 37.11

PSNR distance 0.36 0.13 0.10 0.01 0.47 0.28 0.13 0.23 0.73

DIV2K100 32.35 30.37 29.04 28.10 30.37 29.04 28.10 32.35 36.00
AdaFM-Net 32.07 30.28 29.02 28.09 30.01 28,88 28.00 32.14 35.13

PSNR distance 0.28 0.09 0.02 0.01 0.36 0.16 0.10 0.21 0.87

Table 4. Adaptation results. The PSNR distances within 0.2 dB are shown in bold.

range direction

DeJPEG 80→60 80→40 80→20 80→10 80←10

LIVE1 36.00 34.34 31.93 29.55 38.81
AdaFM-Net 35.98 34.29 31.81 29.35 37.77

distance 0.02 0.05 0.12 0.20 1.04

Denoising 15→25 15→35 15→50 15→75 15←75

CBSD68 31.44 29.82 28.20 26.49 34.10
AdaFM-Net 31.43 29.78 28.13 26.35 33.42

distance 0.01 0.04 0.07 0.14 0.68

Table 5. Adaptation results of DeJPEG and Denoising. The PSNR

distances within 0.2 dB are shown in bold.

Similar as in super resolution, we compare the perfor-

mance with different filter sizes (1×1, 3×3, 5×5 and 7×7)

for denoising task σ15 → σ75 and DeJPEG task q80 →
q10. Results shown in Table 2 indicate that in both two

tasks, filter size 1×1 can already achieve excellent perfor-

mance. The PSNR gap between 1× 1 and 7× 7 is less than

0.1 dB. Considering the computation cost, we use filter size

1× 1 for all denoising and DeJPEG experiments.

Direction. The second step is to find the best adaptation

direction. Before experiments, it is essential to clarify the

way of measurement. For task La → Lb, the baseline is

the basic model trained on Lb with performance Pbas, and

the AdaFM-Net is finetuned on Lb with performance Pada.

Then the PSNR distance |Pbas−Pada| is used to evaluate the

adaptation accuracy of AdaFM-Net. In experience, 0.3 dB

is regarded as a significant PSNR gap in image restoration.

In other words, if the distance |Pbas−Pada| exceeds 0.3 dB,

then the adaptation is NOT well-suited for applications.

We conduct three pairs of experiments – super resolution

task ×3 → ×4 and ×4 → ×3, denoising task σ15 → σ75
and σ75 → σ15, DeJPEG task q80 → q10 and q10 →
q80. Results are shown in Table 4, 5. In all three problems,

the tasks with direction from easy to hard (i.e., ×3 → ×4,

σ15 → σ75, q80 → q10) achieve better adaptation results.

Here, easy and hard refer to the difficulty of restoring the

input images. For example, in DeJPEG, the PSNR distance

of q80 → q10 is 0.2 dB, which is much lower than that of

the inverse direction q10→ q80 – 1.04 dB.

Range. In this subsection, we investigate the influence

of the adaptation range. Generally, by fixing the start lev-

el La, we change the end level Lb and test the adaptation

accuracy.

Different from previous sections, we start discussion

with denoising and DeJPEG, where the trend of range is

more obvious. In denoising, we start with σ15 and change

the end level from σ25 to σ75. In DeJPEG, we start with

q80 and change the end level from q60 to q10. The adapta-

tion results are shown in Table 5. It is observed that better

adaptation accuracy is obtained with a smaller range. In ad-

dition, the proposed AdaFM can easily handle very large

range in either denoising or DeJPEG.

For super resolution, we find it hard to adapt the model

across even 2 upscaling factors. For example, in Table 4,

the PSNR distance for the task ×2 → ×4 exceeds 0.3 dB

for all three test sets, indicating that we should not further

enlarge the range to 3. When fixing the range to be 1 and 2

upscaling factors, we change both the start and end level to

see the change of results. From Table 4, we can conclude

that the adaptation is easier (lower PSNR distance) with a

harder start level (e.g., ×4→ ×5 is better than ×3→ ×4).

4.2.1 Comparison with AdaBN and Conditional IN

We compare with state-of-the-art methods on super res-

olution task ×3 → ×4, denoising task σ15 → σ75 and

DeJPEG task q80 → q10. To compare with AdaBN [11],

we train a network with batch normalization after all con-

volutional layers in the residual blocks, and then change all

the statistics in BN layers during testing. We also use con-

ditional IN [7] to handle different levels of restoration. The

results are shown in Table 3. It can be obviously observed

that neither of the two methods can obtain reasonable su-

per resolution, denoising and DeJPEG results. Therefore,

they are not suitable for image restoration tasks. Qualitative

comparisons are also shown in Figure 6, where we observe

clear artifacts on their output images.

4.3. Evaluation of Modulation Testing

In modulation testing, continuously manipulating the in-

terpolation coefficient λ could gradually change the output

effect. If the input image is fixed, then the output image

will become sharper or smoother with the increase of λ, as

11062

Denoising:

σ45

λ= 0.0 0.2 0.4 0.6 0.8 1.0

DeJPEG:

q30

SR:

×3.4

Modulation Testing

Denoising:σ15 andσ75

AdaBN Conditional IN

AdaFM-Net

λ= 0.0 0.2 0.4 0.6 0.8 1.0

Figure 6. Left: Artifacts on the output images produced by AdaBN and conditional instance normalization. Right: Modulation testing in

Denoising (CBSD68), DeJEPG (LIVE1) and Super Resolution (Set14 [21]).

shown in Figure 6. On the other hand, we can choose d-

ifferent λ to deal with different kinds of degraded images.

As presented in Section 3.5, the coefficient λ can be for-

mulated as a polynomial function of restoration level Lc

– λ =
∑M

j=0
wjL

j
c. In this subsection, we investigate

the curving fitting with different ranges in DeJPEG prob-

lem. Similar investigations on super resolution and denois-

ing problems can be found in supplementary file.

We first investigate the DeJPEG task q80 → q10. We

select 6 middle levels – Lc = q70, 60, 50, 40, 30, 20 – be-

tween q80 and q10. Then for a given level Lc, we use the

test images of Lc as inputs, and adjust λ to obtain different

outputs of AdaFM-Net. After calculating the PSNR val-

ues on LIVE1 test set, we select the λ that achieves the

best PSNR as the best coefficient. For example, see the

blue line in Figure 7, the best coefficient for level q60 and

q30 are 0.14, 0.40, respectively. After we have obtained al-

l middle points, we fit the curve by a cubic function:λ =
1.51− 6.24× 10−2Lc +1.01× 10−3L2

c − 5.91× 10−6L3
c .

Then for arbitrary levels between q80 and q10, we can use

this function to predict its corresponding interpolation coef-

ficient. If we test a smaller range, such as q80→ q50, then

a simple straight line could fairly connect all middle points

(see the orange line in Figure 7). In other words, the poly-

nomial function is linear. This property holds for smaller

ranges such as q80→ q60.

To verify whether the interpolated image is of high qual-

ity, we use the PSNR distance on LIVE1 test set as the e-

valuation metric. Specifically, the basic model trained on

level Lc is used as the baseline, and the PSNR distance is

calculated between the PSNR of AdaFM-Net and that of

a well-trained baseline model. The smaller of the PSNR

distance the better of the adaptation/modulation accuracy.

Figure 7 illustrates the PSNR distances in two DeJPEG

tasks. It is observed that all PSNR distances are below 0.2

dB, indicating that the output quality is good enough for

practical usages. Further, the PNSR distances of the small-

range task q80 → q50 is much lower than the large-range

task q80 → q10. Thus modulation across smaller ranges

achieves better performance. For higher request of modu-

lation quality, we can decompose a large range to several

small ranges, and train AdaFM-Nets for each sub-task. We

can balance the performance and computation burden ac-

cording to different applications.

1020304050607080
JPEG compression level

0.0

0.2

0.4

0.6

0.8

1.0

co
ef

fic
ie

nt
:

0.07
0.14

0.20
0.28

0.40

0.59

1.00

0.00

0.25

0.50

0.71

1.00

Range
from 80 to 10
from 80 to 40

1020304050607080
JPEG compression level

30

32

34

36

38

40

PS
NR

0.0

0.03

0.06
0.08

0.12

0.15

0.16

0.2

0.0

0.01

0.02
0.02

0.05

label
from 80 to 10
baseline
from 80 to 40

Figure 7. Top: the curve fitting with different ranges in DeJPEG

problem; Bottom: the value of PSNR distance is annotated above

each bar.

5. Conclusion

We present a method that allows continual modulation of

restoration levels in a single CNN for versatile and flexible

image restoration. The core idea of our method is to han-

dle images with arbitrary degradation levels with a single

model, which consists of a basic model and a modulation

layer – AdaFM layer. We further propose the learning and

modulating strategies of the AdaFM layers. In test time, the

model can be adapted to any restoration level by directly

adjusting the AdaFM layers without an additional training

stage.

Acknowledgements. This work is partially supported

by National Key Research and Development Program of

China (2016YFC1400704), Shenzhen Research Program

(JCYJ20170818164704758, JCYJ20150925163005055,

CXB201104220032A), and Joint Lab of CAS-HK.

11063

References

[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge

on single image super-resolution: Dataset and study.

[2] Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. Layer nor-

malization. CoRR, abs/1607.06450, 2016.

[3] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and

Marie Line Alberi-Morel. Low-complexity single-image

super-resolution based on nonnegative neighbor embedding.

2012.

[4] Chao Dong, Yubin Deng, Chen Change Loy, and Xiaoou

Tang. Compression artifacts reduction by a deep convolu-

tional network. In The IEEE International Conference on

Computer Vision (ICCV), December 2015.

[5] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Learning a deep convolutional network for image

super-resolution. In European conference on computer vi-

sion, pages 184–199. Springer, 2014.

[6] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur.

A learned representation for artistic style. Proc. of ICLR,

2017.

[7] Xun Huang and Serge J Belongie. Arbitrary style transfer

in real-time with adaptive instance normalization. In ICCV,

pages 1510–1519, 2017.

[8] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, 2015.

[9] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. CoRR, abs/1412.6980, 2015.

[10] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,

Andrew Cunningham, Alejandro Acosta, Andrew P Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-

realistic single image super-resolution using a generative ad-

versarial network.

[11] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and

Xiaodi Hou. Revisiting batch normalization for practical do-

main adaptation. CoRR, abs/1603.04779, 2017.

[12] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for s-

ingle image super-resolution. In The IEEE conference on

computer vision and pattern recognition (CVPR) workshop-

s, volume 1, page 4, 2017.

[13] Stefan Roth and Michael J Black. Fields of experts: A frame-

work for learning image priors. In Computer Vision and Pat-

tern Recognition, 2005. CVPR 2005. IEEE Computer Society

Conference on, volume 2, pages 860–867. IEEE, 2005.

[14] Tim Salimans and Diederik P Kingma. Weight normaliza-

tion: A simple reparameterization to accelerate training of

deep neural networks. In Advances in Neural Information

Processing Systems, pages 901–909, 2016.

[15] H. R. Sheikh, M. F. Sabir, and A. C. Bovik. A statisti-

cal evaluation of recent full reference image quality assess-

ment algorithms. IEEE Transactions on Image Processing,

15(11):3440–3451, Nov 2006.

[16] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,

Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan

Wang. Real-time single image and video super-resolution

using an efficient sub-pixel convolutional neural network. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1874–1883, 2016.

[17] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky.

Instance normalization: The missing ingredient for fast styl-

ization. CoRR, abs/1607.08022, 2016.

[18] Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy.

Recovering realistic texture in image super-resolution by

deep spatial feature transform. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 606–615, 2018.

[19] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Li-

u, Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan:

Enhanced super-resolution generative adversarial networks.

In European Conference on Computer Vision, pages 63–79.

Springer, 2018.

[20] Yuxin Wu and Kaiming He. Group normalization. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 3–19, 2018.

[21] Roman Zeyde, Michael Elad, and Matan Protter. On sin-

gle image scale-up using sparse-representations. In Interna-

tional conference on curves and surfaces, pages 711–730.

Springer, 2010.

[22] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and

Lei Zhang. Beyond a Gaussian denoiser: Residual learning

of deep CNN for image denoising. IEEE Transactions on

Image Processing, 26(7):3142–3155, 2017.

11064

