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Abstract

Recent developments in the field of Deep Learning have

exposed the underlying vulnerability of Deep Neural Net-

work (DNN) against adversarial examples. In image clas-

sification, an adversarial example is a carefully modified

image that is visually imperceptible to the original image

but can cause DNN model to misclassify it. Training the

network with Gaussian noise is an effective technique to

perform model regularization, thus improving model ro-

bustness against input variation. Inspired by this classical

method, we explore to utilize the regularization character-

istic of noise injection to improve DNN’s robustness against

adversarial attack. In this work, we propose Parametric-

Noise-Injection (PNI) 1 which involves trainable Gaussian

noise injection at each layer on either activation or weights

through solving the Min-Max optimization problem, embed-

ded with adversarial training. These parameters are trained

explicitly to achieve improved robustness. The extensive re-

sults show that our proposed PNI technique effectively im-

proves the robustness against a variety of powerful white-

box and black-box attacks such as PGD, C & W, FGSM,

transferable attack, and ZOO attack. Last but not the least,

PNI method improves both clean- and perturbed-data ac-

curacy in comparison to the state-of-the-art defense meth-

ods, which outperforms current unbroken PGD defense by

1.1 % and 6.8 % on clean- and perturbed- test data respec-

tively, using ResNet-20 architecture.

1. Introduction

Deep Neural Networks (DNNs) have achieved great suc-

cess in a variety of applications, including but not limited

to image classification [23], speech recognition [17], ma-

chine translation [5], and autonomous driving [9]. Despite

the remarkable accuracy improvement [15], recent studies

1Our Pytorch implementation is publicly available at https://

github.com/elliothe/CVPR_2019_PNI

[40, 14, 7] have shown that DNNs are vulnerable to ad-

versarial examples. In the image classification task, an ad-

versarial example is a natural image which is intentionally

perturbed by visually imperceptible variation but can cause

drastic classification accuracy degradation. In addition to

image classification, attacks to other DNN-powered tasks

have also been actively investigated, such as visual question

answering [43, 1], image captioning [10], semantic segmen-

tation [31, 1] and etc [12, 8, 39].

There has been a cohort of works on adversarial example

generation (aka., adversarial attack) and developing corre-

sponding defense methods. In general, adversarial attacks

can be categorized as white-box attack and black-box at-

tack based on the information of target model exposed to

the attacker. For white-box attack [40, 7], the adversary

has full access to the network architecture and parame-

ters. Whereas, only external access to the network (e.g.,

input and output) are permitted for the black-box attacks

[29, 33, 11]. Owing to the richer information, white-box

attack can often achieve higher attacking success rates in

comparison to the black-box counterpart, for various appli-

cations [40, 24, 21, 35, 32, 4, 11, 7].

Recently, different works [6] have viewed the problem

of adversarial examples from a unified perspective of model

robustness and regularization. Conventional regularization

mainly serves the purpose of generalization, thus prevent-

ing the model from over-fitting to the training data. Tradi-

tional regularization methods, such as dropout [38], Batch

Normalization [18], have been demonstrated effective and

widely used in practice. Hinton also discusses that adding

Gaussian noise into the model (e.g., input, weight, and ac-

tivation) during training which performs as a regularizer in

his lecture note [13] and dropout work [38].

It is evident that a proper model regularization method,

which specifically designed for improving DNN robustness,

can serve the purpose of defending adversarial example

more effectively. Recently, different works [27, 26, 6] have

adopted the noise injection method for model regularization

but configures the injected noise manually. In contrast to
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that, we take advantage of regularization property of noise

injection while optimizing the magnitude of injected noise

through the end-to-end training.

Overview of our approach: In this work, we propose a

novel noise injection method called Parametric Noise Injec-

tion (PNI) to improve the neural network robustness against

adversarial attack. The proposed PNI technique is to ap-

ply to inject layer-wise trainable Gaussian noise on various

locations, including network input/activation/weights. For

each inference, the injected noise is independently sam-

pled from the corresponding Gaussian distribution, where

its mean and variance of this distribution is trained by gradi-

ent descent method as other parameters of DNN. To achieve

the proper objective of the training, PNI is embedded with

well-known adversarial training, where the injected noise

(i.e., its mean and variance) will be optimized through end-

to-end training instead of manual configuration. In general,

our proposed PNI technique shows tempting performance

improvement on both clean- and perturbed-data accuracy,

in comparison to the vanilla adversarial training. The neg-

ligible model capacity and computational overhead make

PNI a promising solution for practical applications.

2. Related works

2.1. Adversarial Attack

Recently, various powerful adversarial attack methods

have been proposed to totally fool a trained DNN through

introducing barely visible perturbation upon input data.

Several state-of-the-art white-box (i.e., PGD [30], FGSM

[14] and C&W [7]) and black-box (i.e., Substitute [34] and

ZOO [11]) adversarial attack methods, which will be inves-

tigated in this work, are briefly introduced as follows.

FGSM Attack: Fast Gradient Sign Method (FGSM) [40]

is an efficient single-step adversarial attack method. Given

vectorized input x and corresponding target label t, FGSM

alters each element x of x along the direction of its gradient

w.r.t the inference loss ∂L/∂x. The generation of adversar-

ial example x̂ (i.e., perturbed input) can be described as:

x̂ = x+ ǫ · sgn
(

∇xL(g(x;θ), t)
)

(1)

where ǫ is the perturbation constraint that determines the at-

tack strength. g(x;θ) computes the output of DNN param-

terized by θ. sgn(·) is the sign function. Note that, the

attack is followed by a clipping operation to ensure the

x̂ ∈ [0, 1].

PGD Attack: Projected Gradient Descent (PGD) [30]

is a multi-step variant of FGSM, which is one of the

strongest L∞ adversarial example generation algorithm.

With x̂k=1 = x as the initialization, the iterative update

of perturbed data x̂ in k-th step can be expressed as:

x̂
k = ΠPǫ(x)

(

x̂
k−1+a · sgn

(

∇xL(g(x̂
k−1;θ), t)

)

)

(2)

where Pǫ(x) is the projection space which is bounded by

x± ǫ, and a is the step size. Madry et al. [30] also propose

that PGD is a universal adversary among all the first-order

adversaries (i.e., attacks only rely on first-order informa-

tion).

C&W Attack: Recently, Carlini and Wagner propose an

attack method called C&W attack [7]. C&W attack consid-

ers the generation of adversarial example as a problem of

optimizing the Lp-norm of distance metric δ w.r.t the given

input data x, which can be described as:

||δ||p =
(

n
∑

i=1

|δi|
p
)1/p

; δi = x̂i − xi (3)

minimize ||δ||p + c · L(x+ δ) s.t. x+ δ ∈ [0, 1]n (4)

where δ is taken as the perturbation added upon the input x,

and a specific loss function L is chosen in [7] to solve the

optimization problem via gradient descent. c is a constant

set by the attacker. In this work, we use L2-norm based

C&W attack and take ||δ||p=2 as the evaluation metric to

measure the robustness of DNN, where a greater value of

||δ||p=2 normally indicates a DNN possesses higher robust-

ness against potential adversarial attacks.

Black-box Attacks: The most popular black-box attack

is conducted using a substitute model [34], which is trained

using the output of target model as the label, to mimic the

functionality of the target model. Then, the adversarial ex-

ample generated from the substitute model is used to per-

form the attack on the target model. In this work, we specif-

ically investigate the transferable adversarial attack [29],

which is a variant of substitute model attack [34]. In the

transferable adversarial attack, the adversarial example is

generated from one source model to attack another target

model. The source model and target can own a totally dif-

ferent structure but trained with the real training data. Be-

yond that, Zero-th Order Optimization (ZOO) attack [11]

is investigated in this work as well. Rather than using the

substitute model to approximate the gradients of the target

model to perform an attack, ZOO attack directly approxi-

mates the gradient based on the input data and output scores

using stochastic gradient coordinate.

2.2. Adversarial Defenses:

Improving network robustness via adversarial training

[40, 30] is by far the most popular and unbroken defense

approach. The key idea of adversarial training is to take
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the adversarial example as the training data, which trains

the DNN against the adversarial attack. Most of the later

works [19, 36] have followed this path to supplement their

defense with adversarial training. The initial and important

step in adversarial training is to choose an attack model for

adversarial example generation. Adopting Projected Gradi-

ent Descent (PGD) [30] as an attack model for adversarial

training is becoming popular, since it is considered to be ca-

pable of generating universal adversarial examples among

the first order approaches [30]. Additionally, among many

recent defense methods, only PGD based adversarial train-

ing can sustain the state-of-the-art accuracy under various

other attacks [7, 40, 4].

Recent work [6] has merged the concept of improving

model robustness through regularization to defend adver-

sarial examples. A well-known method for model regu-

larization is noise injection, which is a variant of dropout

on weights [41] or activations [38]. For further improving

the performance of DNN under attack, there are works at-

tempt to introducing randomness into DNN for adversar-

ial defense, such as randomly pruning some activation dur-

ing the inference [37], randomizing the input layer [42],

inserting a noise-layer right before the convolution layers

[27, 26]. However, the performance improvement (i.e.,

perturbed-data accuracy) mainly comes from the stochas-

tic gradient instead of regularizing the DNN for better ro-

bustness, which is considered as the broken defense method

according to the criterion of gradient obfuscations [4]. An

alternative and straight-forward approach to evaluating ad-

versarial defense about the gradient obfuscation is to exam-

ine the clean- (attack free) and perturbed-data (under attack)

accuracy. If the adopted method mainly performs the model

regularization, it is expected to improve the perturbed-data

accuracy without sacrificing the clean-data accuracy.

Last but not least, we also notice that recent work Adv-

BNN [28] also combines the adversarial training and noise

injection on weight (i.e., Bayesian neural network equiva-

lently). In comparison to our proposed PNI, Adv-BNN [28]

mainly has the following drawbacks: 1) Significant com-

putational and storage overhead owing to the used weight

posterior (double model size) and output ensemble (>10

times), and 2) potential gradient obfuscation (trade the

clean-data accuracy with perturbed-data accuracy). The

key factor that our PNI outperforms Adv-BNN is the layer-

wise noise injection (Eq. (5)) and ensemble loss function

(Eq. (10)), which will be explicitly introduced in the fol-

lowing sections.

3. Parametric Noise Injection

In this section, we first introduce the proposed Paramet-

ric Noise Injection (PNI) function and will investigate the

impact of noise injection on input/weight/activation.

Figure 1. The flowchart of PNI on the weights wl of a 5× 5 fully-

connected layer (i.e., PNI-W). For each inference, the process of

PNI on wl can be generally divided into three steps: 1) statis-

tically calculate the standard deviation σl of wl; 2) sample the

additive weight noise (i.i.d) from N (0, σ2

l ); 3) added the scaled

weight noise with clean weight, then use the noisy weight ŵl in

the forward path.

Definition. The method that we propose to inject Gaus-

sian noise to different components or locations within DNN

can be mathematically described as:

ṽl,i = fPNI(vl,i) = vl,i + αl · ηl,i; ηl,i ∼ N (0, σ2
l ) (5)

where vl,i is the element of noise-free tensor vl in l-th layer

of DNN, and such vl can be input/weight/inter-layer (i.e.,

activation) tensor in this work. ηl,i is the noise term which

samples from Gaussian distribution with zero mean and

variance σ2
l , for each inference. αi is the coefficient that

scales the magnitude of injected noise ηl. Note that, we

adopt the scheme that ηl shares the identical variance with

v as in Eq. (5), thus the injected additive noise relies on αl

and the distribution of vl simultaneously.

In this work, rather than manually configuring αl to

restrict the noise level, we set αl as a learnable param-

eter which can be optimized for network robustness im-

provement. We name such method as Parametric Noise

Injection (PNI). Assuming we perform the proposed PNI

on the weight tensors of convolution/fully-connected lay-

ers throughout entire DNN, for each parametric layer there

is only one layer-wise noise scaling coefficient (αl) to be

optimized. We take such layer-wise PNI configuration as

default in this work. A example of PNI on weight (i.e., PNI-

W) is depicted in Fig. 1.

Optimization In this work, we treat the noise scaling

coefficient as a model parameter which can be optimized

through the back-propagation. For fPNI(·) that shares the

noise scaling coefficient layer-wise, the gradient computa-

tion can be described as:

∂L

∂αl
=

∑

i

∂L

∂fPNI(vl,i)

∂fPNI(vl,i)

∂αl
(6)

where the
∑

i takes the summation over the entire tensor

vl,i, and ∂L/∂fPNI(vl,i) is the gradient back-propagated
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from the followed layers. The gradient calculation of the

PNI function is:

∂fPNI(vl,i)

∂αl
= ηl,i (7)

It is noteworthy that the random sampled ηl,i will be taken

as a constant during the back-propagation. Using the gradi-

ent descent optimizer with momentum, the optimization of

α at step j can be written as:

V j
l = m · V j−1

l +
∂Lj−1

∂αl
; αj

l = αj−1
l − ǫ · V j

l (8)

where m is the momentum, ǫ is the learning rate, and Vl is

the updating velocity. Moreover, since weight decay tends

to make the learned noise scaling coefficient converge to

zero, there is no weight decay term on the α during the pa-

rameter updating in this work. We set αl = 0.25 as default

initialization.

Robust Optimization. We expect to utilize the aforemen-

tioned PNI technique to improve the network robustness.

However, directly optimizing the noise scaling coefficient

normally leads αl to converge at a small close-to-zero value

(vanilla training in Table 1), owing to the gradient-descent

optimizer tends to make the weights to be noise-free thus to

over-fit the training data.

In order to succeed in adversarial defense, we jointly use

the PNI method with robust optimization (a.k.a. Adversar-

ial Training) which can boost the inference accuracy for

the perturbed data under attack. Given inputs- x and tar-

get labels- t, the adversarial training is to obtain the optimal

solution of network parameter θ for the following min-max

problem:

argmin
θ

{

argmax
x′∈Pǫ(x)

L
(

g(x̂; fPNI(θ)), t
)}

(9)

where the inner maximization tends to acquire the perturbed

data x̂, and Pǫ(x) is the input data perturb set constrained

by ǫ. While the outer minimization is optimized through

gradient descent method as regular network training. L∞

PGD attack [30] is adopted as the default inner maximiza-

tion solver (i.e., generating x̂).

Moreover, in order to balance the clean data accuracy

and perturbed data accuracy for practical application, rather

than performing the outer minimization solely on the loss

of perturbed data as in Eq. (9), we minimize the ensemble

loss L′ which is the weighted sum of losses for clean- and

perturbed-data. The ensemble loss Lens is described as:

Lens = wc · L(g(x; fPNI(θ)), t) + wa · L(g(x̂; fPNI(θ)), t) (10)

where wc and wa are the weights for clean data loss term

and adversarial data loss term, respectively. wc = wa = 0.5
is the default configuration in this work.

Optimizing the ensemble loss Lens is the key to success-

ful training of both the model’s inherent parameter (e.g.

weight, bias) and the add-on noise scaling coefficient αl

from PNI. The intuition behind is that, the gradient-descent

optimizer attempt find a equilibrium point of αl when mini-

mizing Lens. If αl is too large, PNI will introduce significant

noise into the inference path which will definitely hamper

the accuracy for both clean- and perturbed-data. If αl is too

small, PNI will not perform any regularization.

4. Experiments

4.1. Experiment setup

Datasets and network architectures. Two visual

datasets for object recognition task is considered in this

work, which is MNIST and CIFAR-10. The MNIST [25]

dataset is a set of handwritten digit 28×28 gray-scale

images with 60K training examples and 10K test examples.

The CIFAR-10 [22] dataset is composed of 50K training

samples and 10K test samples of 32×32 color image. There

is no data augmentation used for MNIST, while CIFAR-10

use the same augmentation method as in [16]. Although we

test our method on both CIFAR-10 and MNIST, we mainly

present results on CIFAR-10 to validate our method. Since

the results on MNIST cannot provide much insight, we put

the MNIST results in the appendix.

For MNIST, we test the performance using the vari-

ant LetNet5. For CIFAR-10, the classical Residual Net-

works [16] (ResNet-20/32/44/56) architecture are used, and

ResNet-20 is taken as the baseline for most of the compar-

ative experiments and ablation studies. A redundant net-

work ResNet-18 is also used to report the performance for

CIFAR-10, since large network capacity is helpful for ad-

versarial defense. Moreover, rather than including the in-

put normalization within the data augmentation, we place a

non-trainable data normalization layer in front of the DNN

to perform the identical function, thus an attacker can di-

rectly add the perturbation on the natural image. Note that,

since both PNI and PGD attack [30] include randomness,

we report the accuracy in the format of mean±std% with 5

trials to alleviate error.

Adversarial attacks. To evaluate the performance of our

proposed PNI technique, we employ multiple powerful

white-box and black-box attacks as introduced in Sec-

tion 2.1. For PGD attack on MNIST and CIFAR-10, ǫ is

set to 0.3/1 and 8/255, and Nstep is set to 40 and 7 respec-

tively. FGSM attack adopts the same ǫ setup as PGD. The

attack configurations of PGD and FGSM are identical as the

setup in [19, 30]. For C&W attack, we set the constant c as

0.01. ADAM [20] is used to optimize the Eq. (4) with learn-

ing rate as 5e−4. We choose 0 for the confidence coefficient

k, which is defined in the loss function used by C&W L2 at-
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Table 1. Convergence of PNI: ResNet-20 with Layerwise weight

PNI on CIFAR-10 dataset. (Top) The converged layer-wise noise

scaling coefficient α under various training scheme. (Bottom) Test

accuracy for clean- and perturbed-data under PGD and FGSM at-

tack.

Layer

Index

Vanilla

Traning

PNI-W+Adv. Train.

(without PNI in

x̂ generation)

PNI-W+Adv. Train.

(with PNI in

x̂ generation)

Conv0 0.003 0.004 0.146

Conv1.0 0.002 0.005 0.081

Conv1.1 0.004 0.004 0.049

Conv1.2 0.002 0.001 0.097

Conv1.3 0.004 5.856 0.771

Conv1.4 0.005 0.005 0.004

Conv1.5 0.002 0.001 0.006

Conv2.0 0.004 0.000 0.006

Conv2.1 0.006 0.003 0.004

Conv2.2 0.004 0.003 0.030

Conv2.3 0.001 0.006 0.003

Conv2.4 0.003 0.001 0.033

Conv2.5 0.002 0.001 0.023

Conv3.0 0.007 0.001 0.008

Conv3.1 0.003 0.001 0.006

Conv3.2 0.007 0.002 0.001

Conv3.3 0.006 0.001 0.002

Conv3.4 0.009 0.002 0.001

Conv3.5 0.005 0.000 0.001

FC 0.002 0.002 0.001

Clean 92.11% 71.00% 84.89±0.11%

PGD 0.00±0.00% 18.11% 45.94±0.11%

FGSM 14.08% 26.34% 54.48±0.44%

tack in [7]. The binary search steps for the attack is 9, while

number of iteration to perform the gradient descent is 10.

Moreover, we also conduct the PNI defense against several

state-of-the-art black-box attacks (i.e. substitute [34], ZOO

[11] and transferable [29] attack) in a Section 4.2.2 to exam-

ine the robustness improvement resulted from the proposed

PNI technique.

Competing methods for adversarial defense. As far as

we know, the adversarial training with PGD [30] is the only

unbroken defense method [4], which is labeled as vanilla

adversarial training and taken as the baseline in this work.

Beyond that, several recent works utilizing similar con-

cept as ours in their defense method are discussed as well,

including certified robustness [26], random self-ensemble

[27], and Adv-BNN [28].

4.2. PNI for adversarial attacks

4.2.1 PNI against white-box attacks

Optimization method of PNI As the discussion at the

end of Section 3, the noise scaling coefficient will not be

properly trained without utilizing the adversarial training

and ensemble loss. We conduct the experiments for train-
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Figure 2. The evolution curve of trainable noise scaling coefficient

α for layerwise PNI on weight (PNI-W). Only front 5 layers (bold

in Table 1) of ResNet-20 [16] are shown. The learning rate of SGD

optimizer is reduced at 80 and 120 epoch.

ing the layer-wise PNI on weight (PNI-W) of ResNet-20,

to compare the convergence of trained noise. As tabulated

in Table 1, simply performing the vanilla training using mo-

mentum SGD optimizer totally fails the adversarial defense,

where the noise scaling coefficients α are converged to the

negligible values. On the contrary, with the aid of adver-

sarial training (i.e., optimization of Eq. (10)), convolution

layers in the network’s front-end have obtained relatively

large α which are the bold values in Table 1, and the corre-

sponding evolution curve are shown in Fig. 2.

Since the PGD attack [30] is taken as the inner maxi-

mization solver, the generation of adversarial example x̂ in

Eq. (2) is reformatted as:

x̂t+1 = ΠPǫ(x)

(

x̂t + a · sgn
(

∇xL(g(x̂
t; fPNI(θ)), t)

)

)

(11)

where the difference between Eq. (2) and Eq. (11) is

with/without PNI in x̂ generation. It is noteworthy that,

keeping the noise term in the model for both adversarial ex-

ample generation (Eq. (11)) and model parameter update is

also the critical factor for the PNI optimization with adver-

sarial training. As listed in Table 1, not incorporating the

PNI-W in x̂ generation indeed leads to the failure of PNI

optimization, and the large value (α = 5.856 in Table 1) is

not converged due to the probable gradient explosion.

Effect of PNI on weight, activation and input. In this

work, even though the scheme of injecting noise on the

weight (PNI-W) is taken as the default PNI setup, more re-

sults about PNI on activation (PNI-A-a/b), input (PNI-I) and

hybrid-mode (e.g. PNI-W+A) are provided in Table 2 for a

comprehensive study. PNI-A-a/PNI-A-b denotes injecting

noise on the output/input tensor of the convolution/fully-

connected layer respectively. Moreover, PNI-A-b scheme

intrinsically includes the PNI-I, since PNI-I is applying

the noise on the input tensor of the first layer. Note

that, all models with PNI variants are jointly trained with

PGD-based adversarial training [30] as discussed above.
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Table 2. Effect of PNI location: The ResNet-20 [16] clean- and perturbed-data (under PGD and FGSM attack) accuracy (mean±std%) on

CIFAR-10 test-set, with PNI technique on different network location. Baseline is the ResNet-20 with vanilla adversarial training, and all

the PNI combinations are optimized through adversarial training by default.

Test with PNI Test without PNI

Clean PGD FGSM Clean PGD FGSM

Vanilla adv. train [30] - - - 83.84 39.14±0.05 46.55

PNI-W 84.89±0.11 45.94±0.11 54.48±0.44 85.48 31.45±0.07 42.55

PNI-I 85.10±0.08 43.25±0.16 50.78±0.16 84.82 34.87±0.05 44.07

PNI-A-a 85.22±0.18 43.83±0.10 51.41±0.08 85.20 33.93±0.05 44.32

PNI-A-b 84.66±0.16 43.63±0.20 51.26±0.09 83.97 33.53±0.05 43.37

PNI-W+A-a 85.12±0.10 43.57±0.12 51.15±0.21 84.88 33.23±0.05 43.59

PNI-W+A-b 84.33±0.11 43.80±0.19 51.14±0.07 84.42 33.30±0.05 43.43

Table 3. Effect of network depth and width: The clean- and perturbed-data (under PGD and FGSM attack) accuracy (mean±std%)

on CIFAR-10 test-set, utilizing different robust optimization configurations. For network depth, the classical ResNet-20/32/44/56 with

increasing depth is reported. For network width, the ResNet-20 (1×) is adopted as the baseline, then we compare the wide ResNet-20 with

the input and output channel scaled by 1.5×/2×/4×. Capacity denotes the number of trainable parameters in the model.

No defense Vanilla adv. train
PNI-W+adv. train

(Test with PNI)

PNI-W+adv. train

(Test without PNI)

Model Capacity Clean PGD FGSM Clean PGD FGSM Clean PGD FGSM Clean PGD FGSM

Net20 269,722 92.1 0.0±0.0 14.1 83.8 39.1±0.1 46.6 84.9±0.1 45.9±0.1 54.5±0.4 85.5 31.6±0.1 42.6

Net32 464,154 92.8 0.0±0.0 17.8 85.6 42.1±0.0 50.3 85.9±0.1 43.5±0.3 51.5±0.1 86.4 35.3±0.1 45.5

Net44 658,586 93.1 0.0±0.0 23.9 85.9 40.8±0.1 48.2 84.7±0.2 48.5±0.2 55.8±0.1 86.0 39.6±0.1 49.9

Net56 853,018 93.3 0.0±0.0 24.2 86.5 40.1±0.1 48.8 86.8±0.2 46.3±0.3 53.9±0.1 87.3 41.6±0.1 51.1

Net20(1.5×) 605,026 93.5 0.0±0.0 15.9 85.8 42.0±0.0 49.6 86.0±0.1 46.7±0.2 54.5±0.2 87.0 38.4±0.1 49.1

Net20(2×) 1,073,962 94.0 0.0±0.0 13.0 86.3 43.1±0.1 52.6 86.2±0.1 46.1±0.2 54.6±0.2 86.8 39.1±0.0 50.3

Net20(4×) 4,286,026 94.0 0.0±0.0 14.2 87.5 46.1±0.1 54.1 87.7±0.1 49.1±0.3 57.0±0.2 88.1 43.8±0.1 54.2

Then, with the same trained model, we report the accuracy

with/without the trained noise term (left/right in Table 2)

during the test phase. As shown in Table 2, with the noise

term enabled during the test phase, PNI-W on ResNet-20

gives the best performance to defend PGD and FGSM at-

tack, in comparison to PNI on other locations. Although

it is elusive to fully understand the mechanism that PNI-W

outperforms other counterparts, the intuition is that PNI-W

is the generalization of PNI-A in each connection instead of

each output unit, similar as the relation between the regu-

larization technique DropConnect [41] and Dropout [38].

Furthermore, we also observe that disabling PNI dur-

ing test phase leads to significant accuracy drop for defend-

ing PGD and FGSM attack, while the clean-data accuracy

maintains the same level as PNI enabled. Such observation

raises two concerns about our PNI techniques: 1) Does the

improvement of clean-/perturbed-data accuracy with PNI

mainly comes from the attack strength reduction caused by

the randomness (potential gradient obfuscation [4])? 2) Is

PNI just a negligible trick or it performs the model regu-

larization to construct a more robust model? Our answers

to both questions are negative, where the explanations are

elaborated under Section 5.

Effect of network capacity. In order to investigate the re-

lation between network capacity (i.e., number of trainable

parameters) and robustness improvement by PNI, we ex-

amine various network architectures in terms of both depth

and width. For different network depths, experiments on

ResNet 20/32/44/56 [16] are conducted under vanilla ad-

versarial training [30] and our proposed PNI robust opti-

mization method. For different network widths, we adopt

the original ResNet-20 as a baseline and expand its in-

put&output channel of each layer by 1.5×/2×/4× respec-

tively. Same as Table 2, we report clean- and perturbed-

data accuracy with/without PNI term during the test phase.

The results in Table 3 indicates that increasing the model’s

capacity indeed improves network robustness against white-

box adversarial attacks, and our proposed PNI outperforms

vanilla adversary training in terms of both clean-data ac-

curacy and perturbed data accuracy for PGD and FGSM

attack. Such observation demonstrates that the perturbed-

data accuracy improvement does not come from trading off

clean-data accuracy as reported in [19, 2]. Through increas-

ing the network capacity, the robustness improvement re-

sults from the proposed PNI becomes less significant. Al-

though both adversarial training and PNI techniques per-

form regularization, the network structure still needs careful

construction to prevent the over-fitting resulted from over-
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Table 4. C & W attack L2 norm comparison

CW L2-norm

Model capacity No defense Vanilla adv. train PNI-W

ResNet-20 (4x) 4,286,026 0.12 1.97 1.95±0.02

ResNet-18 11,173,962 0.12 2.39 2.62±0.04

parameterization.

Robustness evaluation with C&W attack. Improved ro-

bustness does not necessarily mean improving the test data

accuracy against any particular attack method. Typically

L2 norm based C & W attack [7] should reach 100 % suc-

cess rate against any defense. Thus average L2 norm re-

quired to fool the network gives more insight about a net-

work’s robustness in general [7]. The result presented in

Table 4 represents the overall performance of our model

against C & W attack. Our method of training the noise

parameter becomes more effective for a more redundant

network. We demonstrate this phenomenon by perform-

ing comparison study between ResNet-20 and ResNet-18

architecture. Clearly, ResNet-18 shows the improvement

in robustness from Vanilla adv. training much more than

ResNet-20 against C & W attack.

4.2.2 PNI against black-box attack

In this section, we test our proposed PNI technique against

transferable adversarial attack [29] and ZOO attack. Fol-

lowing the transferable adversarial attack [29], two trained

neural network is taken as the source model (S) and target

model (T ). The adversarial examples x̂s is generated from

the source model then attack the target model using x̂s,

which is denoted as S ⇒ T . We take ResNet-18 on CIFAR-

10 as an example. We train two ResNet-18 model (model-

A and B) on CIFAR-10 dataset to attack each other, where

model-A is optimized through vanilla adversarial training,

while model-B is trained using our proposed PNI variants

(i.e., PNI-W/A-a/W+A-a) robust optimization method. Ta-

ble 5 shows almost equal perturbed-data accuracy for A ⇒
B and B ⇒ A under various PNI scenarios, which indicates

that the presence of PNI during the inference has negligible

effect on the attack strength of PGD.

For ZOO attack[11], we test our defense on 200 ran-

domly selected test samples for an untargeted attack. The

Attack success rate denotes the percentage of test sample

change their classification to a wrong class after the attack.

ZOO attack success rate for vanilla Resnet-18 with adver-

sarial training is close to 80 %. The robustness of PNI is

more evident from Table 5 as the attack success rate drops

significantly for PNI-W+A-a and PNI-W. However, PNI-A-

a fails to resist ZOO attack even though it still maintains a

lower success rate than the baseline. The failure of PNI-A-a

shows that just adding noise in-front of the activation does

Table 5. PNI against black-box attacks: On CIFAR-10 test-set,

(Left) perturbed-data accuracy under transferable PGD attack, and

(Right) the attack success rate for ZOO attack. Model-A is a

ResNet-18 trained by vanilla adversarial training, and Model-B is

a ResNet-18 trained by PNI-W/A-a/W+A-a with adversarial train-

ing.

Transferable attack ZOO attack

Train. scheme of B A ⇒ B B ⇒ A success rate

PNI-W 75.13±0.17 75.23±0.18 57.72

PNI-A-a 74.67±0.11 75.86±0.13 69.61

PNI-W+A-a 75.14±0.10 74.92±0.13 50.00

not necessarily achieves the desired robustness as claimed

by some of the previous defenses [26, 27].

4.2.3 Comparison to competing methods

As discussed in Section 2.2, a large number of adversarial

defense works have been proposed recently, however, most

of them are already broken by stronger attacks proposed

in [3, 4]. As a result, in this work we choose to compare

with the most effective one till date - PGD based adver-

sarial training [30]. Additionally, we compare with other

randomness-based works [27, 26, 28] in Table 6 for exam-

ining the effectiveness of PNI.

Table 6. Comparison of state-of-the-art adversarial defense meth-

ods with clean- and perturbed-data accuracy on CIFAR-10 under

PGD attack.

Defense method model Clean PGD

PGD adv. train [30] ResNet-20 (4×) 87 46.1±0.1

DP [26]
28-10 Wide ResNet

(L=0.1)
87.0 25

RSE [27] ResNext 87.5 40

Adv-BNN [28] VGG-16 79.7 45.4

PNI-W (this work) ResNet-20 (4×) 87.7±0.1 49.1±0.3

Previous defense works [2, 19] have shown a trade-off

between clean-data accuracy and perturbed-data accuracy,

where the perturbed-data accuracy improvement achieved

at the cost of lowering the clean-data accuracy. It is worthy

to highlight that our proposed PNI improves both clean-

and perturbed data accuracy under white-box attack,

in comparison to PGD-based adversarial training [30].

Differential Privacy (DP) [26] is a similar method of utiliz-

ing noise injection at various locations in the network. Al-

though their defense guarantees a certified defense, it does

not perform well against L∞-norm based attacks (e.g., PGD

and FGSM). Moreover, in order to achieve a higher level

of certified defense, DP significantly sacrifices the clean-

data accuracy as well. Another randomness-based approach

is Random Self-ensemble (RSE) [27], which inserts noise-

layer before all the convolution layer. Even though their

defense performs well against C&W attack but poor against
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strong PGD attack. Beyond that, both DP and RSE man-

ually configure the noise level which is extremely difficult

to find the optimal setup. Whereas, in our proposed PNI

method, the noise level is determined by a trainable layer-

wise noise scaling coefficient and distribution of weight at

noise injected location. For Adv-BNN [28], besides the

computational overhead and model size (> 20 times), our

PNI also outperforms it in terms of performance on both

clean- and perturbed-data.

5. Discussion

The defense performance improvement led by our pro-

posed PNI does not come from the stochastic gradients. The

stochastic gradient is considered to incorrectly approximate

the true gradient based on a single sample. We try to show

that PNI is not relying on the gradient obfuscation from two

perspectives: 1) Our proposed PNI method passes each in-

spection item proposed by [4] to identify gradient obfusca-

tion. 2) Under PGD attack, through increasing the attack

steps, our PNI robust optimization method still outperforms

vanilla adversarial training (certified as non-obfuscated gra-

dients in [4]).

Table 7. Checklist of examining the characteristic behaviors

caused by obfuscated and masked gradient [4] for PNI.

Characteristics to identify gradient obfuscation Pass Fail

1. One-step attack performs better than iterative attacks X

2. Black-box attacks are better than white-box attacks X

3. Unbounded attacks do not reach 100% success X

4. Random sampling finds adversarial examples X

5. Increasing distortion bound doesn’t increase success X

Inspections of gradient obfuscation. The famous gradi-

ent obfuscation work [4] enumerates several characteristic

behaviors as listed in Table 7 which can be observed when

the defense method owns gradient obfuscation. Our experi-

ments show that PNI passes each inspection item in Table 7.

For item.1, all the experiments in Table 2 and Table 3 re-

port that FGSM attack (one-step) performs worse than PGD

attack (iterative). For item.2, our black-box attack experi-

ment in Table 5 shows that the black-box attack strength

is worse than a white-box attack. For items.3, as plotted in

Fig. 3, we run experiments through increasing the distortion

bound-ǫ. The result shows that the unbounded attacks do

lead to 0% accuracy under attack. For item.4, the prereq-

uisite is the gradient-based attack (e.g., PGD and FGSM)

cannot find the adversarial examples, however the experi-

ments in Fig. 3 reveals that our method still can be broken

when increasing the distortion bound. It just increases the

resistance against the adversarial attacks, in comparison to

the vanilla adversarial training. For item.5, again as shown
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Figure 3. On CIFAR-10 test set, the perturbed-data accuracy of

ResNet-18 under PGD attack (Top) versus attack bound ǫ, and

(Bottom) versus number of attack steps Nstep

in Fig. 3, increasing the distortion bound increase the attack

success rate.

PNI does not rely on stochastic gradients. As shown

in Fig. 3, gradually increasing the PGD attack steps Nstep

raises the attack strength [30], thus leading to perturbed-

data accuracy degradation for both vanilla adversary train-

ing and our PNI technique. However, for both cases, the

perturbed-data accuracy starts saturating and do not degrade

any further when Nstep = 40. If our PNI’s success comes

from the stochastic gradient which gives incorrect gradient

owing to the single sample, increasing the attack steps sup-

pose to eventually break the PNI defense which is not ob-

served here. Our PNI method still outperforms vanilla ad-

versarial training even when Nstep is increased up to 100.

Therefore, we can draw the conclusion that, even if PNI

does include gradient obfuscation, the stochastic gradient is

not the dominant role in PNI for the robustness improve-

ment.

6. Conclusion

In this paper, we present a parametric noise injection

technique where the noise intensity can be trained through

solving the min-max optimization problem during adversar-

ial training. Through extensive experiments, the proposed

PNI method can outperform the state-of-the-art defense

method in terms of both clean-data accuracy and perturbed-

data accuracy.
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