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Abstract

Recent developments in the field of Deep Learning have
exposed the underlying vulnerability of Deep Neural Net-
work (DNN) against adversarial examples. In image clas-
sification, an adversarial example is a carefully modified
image that is visually imperceptible to the original image
but can cause DNN model to misclassify it. Training the
network with Gaussian noise is an effective technique to
perform model regularization, thus improving model ro-
bustness against input variation. Inspired by this classical
method, we explore to utilize the regularization character-
istic of noise injection to improve DNN’s robustness against
adversarial attack. In this work, we propose Parametric-
Noise-Injection (PNI) ' which involves trainable Gaussian
noise injection at each layer on either activation or weights
through solving the Min-Max optimization problem, embed-
ded with adversarial training. These parameters are trained
explicitly to achieve improved robustness. The extensive re-
sults show that our proposed PNI technique effectively im-
proves the robustness against a variety of powerful white-
box and black-box attacks such as PGD, C & W, FGSM,
transferable attack, and ZOO attack. Last but not the least,
PNI method improves both clean- and perturbed-data ac-
curacy in comparison to the state-of-the-art defense meth-
ods, which outperforms current unbroken PGD defense by
1.1 % and 6.8 % on clean- and perturbed- test data respec-
tively, using ResNet-20 architecture.

1. Introduction

Deep Neural Networks (DNNs) have achieved great suc-
cess in a variety of applications, including but not limited
to image classification [23], speech recognition [!7], ma-
chine translation [5], and autonomous driving [9]. Despite
the remarkable accuracy improvement [15], recent studies

'Our Pytorch implementation is publicly available at https://
github.com/elliothe/CVPR_2019_PNI

[40, 14, 7] have shown that DNNs are vulnerable to ad-
versarial examples. In the image classification task, an ad-
versarial example is a natural image which is intentionally
perturbed by visually imperceptible variation but can cause
drastic classification accuracy degradation. In addition to
image classification, attacks to other DNN-powered tasks
have also been actively investigated, such as visual question
answering [43, 1], image captioning [ 0], semantic segmen-
tation [31, 1] and etc [12, 8, 39].

There has been a cohort of works on adversarial example
generation (aka., adversarial attack) and developing corre-
sponding defense methods. In general, adversarial attacks
can be categorized as white-box attack and black-box at-
tack based on the information of target model exposed to
the attacker. For white-box attack [40, 7], the adversary
has full access to the network architecture and parame-
ters. Whereas, only external access to the network (e.g.,
input and output) are permitted for the black-box attacks
[29, 33, 11]. Owing to the richer information, white-box
attack can often achieve higher attacking success rates in
comparison to the black-box counterpart, for various appli-
cations [40, 24, 21,35, 32,4, 11, 7].

Recently, different works [6] have viewed the problem
of adversarial examples from a unified perspective of model
robustness and regularization. Conventional regularization
mainly serves the purpose of generalization, thus prevent-
ing the model from over-fitting to the training data. Tradi-
tional regularization methods, such as dropout [38], Batch
Normalization [18], have been demonstrated effective and
widely used in practice. Hinton also discusses that adding
Gaussian noise into the model (e.g., input, weight, and ac-
tivation) during training which performs as a regularizer in
his lecture note [13] and dropout work [38].

It is evident that a proper model regularization method,
which specifically designed for improving DNN robustness,
can serve the purpose of defending adversarial example
more effectively. Recently, different works [27, 26, 6] have
adopted the noise injection method for model regularization
but configures the injected noise manually. In contrast to
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that, we take advantage of regularization property of noise
injection while optimizing the magnitude of injected noise
through the end-to-end training.

Overview of our approach: In this work, we propose a
novel noise injection method called Parametric Noise Injec-
tion (PNI) to improve the neural network robustness against
adversarial attack. The proposed PNI technique is to ap-
ply to inject layer-wise trainable Gaussian noise on various
locations, including network input/activation/weights. For
each inference, the injected noise is independently sam-
pled from the corresponding Gaussian distribution, where
its mean and variance of this distribution is trained by gradi-
ent descent method as other parameters of DNN. To achieve
the proper objective of the training, PNI is embedded with
well-known adversarial training, where the injected noise
(i.e., its mean and variance) will be optimized through end-
to-end training instead of manual configuration. In general,
our proposed PNI technique shows tempting performance
improvement on both clean- and perturbed-data accuracy,
in comparison to the vanilla adversarial training. The neg-
ligible model capacity and computational overhead make
PNI a promising solution for practical applications.

2. Related works
2.1. Adversarial Attack

Recently, various powerful adversarial attack methods
have been proposed to totally fool a trained DNN through
introducing barely visible perturbation upon input data.
Several state-of-the-art white-box (i.e., PGD [30], FGSM
[14] and C&W [7]) and black-box (i.e., Substitute [34] and
ZOO [11]) adversarial attack methods, which will be inves-
tigated in this work, are briefly introduced as follows.

FGSM Attack: Fast Gradient Sign Method (FGSM) [40]
is an efficient single-step adversarial attack method. Given
vectorized input « and corresponding target label £, FGSM
alters each element x of « along the direction of its gradient
w.r.t the inference loss 0L /0x. The generation of adversar-
ial example & (i.e., perturbed input) can be described as:

T :w—l—e~sgn(Vm£(g(:c;0),t)) (1)

where € is the perturbation constraint that determines the at-
tack strength. g(x; @) computes the output of DNN param-
terized by 6. sgn(-) is the sign function. Note that, the
attack is followed by a clipping operation to ensure the
z€10,1].

PGD Attack: Projected Gradient Descent (PGD) [30]
is a multi-step variant of FGSM, which is one of the
strongest L>° adversarial example generation algorithm.
With £5=! = gz as the initialization, the iterative update

of perturbed data & in k-th step can be expressed as:
&" = p () (:f:’H +a-sgn(VaLl(g(@* 0>,t))) 2)

where P.(x) is the projection space which is bounded by
T + €, and a is the step size. Madry et al. [30] also propose
that PGD is a universal adversary among all the first-order
adversaries (i.e., attacks only rely on first-order informa-
tion).

C&W Attack: Recently, Carlini and Wagner propose an
attack method called C&W attack [7]. C&W attack consid-
ers the generation of adversarial example as a problem of
optimizing the LP-norm of distance metric 4 w.r.t the given
input data , which can be described as:

= (k)" b=s-a @
i=1

minimize ||0||, +¢- L(x+d) s.t. x+d€[0,1]" 4)

where 9 is taken as the perturbation added upon the input x,
and a specific loss function £ is chosen in [7] to solve the
optimization problem via gradient descent. c is a constant
set by the attacker. In this work, we use L2-norm based
C&W attack and take ||d]|,=2 as the evaluation metric to
measure the robustness of DNN, where a greater value of
||0||p=2 normally indicates a DNN possesses higher robust-
ness against potential adversarial attacks.

Black-box Attacks: The most popular black-box attack
is conducted using a substitute model [34], which is trained
using the output of target model as the label, to mimic the
functionality of the target model. Then, the adversarial ex-
ample generated from the substitute model is used to per-
form the attack on the target model. In this work, we specif-
ically investigate the transferable adversarial attack [29],
which is a variant of substitute model attack [34]. In the
transferable adversarial attack, the adversarial example is
generated from one source model to attack another target
model. The source model and target can own a totally dif-
ferent structure but trained with the real training data. Be-
yond that, Zero-th Order Optimization (ZOO) attack [11]
is investigated in this work as well. Rather than using the
substitute model to approximate the gradients of the target
model to perform an attack, ZOO attack directly approxi-
mates the gradient based on the input data and output scores
using stochastic gradient coordinate.

2.2. Adversarial Defenses:

Improving network robustness via adversarial training
[40, 30] is by far the most popular and unbroken defense
approach. The key idea of adversarial training is to take
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the adversarial example as the training data, which trains
the DNN against the adversarial attack. Most of the later
works [19, 36] have followed this path to supplement their
defense with adversarial training. The initial and important
step in adversarial training is to choose an attack model for
adversarial example generation. Adopting Projected Gradi-
ent Descent (PGD) [30] as an attack model for adversarial
training is becoming popular, since it is considered to be ca-
pable of generating universal adversarial examples among
the first order approaches [30]. Additionally, among many
recent defense methods, only PGD based adversarial train-
ing can sustain the state-of-the-art accuracy under various
other attacks [7, 40, 4].

Recent work [6] has merged the concept of improving
model robustness through regularization to defend adver-
sarial examples. A well-known method for model regu-
larization is noise injection, which is a variant of dropout
on weights [41] or activations [38]. For further improving
the performance of DNN under attack, there are works at-
tempt to introducing randomness into DNN for adversar-
ial defense, such as randomly pruning some activation dur-
ing the inference [37], randomizing the input layer [42],
inserting a noise-layer right before the convolution layers
[27, 26]. However, the performance improvement (i.e.,
perturbed-data accuracy) mainly comes from the stochas-
tic gradient instead of regularizing the DNN for better ro-
bustness, which is considered as the broken defense method
according to the criterion of gradient obfuscations [4]. An
alternative and straight-forward approach to evaluating ad-
versarial defense about the gradient obfuscation is to exam-
ine the clean- (attack free) and perturbed-data (under attack)
accuracy. If the adopted method mainly performs the model
regularization, it is expected to improve the perturbed-data
accuracy without sacrificing the clean-data accuracy.

Last but not least, we also notice that recent work Adv-
BNN [28] also combines the adversarial training and noise
injection on weight (i.e., Bayesian neural network equiva-
lently). In comparison to our proposed PNI, Adv-BNN [28]
mainly has the following drawbacks: 1) Significant com-
putational and storage overhead owing to the used weight
posterior (double model size) and output ensemble (>10
times), and 2) potential gradient obfuscation (trade the
clean-data accuracy with perturbed-data accuracy). The
key factor that our PNI outperforms Adv-BNN is the layer-
wise noise injection (Eq. (5)) and ensemble loss function
(Eq. (10)), which will be explicitly introduced in the fol-
lowing sections.

3. Parametric Noise Injection

In this section, we first introduce the proposed Paramet-
ric Noise Injection (PNI) function and will investigate the
impact of noise injection on input/weight/activation.
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Figure 1. The flowchart of PNI on the weights w; of a 5 x 5 fully-
connected layer (i.e., PNI-W). For each inference, the process of
PNI on w; can be generally divided into three steps: 1) statis-
tically calculate the standard deviation o; of w;; 2) sample the
additive weight noise (i.i.d) from A (0,o7); 3) added the scaled
weight noise with clean weight, then use the noisy weight w; in
the forward path.

Definition. The method that we propose to inject Gaus-
sian noise to different components or locations within DNN
can be mathematically described as:

O = foni(vii) = v+ i~ N(0,07) (5)

where v ; is the element of noise-free tensor v; in {-th layer
of DNN, and such v; can be input/weight/inter-layer (i.e.,
activation) tensor in this work. 7; ; is the noise term which
samples from Gaussian distribution with zero mean and
variance alZ, for each inference. «; is the coefficient that
scales the magnitude of injected noise 7;. Note that, we
adopt the scheme that 7; shares the identical variance with
v as in Eq. (5), thus the injected additive noise relies on oy
and the distribution of v; simultaneously.

In this work, rather than manually configuring «; to
restrict the noise level, we set a; as a learnable param-
eter which can be optimized for network robustness im-
provement. We name such method as Parametric Noise
Injection (PNI). Assuming we perform the proposed PNI
on the weight tensors of convolution/fully-connected lay-
ers throughout entire DNN, for each parametric layer there
is only one layer-wise noise scaling coefficient (o) to be
optimized. We take such layer-wise PNI configuration as
default in this work. A example of PNI on weight (i.e., PNI-
W) is depicted in Fig. 1.

Optimization In this work, we treat the noise scaling
coefficient as a model parameter which can be optimized
through the back-propagation. For fpni(-) that shares the
noise scaling coefficient layer-wise, the gradient computa-
tion can be described as:

375 _ Z oL 8fPNI(Ul,i)
0oy — Ofeni(vis) Oy

(6)

where the ), takes the summation over the entire tensor
vy, and OL/dfeni(vi ;) is the gradient back-propagated
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from the followed layers. The gradient calculation of the
PNI function is:

5fPNI(Ul,i)
8041

It is noteworthy that the random sampled 7; ; will be taken
as a constant during the back-propagation. Using the gradi-
ent descent optimizer with momentum, the optimization of
« at step j can be written as:

=M @)

oLi—1
80&[ '

where m is the momentum, € is the learning rate, and V; is
the updating velocity. Moreover, since weight decay tends
to make the learned noise scaling coefficient converge to
zero, there is no weight decay term on the o during the pa-
rameter updating in this work. We set a; = 0.25 as default
initialization.

V) =m- VT ol =of ' =V @®)

Robust Optimization. We expect to utilize the aforemen-
tioned PNI technique to improve the network robustness.
However, directly optimizing the noise scaling coefficient
normally leads «; to converge at a small close-to-zero value
(vanilla training in Table 1), owing to the gradient-descent
optimizer tends to make the weights to be noise-free thus to
over-fit the training data.

In order to succeed in adversarial defense, we jointly use
the PNI method with robust optimization (a.k.a. Adversar-
ial Training) which can boost the inference accuracy for
the perturbed data under attack. Given inputs-  and tar-
get labels- ¢, the adversarial training is to obtain the optimal
solution of network parameter 6 for the following min-max
problem:

arg min { arg max £ (g(&; fpni(0)), %) } )
6 x'EP(x)

where the inner maximization tends to acquire the perturbed
data &, and P,(x) is the input data perturb set constrained
by e. While the outer minimization is optimized through
gradient descent method as regular network training. L
PGD attack [30] is adopted as the default inner maximiza-
tion solver (i.e., generating &).

Moreover, in order to balance the clean data accuracy
and perturbed data accuracy for practical application, rather
than performing the outer minimization solely on the loss
of perturbed data as in Eq. (9), we minimize the ensemble
loss £’ which is the weighted sum of losses for clean- and
perturbed-data. The ensemble loss L.y is described as:

»ccns = We - ﬁ(g(m;fPNl(e))vt) + wq l:(g(i:‘ fPN](e))7t) (10)

where w, and w,, are the weights for clean data loss term
and adversarial data loss term, respectively. w. = w, = 0.5
is the default configuration in this work.

Optimizing the ensemble loss Ly is the key to success-
ful training of both the model’s inherent parameter (e.g.
weight, bias) and the add-on noise scaling coefficient o
from PNI. The intuition behind is that, the gradient-descent
optimizer attempt find a equilibrium point of o;; when mini-
mizing Leys. If o is too large, PNI will introduce significant
noise into the inference path which will definitely hamper
the accuracy for both clean- and perturbed-data. If oy is too
small, PNI will not perform any regularization.

4. Experiments
4.1. Experiment setup

Datasets and network architectures. Two visual
datasets for object recognition task is considered in this
work, which is MNIST and CIFAR-10. The MNIST [25]
dataset is a set of handwritten digit 28x28 gray-scale
images with 60K training examples and 10K test examples.
The CIFAR-10 [22] dataset is composed of 50K training
samples and 10K test samples of 32x32 color image. There
is no data augmentation used for MNIST, while CIFAR-10
use the same augmentation method as in [16]. Although we
test our method on both CIFAR-10 and MNIST, we mainly
present results on CIFAR-10 to validate our method. Since
the results on MNIST cannot provide much insight, we put
the MNIST results in the appendix.

For MNIST, we test the performance using the vari-
ant LetNet5. For CIFAR-10, the classical Residual Net-
works [16] (ResNet-20/32/44/56) architecture are used, and
ResNet-20 is taken as the baseline for most of the compar-
ative experiments and ablation studies. A redundant net-
work ResNet-18 is also used to report the performance for
CIFAR-10, since large network capacity is helpful for ad-
versarial defense. Moreover, rather than including the in-
put normalization within the data augmentation, we place a
non-trainable data normalization layer in front of the DNN
to perform the identical function, thus an attacker can di-
rectly add the perturbation on the natural image. Note that,
since both PNI and PGD attack [30] include randomness,
we report the accuracy in the format of mean+std% with 5
trials to alleviate error.

Adversarial attacks. To evaluate the performance of our
proposed PNI technique, we employ multiple powerful
white-box and black-box attacks as introduced in Sec-
tion 2.1. For PGD attack on MNIST and CIFAR-10, € is
set to 0.3/1 and 8/255, and Ny is set to 40 and 7 respec-
tively. FGSM attack adopts the same e setup as PGD. The
attack configurations of PGD and FGSM are identical as the
setup in [19, 30]. For C&W attack, we set the constant c as
0.01. ADAM [20] is used to optimize the Eq. (4) with learn-
ing rate as 5e~*. We choose 0 for the confidence coefficient
k, which is defined in the loss function used by C&W L? at-
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Table 1. Convergence of PNI: ResNet-20 with Layerwise weight
PNI on CIFAR-10 dataset. (Top) The converged layer-wise noise
scaling coefficient a under various training scheme. (Bottom) Test
accuracy for clean- and perturbed-data under PGD and FGSM at-
tack.

PNI-W+Adv. Train. PNI-W+Adv. Train.

Layer Vanilla (without PNI in (with PNI in
Index Traning )N . . .
T generation) I generation)
Conv0 0.003 0.004 0.146
Conv1.0 0.002 0.005 0.081
Convl.1 0.004 0.004 0.049
Convl.2 0.002 0.001 0.097
Conv1.3 0.004 5.856 0.771
Convl.4 0.005 0.005 0.004
Convl.5 0.002 0.001 0.006
Conv2.0 0.004 0.000 0.006
Conv2.1 0.006 0.003 0.004
Conv2.2 0.004 0.003 0.030
Conv2.3 0.001 0.006 0.003
Conv2.4 0.003 0.001 0.033
Conv2.5 0.002 0.001 0.023
Conv3.0 0.007 0.001 0.008
Conv3.1 0.003 0.001 0.006
Conv3.2 0.007 0.002 0.001
Conv3.3 0.006 0.001 0.002
Conv3.4 0.009 0.002 0.001
Conv3.5 0.005 0.000 0.001
FC 0.002 0.002 0.001
Clean 92.11% 71.00% 84.89+0.11%
PGD 0.00£0.00% 18.11% 45.944+0.11%
FGSM 14.08% 26.34% 54.48+0.44%

tack in [7]. The binary search steps for the attack is 9, while
number of iteration to perform the gradient descent is 10.
Moreover, we also conduct the PNI defense against several
state-of-the-art black-box attacks (i.e. substitute [34], ZOO
[11] and transferable [29] attack) in a Section 4.2.2 to exam-
ine the robustness improvement resulted from the proposed
PNI technique.

Competing methods for adversarial defense. As far as
we know, the adversarial training with PGD [30] is the only
unbroken defense method [4], which is labeled as vanilla
adversarial training and taken as the baseline in this work.
Beyond that, several recent works utilizing similar con-
cept as ours in their defense method are discussed as well,
including certified robustness [26], random self-ensemble
[27], and Adv-BNN [28].

4.2. PNI for adversarial attacks
4.2.1 PNI against white-box attacks

Optimization method of PNI As the discussion at the
end of Section 3, the noise scaling coefficient will not be
properly trained without utilizing the adversarial training
and ensemble loss. We conduct the experiments for train-

a of layerwise PNI-W

0 20 40 60 80 100 120 140 160
Epoch
Figure 2. The evolution curve of trainable noise scaling coefficient
« for layerwise PNI on weight (PNI-W). Only front 5 layers (bold
in Table 1) of ResNet-20 [16] are shown. The learning rate of SGD
optimizer is reduced at 80 and 120 epoch.

ing the layer-wise PNI on weight (PNI-W) of ResNet-20,
to compare the convergence of trained noise. As tabulated
in Table 1, simply performing the vanilla training using mo-
mentum SGD optimizer totally fails the adversarial defense,
where the noise scaling coefficients « are converged to the
negligible values. On the contrary, with the aid of adver-
sarial training (i.e., optimization of Eq. (10)), convolution
layers in the network’s front-end have obtained relatively
large o which are the bold values in Table 1, and the corre-
sponding evolution curve are shown in Fig. 2.

Since the PGD attack [30] is taken as the inner maxi-
mization solver, the generation of adversarial example & in
Eq. (2) is reformatted as:

FHL = Tp, (s (:et +a-sgn(VaL(g(@; fon(0)), t))) (11)

where the difference between Eq. (2) and Eq. (11) is
with/without PNI in & generation. It is noteworthy that,
keeping the noise term in the model for both adversarial ex-
ample generation (Eq. (11)) and model parameter update is
also the critical factor for the PNI optimization with adver-
sarial training. As listed in Table 1, not incorporating the
PNI-W in & generation indeed leads to the failure of PNI
optimization, and the large value (v = 5.856 in Table 1) is
not converged due to the probable gradient explosion.

Effect of PNI on weight, activation and input. In this
work, even though the scheme of injecting noise on the
weight (PNI-W) is taken as the default PNI setup, more re-
sults about PNI on activation (PNI-A-a/b), input (PNI-I) and
hybrid-mode (e.g. PNI-W+A) are provided in Table 2 for a
comprehensive study. PNI-A-a/PNI-A-b denotes injecting
noise on the output/input tensor of the convolution/fully-
connected layer respectively. Moreover, PNI-A-b scheme
intrinsically includes the PNI-I, since PNI-I is applying
the noise on the input tensor of the first layer. Note
that, all models with PNI variants are jointly trained with
PGD-based adversarial training [30] as discussed above.
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Table 2. Effect of PNI location: The ResNet-20 [16] clean- and perturbed-data (under PGD and FGSM attack) accuracy (mean+std%) on
CIFAR-10 test-set, with PNI technique on different network location. Baseline is the ResNet-20 with vanilla adversarial training, and all
the PNI combinations are optimized through adversarial training by default.

Test with PNI Test without PNI
Clean PGD FGSM Clean PGD FGSM
Vanilla adv. train [30] - 83.84 39.144+0.05 46.55
PNI-W 84.89+0.11 45.94+0.11 54.48+0.44 8548 31.454+0.07 42.55
PNI-I 85.10+0.08 43.25+0.16 50.78+0.16 84.82 34.87+0.05 44.07
PNI-A-a 85.22+0.18 43.83+0.10 51.41+0.08 85.20 33.93+0.05 44.32
PNI-A-b 84.66+0.16 43.63+0.20 51.26+0.09 83.97 33.534+0.05 43.37
PNI-W+A-a 85.12+0.10 43.574+0.12 51.15+0.21 84.88 33.234+0.05 43.59
PNI-W+A-b 84.33+0.11 43.804+0.19 51.14+0.07 84.42 33.304+0.05 43.43

Table 3. Effect of network depth and width: The clean- and perturbed-data (under PGD and FGSM attack) accuracy (mean=+std%)
on CIFAR-10 test-set, utilizing different robust optimization configurations. For network depth, the classical ResNet-20/32/44/56 with
increasing depth is reported. For network width, the ResNet-20 (1x) is adopted as the baseline, then we compare the wide ResNet-20 with

the input and output channel scaled by 1.5x/2x /4 x. Capacity denotes the number of trainable parameters in the model.

PNI-W+adv. train

PNI-W-+adv. train

No defense Vanilla adv. train (Test with PNI) (Test without PNI)

Model Capacity  Clean PGD FGSM Clean PGD FGSM Clean PGD FGSM  Clean PGD FGSM
Net20 269,722 92.1 0.0£0.0 14.1 83.8 39.1£0.1 46.6 84.9+0.1 45940.1 545+04 855 31.6+0.1 42.6
Net32 464,154 928 0.0£0.0 17.8 85.6 42.1£0.0 503  859+0.1 43.54+03 51.5£0.1 864 353+0.1 455
Net44 658,586 93.1 0.0£0.0 239 859 40.8+£0.1 482  84.7+£0.2 48.54+0.2 558+0.1 86.0 39.6+£0.1 49.9
Net56 853,018 933 0.0£0.0 242 86.5 40.1£0.1 48.8  86.8+0.2 46.34+0.3 539+0.1 873 41.6+£0.1 51.1
Net20(1.5x) 605,026 935 0.0+£00 159 858 42.0+0.0 49.6 86.0+0.1 46.740.2 54.5+02 87.0 384+0.1 49.1
Net20(2x) 1,073,962 940 0.0+0.0 13.0 86.3  43.1£0.1 52.6 86.2+0.1 46.1£0.2 54.6+0.2 86.8 39.1+0.0 50.3
Net20(4x) 4,286,026 940 0.0+£0.0 14.2 87.5 46.1+£0.1 54.1  87.7+0.1 49.1£03 57.0£0.2 88.1 43.8+0.1 542

Then, with the same trained model, we report the accuracy

Effect of network capacity.

In order to investigate the re-

with/without the trained noise term (left/right in Table 2)
during the test phase. As shown in Table 2, with the noise
term enabled during the test phase, PNI-W on ResNet-20
gives the best performance to defend PGD and FGSM at-
tack, in comparison to PNI on other locations. Although
it is elusive to fully understand the mechanism that PNI-W
outperforms other counterparts, the intuition is that PNI-W
is the generalization of PNI-A in each connection instead of
each output unit, similar as the relation between the regu-
larization technique DropConnect [41] and Dropout [38].

Furthermore, we also observe that disabling PNI dur-
ing test phase leads to significant accuracy drop for defend-
ing PGD and FGSM attack, while the clean-data accuracy
maintains the same level as PNI enabled. Such observation
raises two concerns about our PNI techniques: 1) Does the
improvement of clean-/perturbed-data accuracy with PNI
mainly comes from the attack strength reduction caused by
the randomness (potential gradient obfuscation [4])? 2) Is
PNI just a negligible trick or it performs the model regu-
larization to construct a more robust model? Our answers
to both questions are negative, where the explanations are
elaborated under Section 5.

lation between network capacity (i.e., number of trainable
parameters) and robustness improvement by PNI, we ex-
amine various network architectures in terms of both depth
and width. For different network depths, experiments on
ResNet 20/32/44/56 [16] are conducted under vanilla ad-
versarial training [30] and our proposed PNI robust opti-
mization method. For different network widths, we adopt
the original ResNet-20 as a baseline and expand its in-
put&output channel of each layer by 1.5x/2x/4x respec-
tively. Same as Table 2, we report clean- and perturbed-
data accuracy with/without PNI term during the test phase.
The results in Table 3 indicates that increasing the model’s
capacity indeed improves network robustness against white-
box adversarial attacks, and our proposed PNI outperforms
vanilla adversary training in terms of both clean-data ac-
curacy and perturbed data accuracy for PGD and FGSM
attack. Such observation demonstrates that the perturbed-
data accuracy improvement does not come from trading off
clean-data accuracy as reported in [ 19, 2]. Through increas-
ing the network capacity, the robustness improvement re-
sults from the proposed PNI becomes less significant. Al-
though both adversarial training and PNI techniques per-
form regularization, the network structure still needs careful
construction to prevent the over-fitting resulted from over-
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Table 4. C & W attack L2 norm comparison

CW L2-norm
Model capacity No defense  Vanilla adv. train PNI-W
ResNet-20 (4x) 4,286,026 0.12 1.97 1.95+0.02
ResNet-18 11,173,962 0.12 2.39 2.6240.04
parameterization.

Robustness evaluation with C&W attack. Improved ro-
bustness does not necessarily mean improving the test data
accuracy against any particular attack method. Typically
Lo norm based C & W attack [7] should reach 100 % suc-
cess rate against any defense. Thus average Lo norm re-
quired to fool the network gives more insight about a net-
work’s robustness in general [7]. The result presented in
Table 4 represents the overall performance of our model
against C & W attack. Our method of training the noise
parameter becomes more effective for a more redundant
network. We demonstrate this phenomenon by perform-
ing comparison study between ResNet-20 and ResNet-18
architecture. Clearly, ResNet-18 shows the improvement
in robustness from Vanilla adv. training much more than
ResNet-20 against C & W attack.

4.2.2 PNI against black-box attack

In this section, we test our proposed PNI technique against
transferable adversarial attack [29] and ZOO attack. Fol-
lowing the transferable adversarial attack [29], two trained
neural network is taken as the source model (5) and target
model (T'). The adversarial examples &, is generated from
the source model then attack the target model using &,
which is denoted as S = T'. We take ResNet-18 on CIFAR-
10 as an example. We train two ResNet-18 model (model-
A and B) on CIFAR-10 dataset to attack each other, where
model-A is optimized through vanilla adversarial training,
while model-B is trained using our proposed PNI variants
(i.e., PNI-W/A-a/W+A-a) robust optimization method. Ta-
ble 5 shows almost equal perturbed-data accuracy for A =
B and B = A under various PNI scenarios, which indicates
that the presence of PNI during the inference has negligible
effect on the attack strength of PGD.

For ZOO attack[11], we test our defense on 200 ran-
domly selected test samples for an untargeted attack. The
Attack success rate denotes the percentage of test sample
change their classification to a wrong class after the attack.
Z0O0 attack success rate for vanilla Resnet-18 with adver-
sarial training is close to 80 %. The robustness of PNI is
more evident from Table 5 as the attack success rate drops
significantly for PNI-W+A-a and PNI-W. However, PNI-A-
a fails to resist ZOO attack even though it still maintains a
lower success rate than the baseline. The failure of PNI-A-a
shows that just adding noise in-front of the activation does

Table 5. PNI against black-box attacks: On CIFAR-10 test-set,
(Left) perturbed-data accuracy under transferable PGD attack, and
(Right) the attack success rate for ZOO attack. Model-A is a
ResNet-18 trained by vanilla adversarial training, and Model-B is
a ResNet-18 trained by PNI-W/A-a/W+A-a with adversarial train-
ing.

Transferable attack 700 attack

A=B B=A

Train. scheme of B success rate

PNI-W 75.13+£0.17  75.23£0.18 57.72
PNI-A-a 74.67+0.11 75.86+£0.13 69.61
PNI-W+A-a 75.14+0.10 74.92+0.13 50.00

not necessarily achieves the desired robustness as claimed
by some of the previous defenses [26, 27].

4.2.3 Comparison to competing methods

As discussed in Section 2.2, a large number of adversarial
defense works have been proposed recently, however, most
of them are already broken by stronger attacks proposed
in [3, 4]. As a result, in this work we choose to compare
with the most effective one till date - PGD based adver-
sarial training [30]. Additionally, we compare with other
randomness-based works [27, 26, 28] in Table 6 for exam-
ining the effectiveness of PNI.

Table 6. Comparison of state-of-the-art adversarial defense meth-
ods with clean- and perturbed-data accuracy on CIFAR-10 under
PGD attack.

Defense method model Clean PGD
PGD adyv. train [30] ResNet-20 (4x) 87 46.1+0.1
28-10 Wide ResNet
DP [26] L=0.0) 87.0 25
RSE [27] ResNext 87.5 40
Adv-BNN [28] VGG-16 79.7 454

PNI-W (this work) ResNet-20 (4x) 87.7£0.1 49.1+0.3

Previous defense works [2, 19] have shown a trade-off
between clean-data accuracy and perturbed-data accuracy,
where the perturbed-data accuracy improvement achieved
at the cost of lowering the clean-data accuracy. It is worthy
to highlight that our proposed PNI improves both clean-
and perturbed data accuracy under white-box attack,
in comparison to PGD-based adversarial training [30].
Differential Privacy (DP) [26] is a similar method of utiliz-
ing noise injection at various locations in the network. Al-
though their defense guarantees a certified defense, it does
not perform well against L,-norm based attacks (e.g., PGD
and FGSM). Moreover, in order to achieve a higher level
of certified defense, DP significantly sacrifices the clean-
data accuracy as well. Another randomness-based approach
is Random Self-ensemble (RSE) [27], which inserts noise-
layer before all the convolution layer. Even though their
defense performs well against C&W attack but poor against
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strong PGD attack. Beyond that, both DP and RSE man-
ually configure the noise level which is extremely difficult
to find the optimal setup. Whereas, in our proposed PNI
method, the noise level is determined by a trainable layer-
wise noise scaling coefficient and distribution of weight at
noise injected location. For Adv-BNN [28], besides the
computational overhead and model size (> 20 times), our
PNI also outperforms it in terms of performance on both
clean- and perturbed-data.

5. Discussion

The defense performance improvement led by our pro-
posed PNI does not come from the stochastic gradients. The
stochastic gradient is considered to incorrectly approximate
the true gradient based on a single sample. We try to show
that PNI is not relying on the gradient obfuscation from two
perspectives: 1) Our proposed PNI method passes each in-
spection item proposed by [4] to identify gradient obfusca-
tion. 2) Under PGD attack, through increasing the attack
steps, our PNI robust optimization method still outperforms
vanilla adversarial training (certified as non-obfuscated gra-
dients in [4]).

Table 7. Checklist of examining the characteristic behaviors
caused by obfuscated and masked gradient [4] for PNI.

Characteristics to identify gradient obfuscation Pass  Fail

1. One-step attack performs better than iterative attacks v’
2. Black-box attacks are better than white-box attacks v
3. Unbounded attacks do not reach 100% success v
4. Random sampling finds adversarial examples v
5. Increasing distortion bound doesn’t increase success v

Inspections of gradient obfuscation. The famous gradi-
ent obfuscation work [4] enumerates several characteristic
behaviors as listed in Table 7 which can be observed when
the defense method owns gradient obfuscation. Our experi-
ments show that PNI passes each inspection item in Table 7.

For item.1, all the experiments in Table 2 and Table 3 re-
port that FGSM attack (one-step) performs worse than PGD
attack (iterative). For item.2, our black-box attack experi-
ment in Table 5 shows that the black-box attack strength
is worse than a white-box attack. For items.3, as plotted in
Fig. 3, we run experiments through increasing the distortion
bound-e. The result shows that the unbounded attacks do
lead to 0% accuracy under attack. For item.4, the prereq-
uisite is the gradient-based attack (e.g., PGD and FGSM)
cannot find the adversarial examples, however the experi-
ments in Fig. 3 reveals that our method still can be broken
when increasing the distortion bound. It just increases the
resistance against the adversarial attacks, in comparison to
the vanilla adversarial training. For item.5, again as shown

B —— Vanilla Adv. Training —— PNI'W

& 50 PNI W+A-a —— PNI A-a

S

(9]

(9]

< 01 . - - - -
0.0 0.2 0.4 0.6 0.8 1.0

€ for PGD attack, when Ngtep = 7

50 g
dof S

20 40 60 80 100
Number of Attack Step Nstep, when € =0.031
Figure 3. On CIFAR-10 test set, the perturbed-data accuracy of

ResNet-18 under PGD attack (Top) versus attack bound €, and
(Bottom) versus number of attack steps Nep

Accuracy (%)

in Fig. 3, increasing the distortion bound increase the attack
success rate.

PNI does not rely on stochastic gradients. As shown
in Fig. 3, gradually increasing the PGD attack steps Ngep
raises the attack strength [30], thus leading to perturbed-
data accuracy degradation for both vanilla adversary train-
ing and our PNI technique. However, for both cases, the
perturbed-data accuracy starts saturating and do not degrade
any further when Ny, = 40. If our PNI's success comes
from the stochastic gradient which gives incorrect gradient
owing to the single sample, increasing the attack steps sup-
pose to eventually break the PNI defense which is not ob-
served here. Our PNI method still outperforms vanilla ad-
versarial training even when N, is increased up to 100.
Therefore, we can draw the conclusion that, even if PNI
does include gradient obfuscation, the stochastic gradient is
not the dominant role in PNI for the robustness improve-
ment.

6. Conclusion

In this paper, we present a parametric noise injection
technique where the noise intensity can be trained through
solving the min-max optimization problem during adversar-
ial training. Through extensive experiments, the proposed
PNI method can outperform the state-of-the-art defense
method in terms of both clean-data accuracy and perturbed-
data accuracy.
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