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Abstract

Vehicle re-identification (Re-ID) has been attracting

more interests in computer vision owing to its great con-

tributions in urban surveillance and intelligent transporta-

tion. With the development of deep learning approaches,

vehicle Re-ID still faces a near-duplicate challenge, which

is to distinguish different instances with nearly identical ap-

pearances. Previous methods simply rely on the global vi-

sual features to handle this problem. In this paper, we pro-

posed a simple but efficient part-regularized discriminative

feature preserving method which enhances the perceptive

ability of subtle discrepancies. We further develop a nov-

el framework to integrate part constrains with the global

Re-ID modules by introducing an detection branch. Our

framework is trained end-to-end with combined local and

global constrains. Specially, without the part-regularized

local constrains in inference step, our Re-ID network out-

performs the state-of-the-art method by a large margin on

large benchmark datasets VehicleID and VeRi-776.

1. Introduction

Given a query image of a vehicle identity, vehicle re-

identification task aims to retrieve all the images of this i-

dentity from a large image database which typically cap-

tured from a large camera network. With the proposals of

large dataset [14, 12, 27]and the development of deep learn-

ing algorithms [24, 36], recent models have gain remarkable

success in the past decade. The re-identification of vehi-

cles has a great potential to contribute to the urban security

surveillance and intelligent transportation.

Considering the inconspicuous divergences among dif-

ferent instances, vehicle re-identification is still a very chal-

lenging task, especially with the large amount of dataset. To

address this Re-ID task, many deep learning models [27, 1]
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Figure 1. Near-duplicate problem. (a) Images in each row all come

from different vehicle identities with similar appearance. Appar-

ently it is difficult to distinguish them especially the first row since

all three vehicle identities come from a same vehicle model. Sub-

tle discriminative vehicle parts are crucial for the near-duplicate

vehicle re-identification. (b) As shown in the right side of the im-

age those similar vehicles are easy to distinguish using the local

part feature.

relied on global information have been proposed in the past

decades. One intuitive solution is to reduce the distances

of identical vehicle images and enlarge the distance of d-

ifferent ones with learning approaches. To better measure

the distance, previous works [12] mainly use deep metric

learning to directly embed the raw image into an Euclidean

space where the distance can be directly used as similarity

scores between two vehicles. Weinberger et al. [25] explore

the topic of metric learning to perform k-nearest neighbor

classification and propose the Large Margin Nearest Neigh-

bor loss (LMNN). FaceNet [20] improved the LMNN loss

into a modified triplet loss which directly optimize the final

distance metric and can be applied in re-identification and

face recognition tasks. Although these works reach remark-

able success in vehicle re-identification tasks, they usually

get confused when these vehicle have inconspicuous differ-

ences. e.g., see Fig. 1 (a).
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To handle this problem, recent works resort to addition-

al license plate and spatial-temporal information. Liu et

al. [14] introduce license plate recognition into Re-ID task.

The license plate recognition usually fails in unconstrained

environment due to the various viewpoints and changeable

illuminations. However, owing to the privacy and securi-

ty considerations in vehicle re-identification task, the plate

information is inaccessible in the public benchmarks. Be-

sides, Some other methods [21, 24] rely on extra spatial-

temporal information to explore the final retrieval results.

In this paper, we explore the near-duplicate phenomenon

in vehicle re-identification. As illustrated in Fig. 1 a), dif-

ferent vehicles usually share similar geometric shapes and

appearances which can be hard to distinguish by deep mod-

els. While the details from these near-duplicate vehicles

have arresting variances in local features such as brands

and tags in windows which are easily recognized by hu-

man beings, see Fig. 1 b). To handle the near duplicated

phenomenon in vehicle re-identification task, we propose

a part-regularized approach which integrates the local and

no-local features into a unified architecture. To avoid the

vanish of local features, we enhance the perception of local

information of regularized parts in deep learning network-

s. Inspired by ROI (region of interest) in object detection,

we adopt ROI receptive module to capture the local infor-

mation. We develop a simple but effective ROI projection

approach to combine detection branch with our Re-ID task.

After combining these features, we further developed a lo-

cal and no-local classification loss. To summarize, the con-

tribution of our work is three-fold:

• We design an effective representation learning frame-

work by jointly considering local and global represen-

tations.

• We propose a part-regularized approach to enhance the

discriminative capability of global features for vehicle

re-identification.

• We conduct extensive experiments to show that the

proposed approach outperforms state-of-the-art: Vehi-

cleID [12] by 57% in rank-1, 23% in rank-5, VeRi-

776 [14] by 48% in mAP, 2.1% in HIT@1 and 9.6%

in HIT@5.

The rest of this paper is organized as follows: Sec. 2 re-

views the related works, Sec. 3 gives the problem statement

of vehicle re-identification and explains the details of our

part-regularized model. Qualitative and quantitative exper-

iments are presented in Sec. 4 and we finally conclude our

paper in Sec. 5.

2. Related Work

Vehicle Re-ID. The vehicle re-identification task has

gained more and more attention in recent years. Li-

u et al. [12] proposed a benchmark dataset VehicleID and

a pipeline which use Deep Relative Distance Learning

(DRDL) to project vehicle images into an Euclidean space,

where the distance can directly measure the similarity of t-

wo vehicle images. Liu et al. [14]proposed another dataset,

which called VeRi-776, and build a coarse-to-fine progres-

sive search framework through utilizing the visual appear-

ance, license plate and spatial-temporal information. VeRi-

776 contains rich annotations including vehicle types, col-

ors, brands, license plate and spatio-temporal information.

Wang et al. [24] explored vehicle viewpoint attribute and

proposed orientation invariant feature embedding module.

The orientations information are extracted by 20 vehicle key

points locations. Shen et al. [21] pushed spatial-temporal

idea further and proposed Visual-spatial-temporal Path Pro-

posals method. Yan et al. [27] model the relationships of

vehicle images as multi-grain list and proposes two rank-

ing methods, generalized pairwise ranking and multi-grain

based list ranking to address this problem, and contributed

two high-quality and well-annotated vehicle datasets VD1

and VD2, which are collected from two different cities with

diverse annotated attributes. While Lou et al. [15] resort to

adversarial learning to generate cross views of new exam-

ples.

Person Re-ID. Person re-identification aims to retrieve

all the images of the query individual from a large scale

image database. The person re-id methods can be rough-

ly categorized into two groups, classification methods and

Siamese methods based on triplet comparisons. Li et al. [7]

proposed a multi-scale context aware network that can cap-

ture knowledge of the local context. Xiao et al. [26] pro-

posed a model to learn deep feature representations from

multiple dataset with Convolutional Neural Networks.Their

experiment shows that some neurons learn representations

shared across all datasets, while some others are effective

only for a specific domain. Su et al. [22] proposed a pose-

driven convolutional neural network to address the large

pose deformations and the complex view variations prob-

lem. AlignedReID [31] learns a global feature but performs

part alignment during training. local feature is extracted by

horizontal pooling from each row, without requiring addi-

tional supervision or pose estimation.

Discriminative part localization. Discriminative part

localization has been studied for a long time by many com-

munity such as fine-grained recognition [5, 10, 18, 29,

30], face recognition [37, 16, 17, 33, 23] and person re-

identification [26]. After deep learning dominate computer

vision community, hand-craft part features for fine-grained

recognition has been drooped. Many works [34, 8] in per-

son re-identification exploited human body parts to learn

robust representations. Li et al. [8] proposed to learn and

localize deformable pedestrian parts using Spatial Trans-

former Networks(STN). Using semantic segmentation’ s a-
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Figure 2. The pipeline of our framework. Our framework consist of two modules, a local module which focuses on the part features to

distinguish the subtle discrepancy in visual features and a global module which is regularized by the part attentions in the local module.

A part-localization network and a new objective is introduced to encourage correct classification of the identified parts. The LocalNet is a

common object detection network which generates the ROI of each vehicle part. After that, in every local part branch, we project the ROIs

generated by the part localization module into the global feature map. Specially, we only use the global module (in green) to conduct our

inference which is already regularized by the part features in back propagation process.

bility of localizing the various human part precisely under

severe pose variations, Kalayeh et al. [6] exploited human

semantic parsing to harness local visual cues for vehicle

re-identification. Fu et al. [3] proposed a weakly super-

vised recurrent attention convolutional neural network to

recursively learn discriminative region attention and region-

based feature representation. Picking deep filter respons-

es [32] proposed to learn part detectors in an unsupervised

way by analyzing filter response from deep convolutional

neural network.

3. Methodology

3.1. Problem Statement

Given a query image, the target of vehicle re-

identification is to compute the similarity score between this

query image and all the other images in the gallery. Define

the training set as {xi, yi}
N
i=1

. Each vehicle image xi is la-

beled with identification label yi with the total number of

N training images. The training Images and identification

labels are denoted as x and y respectively. The desired sim-

ilarity between probe p and gallery image g is defined as

M(φ(p;θ), φ(g;θ)), where φ(·;θ) is the feature extraction

function which usually denotes a common deep encoder,

and M(·) is a metric defined in the feature space. The most

important question is how to learn the feature extraction

function φ(·;θ). Previous works use classification method

to learn parameters θ in function φ(·;θ), from which the

optimization target can be defined as

arg min
θ

E
(

φ(x;θ)⊤w,y
)

, (1)

where φ(x;θ)is the feature extracted by deep neural net-

work with parameter θ, w is the parameter to project the

features into predicted labels. E(·) is the cross entropy

loss. As discussed before, the equations above only opti-

mize the global feature and become easy to ignore subtle

visual cues. To handle this problem, We introduce part in-

formation and propose a novel local feature based optimiza-

tion target which is defined as

arg min
θ

E
(

φ(x;θ)⊤wg,y
)

+

∑

p∈P

λpE

(

(φ(x;θ)⊛Mp)
⊤
wl,yp

)

, (2)

where wg is the parameter to project the global feature into

predicted identification label. wl is the local parameter that

project the local part feature into predicted part label. Mp

is the part location that can be used to extract local feature

from global feature. ⊛ is the local feature extraction oper-

ation. This formulation introduce the part constrain to the

re-id task and force the network preserve the local part cue

to recognize parts. Details will be explained in section 3.2.
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There are still some unsolved problems in Eq. (2). First,

the part set P is not defined which means we don’t know

which part should be used. Second, The part location Mp

need to be extracted. Third, yp, which is the part label,

should be determined. In the next subsection, we will ex-

plain our network structure to address these problems.

3.2. Part­Regularized Re­ID

In this section, we introduce part regularized (PR) con-

strains into the vehicle re-identification task. Our frame-

work consists of two components, a global module to con-

duct Re-ID categorization and a local part-regularized mod-

ule to encourage correct classification of the identified parts.

To preserve better context information, which is very cru-

cial for the near-duplicate problem, we adopt bounding box

detection network for part localization. We will explain the

details of the two main components in this section and de-

scribe training scheme in section 3.3.

Part definition. We select three vehicle parts for our

part detection module, lights, including front light and back

light, window, including front window and back window,

and vehicle brand. The vehicle head area is crucial to dis-

tinguish different vehicle model. we use the front lights to

inference the vehicle head area including the brand. Differ-

ent model may have extremely diffidence lights, we define

bounding box of the light as tight bounding box contains the

light but extend it to the bottom of the vehicle. This defini-

tion can preserve more context information which we find

more stable in experiment. The definition of the three parts

in our model is shown in Fig. 3. We draw N local branches

in Fig. 2 since our framework is flexible to various defini-

tions of vehicle parts, and we only test N = 3 parts (window,

light, brand) to validate the effectiveness of this framework.

Part detection. To solve the second problem, we need

to find the parts location of the training images. There are

many off the shelf object part localization algorithms, which

can mainly categorize into two classes, detection and seg-

mentation. Segmentation method need pixel level annota-

tion which is difficult to get. In this paper we use a detection

branch to detect the predefined vehicle parts. As shown in

the Fig. 2, raw vehicle image is fed into the LocalNet (use

YOLO in experiments), which has 24 convolutional layer-

s, to get raw part detection results. A desired result is that

every image get three bounding box for window, left light

and right light respectively. During the training process, we

find that in some rare cases the vehicle part detection model

may fail due to occlusion. To handle these invisible parts

in a specific vehicle image, we refer to the rest images of

the same vehicle and compute the average locations of the

missing parts. After that, these average part locations are

used as the pseudo detection results of this specific image

to facilitate the subsequent training process.

Figure 3. The part definition of our model. The first row shows the

vehicle window part in both front and back view. Vehicle lights are

shown in the second row. We extend the bounding box of the lights

to the bottom of the vehicle to preserve more context information.

The head and rear area of the vehicle containing the vehicle brand

is defined as vehicle brand part.

Part-based Feature Extraction and Aggregation. Our

part-based feature extraction and aggregation module has

one global branch and three local part branch. All four

branches share the same backbone network, any convolu-

tional backbone can be used here, we use ResNet-50 [4] in

this paper. All input image were re-sized into H×W to gen-

erate feature map with shape S×S×C. The global branch

simply use global average pooling to generate the global

feature vector. In every local part branch, we project the

ROI generated by the part localization module into the glob-

al feature map. We divided the input image into an S × S

grid where S×S equals the spatial size of the global feature

map(S×S). Every grid cell overlapped with the ROI would

be marked as that part corresponding to the ROI. After that

local part feature vector will be extracted use local average

pooling.

Now we have part set P and part localization Mp in E-

q. (2), we need to define the part label yp to train the net-

work. However part label is very difficult to obtained. For

example, the brand part label may be set as the name of ve-

hicle manufacturer, since all the brand from the same man-

ufacturer should be same. The window part, on the other

hand, contains personalize cue of a specific vehicle, so it

should labeled with that specific vehicle identity. Consid-

ering vehicle model and vehicle make information is not

available in some scenario, we propose to use vehicle iden-

tification label to approximate the part label, Eq. (2) can be
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(a)

(b)

Figure 4. Visualization of the part detection module. (a) shows the

detection result of the light in different viewpoint, notice that in

some image light is invisible and can not be detect. (b) shows the

detection result of the vehicle window.

modified as

arg min
θ

E
(

φ(x;θ)⊤wg,y
)

+

∑

p∈P

λpE

(

(φ(x;θ)⊛Mp)
⊤
wl,y

)

, (3)

where y ≈ yp, now we can use vehicle identification label

to optimize our model.

3.3. Training Scheme

Both of our part localization module and part feature

extraction and aggregation module can be trained end to

end using backpropagation. We adopt the successful Y-

OLO network [19] as our backbone of LocalNet. In train-

ing steps, first we train the part detection module and ex-

tract all the part locations of the training images. Part in-

formation of the test images was not extracted since we

don’t use local feature branch at test stage. For VehicleI-

D and VeRi-776, we adopt the transfer learning scheme

and use the ImageNet pretrained weights for backbone net-

work GlobalNet(ResNet-50). Then we use the optimiza-

tion function defined in Eq. (3) with a initial learning rate

lr = 0.01 with exponential learning rate schedule to fine-

tune the whole feature extraction module, including global

and local branch.

4. Experiment

4.1. Datasets and Evaluation Metric

We evaluate our proposed model on two public large-

scale vehicle re-identification datasets, VehicleID and VeRi-

776.

VeRi-776 is a benchmark dataset for vehicle re-id task. It

contains about 50,000 images of 776 vehicles labeled with

rich attributes, e.g. types, colors, brands, license plate anno-

tation and spatiotemporal relation annotation. Each vehicle

was captured by various cameras with different view points.

The short coming of this dataset is that the number of iden-

tities is relatively small, in test stage it is very easy to dis-

tinguish each vehicle just based on model information. We

use the official dataset settings and adopt mAP, HIT-1 and

HIT-5 to evaluate our proposed model.

VehicleID is another benchmark with larger data volume.

VehicleID is captured by multiple non-overlapping cameras

and there are 221,763 images of 26,267 vehicles in total.

Each image is either captured from the front view or back

view. In VehicleID, only 250 vehicle models are included,

which means many different identities share same vehicle

model, near-duplicate problem appears. We use mAP to

evaluate our method on three subset(i.e. small, medium and

large) of the testset.

There are no bounding box annotations of the vehicle

parts in both the VehicleID and VeRi-776 dataset. There-

fore, we randomly select 500 vehicle images from the Ve-

hicleID dataset and label three vehicle parts with bounding

boxes (window, light and brand), and these images are used

to train the YOLO model. The trained model shows im-

pressive detection results on both VehicleID and VeRi-776

dataset, implying a good generalization ability. The annota-

tion process is also quite efficient and costs only 4 hours of

one person in annotating all the 500 images.

The mean average precision (mAP) and cumulative

match curve (CMC) are adopted in our experiments. For

VeRi-776, the image-to-track metric HIT@1 and HIT@5 is

also reported. The CMC curve shows the probability that

the image of the probe identity appears in different-sized

retrieved list. CMC can be calculated as

CMC@k =

∑N

i=1
m(qi, k)

N
, (4)

where N is the number of queries and m(qi, k) equals to 1

if qi appears in the top-k of the rank list. The number of

ground truth image of a probe should be exactly 1 in order

to use the cumulative match curve. The precision measures

the accurate of the prediction, the average precision for each

query q can be calculated as

AP (q) =

N
∑

k=1

P (k)∆r(k), (5)
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where P (k) is the precision at a cutoff of k images, N is

the total number of images in the gallery, and ∆r(k)is the

change in recall that happened between cutoff k − 1 and

cutoff k. The mean average precision for all query images

is determined by

mAP =

∑N

q=1
AP (q)

Q
, (6)

where Q is the total number of queries.

4.2. Experiment Setup

We use ResNet-50 as the backbone network for feature

extraction. We apply average global pooling[11] on the

global feature map followed with a 1× 1 convolutional lay-

er to extract the final 256-d global feature vector. Euclidean

distance (L2) was adopted to compute similarity score be-

tween query and gallery images at both training and testing

stage. It is worth mentioning that we only use global branch

at test stage because during the experiment we found that

fusing global and local part features yields similar perfor-

mance compared to just using global branch, Which mean

our model does not need part detection at test stage.

4.3. Comparison with State­of­the­art

The proposed method is compared with state-of-the-art

vehicle re-identification methods on two datasets.

VehicleID. For VehicleID dataset, testing data is split in-

to three subsets ordered by their size. For each test dataset

split, one image of each vehicle identity is selected and

putted into the gallery set. The rest images are all probe

queries. In this setting each vehicle identity has many query

images but have only one gallery images, so the cumula-

tive match curve (CMC) metric is adopted for evaluation.

Table 1 and Table 2 show performance comparisons on

VehicleID. Our model outperform all the existing method.

OIFE [24] and VAMI [36] exploit the vehicle view infor-

mation use the view invariant feature to roughly alight the

vehicle image. Those view align methods are useful when

distinguish different vehicles from difference vehicle mod-

el, but they can’t address the near-duplicate problem since

appearance of same viewpoint of the near-duplicate vehi-

cles are still fairly similar. It need more detail cues than

vehicle view informations to distinguish the near-duplicate

vehicle.

VeRi-776. The cross-camera search is performed fol-

lowed the official settings in [14]. At test stage, each im-

age of a vehicle from every camera is selected as probe

image and used to search for tracks of the same vehi-

cle in other cameras. That means evaluation for VeRi-

776 is conducted in an image-to-track fashion, in which

the probe is an image, while the targets are images in

the track. The problem is how to define the similari-

Figure 5. Class activation map (CAM) generated by identification

classification model. CAMs with (part-regularized) PR method

are show in the first and third rows while NoPR are in the second

and forth rows. Activation maps with PR can easily distinguish

different cars by the accurate part information for near-duplicated

vehicles while NoPR models are usually get confused. It is worth

mentioning that the activation map without RP can attend to vehi-

cle light or brand parts originally.

Table 1. Result of CMC@1 in VehicleID Dataset.

Method Small Medium Large

VGG+Triplet Loss [2] 0.404 0.354 0.319

VGG+CCL [12] 0.436 0.370 0.329

Mixed Diff+CCL [12] 0.490 0.428 0.382

OIFE [24] - - 0.670

VAMI [36] 0.631 0.529 0.473

Ours 0.784 0.750 0.742

ty between a query image and a gallery track. Follow-

ing the settings in [14], the similarity is defined as maxi-

mum similarity between a query image and all images in

the track. The image-to-track evaluation results is shown

in Table 3. Fact+Plate+STR [14], Siamese+Path [21] and

OIFE+ST [24] relies on the spatil-temporal information in

Veri-776 Dataset. Fact+Plate+STR [14] uses the addition-

al license plate informations. Other methods only rely on

the visual information including ours. Our Part-regularized

model outperform all the existing method on mAP metric
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(a)

(b)

(c)

Figure 6. Rank list visualization. The first image with green border in each row is the query image , the rest images are retrieved from the

gallery and sorted by similarity score (L2 distance). The ground-truth is marked with red border. (a) rank list result of our full model with

all three part branch. The first image in each raw is the query, and the rest ten images are the top ten retrieval results. (b) rank list result

after removing the window branch. (c) rank list result after removing the lights and brand branches.

Table 2. Result of CMC@5 in VehicleID Dataset.

Method Small Medium Large

VGG+Triplet Loss [2] 0.617 0.546 0.503

VGG+CCL [12] 0.642 0.571 0.533

Mixed Diff+CCL [12] 0.735 0.668 0.616

OIFE [24] - - 0.829

VAMI [36] 0.833 0.751 0.703

Ours 0.923 0.883 0.864

including those who use extra none-visual cues.

4.4. Ablation Study

We conduct ablation study on VehicleID dataset to in-

vestigate the effeteness of each part branch in our model.

There are three local part branch in our framework, win-

dow branch, light branch and brand branch. We remove one

branch at a time and retrain the whole network to evaluate

the performance. Rank list visualization is also performed

Table 3. Results of mAP and HIT@1 HIT@5 in VeRi-776 Dataset.

Method mAP HIT@1 HIT@5

BOW-CN [35] 0.122 0.339 0.537

LOMO [9] 0.096 0.253 0.465

GoogLeNet [28] 0.170 0.498 0.712

FACT [13] 0.185 0.510 0.735

Plate-SNN [14] 0.157 0.363 0.466

FACT+Plate-REC [14] 0.186 0.512 0.736

FACT+Plate-SNN [14] 0.259 0.611 0.774

FACT+Plate+STR [14] 0.278 0.614 0.788

Siamese+Path [21] 0.583 0.835 0.900

OIFE [24] 0.480 0.894 -

OIFE+ST [24] 0.514 0.924 -

VAMI [36] 0.501 - -

Ours 0.743 0.943 0.987

as shown in Fig. 6.
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Table 4. Results of Match Rate of ablation experiment.

Method CMC@1 CMC@5

Global+Light+Brand+Window 0.742 0.864

Global+Light+Brand 0.675 0.830

Global+Light+Window 0.710 0.887

Global+Window+Brand 0.726 0.851

Global+Window 0.707 0.832

Window+Light+Brand 0.687 0.829

Baseline (w/o parts) 0.645 0.800

Table 5. Influences of different resolutions in VehicleID dataset.

VehicleSet Input size CMC@1 CMC@5

Small
128× 128 0.726 0.886

256× 256 0.784 0.923

Medium
128× 128 0.685 0.838

256× 256 0.750 0.883

Large
128× 128 0.661 0.819

256× 256 0.742 0.864

Vehicle window. As shown in Table 4, cutting off the

vehicle window branch depress the re-id performance by 7

percent. Vehicle window contains the personality feature

which is crucial to distinguish difference vehicle identities

from same vehicle model. The visualization result confirm-

s this point. As shown in Fig 6, almost all of the top 10

retrieval results are come from the same vehicle model. In

this scenario visual cues from vehicle window become ex-

tremely important since others vehicle parts are almost the

same.

Vehicle brand and light. Removing the vehicle brand

or vehicle light branch also depress the performance of our

model. Compared to cutting off the vehicle window branch,

removing the vehicle light and brand only yields a smaller

performance drop. This is because the global feature can

learn some of the vehicle light and brand information orig-

inally as discussed before in Fig 5. The performance drop

shows that putting explicit constrains to the neural network

makes the learning process more efficient.

Global branch. We cutting off the global branch and

only use three part branch to train the network. During test-

ing three part feature vector is extracted and fusing together

to computer the similarity score. The performance drops

a lot unsurprisingly. The other part like vehicle body and

wheels are useful when distinguish two vehicle identities.

The global branch is response to extract those descrimina-

tive information.

Influences of resolution. We conduct experiments on

different resolutions of input size, as shown in Tab. 5 and

6. For VehicleID dataset, we conduct experiments on three

testset with different image resolutions. One intuitive obser-

vation is that images with higher resolution performs better

Table 6. Influences of different resolutions in VeRi-776 dataset.

Input size mAP HIT@1 HIT@5

128× 128 0.653 0.878 0.959

256× 256 0.702 0.922 0.979

512× 512 0.743 0.943 0.987

but with a higher computation cost. Interestingly, we find

that images with size 128 × 128 exhibit large performance

drop especially for CMC@1 indicator, while for CMC@5

and HIT@5, images with low resolution yield feasible re-

sults.

5. Conclusions

In this paper, we explore the near-duplicate challenge

which causes one of the most remarkable confusions in ve-

hicle re-identification tasks. To enlarge the divergences be-

tween nearly identical instances, we proposed a simple but

efficient part-regularized approach which enhances the lo-

cal features in the original Re-ID task. Our model intro-

duces part level constrains to the typical Re-ID framework

to enhance the perceptive of subtle discrepancies, which is

crucial for the near-duplicate vehicle Re-ID, not being ig-

nored during forward propagation and the detection ROIs

on feature maps is the best practice to facilitate the local

visual cues. We also conduct qualities and quantities exper-

iments to demonstrate the effectiveness of each branch in

our framework.

Acknowledgments

This work was supported in part by the National Basic

Research Program of China under Grant 2015CB351806,

in part by the National Natural Science Foundation of Chi-

na under Grant 61672072, Grant 61532003, and Grant

61825101, and in part by Beijing Nova Program under

Grant Z181100006218063.

References

[1] Y. Bai, Y. Lou, F. Gao, S. Wang, Y. Wu, and L. Duan. Group

sensitive triplet embedding for vehicle re-identification. TM-

M, 2018.

[2] S. Ding, L. Lin, G. Wang, and H. Chao. Deep feature

learning with relative distance comparison for person re-

identification. PR, 48(10), 2015.

[3] J. Fu, H. Zheng, and T. Mei. Look closer to see better: Recur-

rent attention convolutional neural network for fine-grained

image recognition. In CVPR, volume 2, 2017.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016.

[5] S. Huang, Z. Xu, D. Tao, and Y. Zhang. Part-stacked cnn for

fine-grained visual categorization. In CVPR, 2016.

4004



[6] M. M. Kalayeh, E. Basaran, M. Gökmen, M. E. Kamasak,

and M. Shah. Human semantic parsing for person re-

identification. In CVPR, 2018.

[7] D. Li, X. Chen, Z. Zhang, and K. Huang. Learning deep

context-aware features over body and latent parts for person

re-identification. In CVPR, 2017.

[8] D. Li, X. Chen, Z. Zhang, and K. Huang. Learning deep

context-aware features over body and latent parts for person

re-identification. In CVPR, 2017.

[9] S. Liao, Y. Hu, X. Zhu, and S. Z. Li. Person re-identification

by local maximal occurrence representation and metric

learning. In CVPR, 2015.

[10] D. Lin, X. Shen, C. Lu, and J. Jia. Deep lac: Deep local-

ization, alignment and classification for fine-grained recog-

nition. In CVPR, 2015.

[11] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv

preprint arXiv:1312.4400, 2013.

[12] H. Liu, Y. Tian, Y. Yang, L. Pang, and T. Huang. Deep rel-

ative distance learning: Tell the difference between similar

vehicles. In CVPR, 2016.

[13] X. Liu, W. Liu, H. Ma, and H. Fu. Large-scale vehicle re-

identification in urban surveillance videos. In Multimedia

and Expo (ICME), 2016 IEEE International Conference on.

IEEE, 2016.

[14] X. Liu, W. Liu, T. Mei, and H. Ma. A deep learning-based

approach to progressive vehicle re-identification for urban

surveillance. In ECCV. Springer, 2016.

[15] Y. Lou, Y. Bai, J. Liu, S. Wang, and L.-Y. Duan. Embed-

ding adversarial learning for vehicle re-identification. IEEE

Transactions on Image Processing, 2019.

[16] P. Luo, X. Wang, and X. Tang. Hierarchical face parsing via

deep learning. In CVPR. IEEE, 2012.

[17] J.-J. Lv, X. Shao, J. Xing, C. Cheng, X. Zhou, et al. A

deep regression architecture with two-stage re-initialization

for high performance facial landmark detection. In CVPR,

volume 1, 2017.

[18] O. M. Parkhi, A. Vedaldi, C. Jawahar, and A. Zisserman. The

truth about cats and dogs. In ICCV. IEEE, 2011.

[19] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You on-

ly look once: Unified, real-time object detection. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 779–788, 2016.

[20] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-

fied embedding for face recognition and clustering. In CVPR,

2015.

[21] Y. Shen, T. Xiao, H. Li, S. Yi, and X. Wang. Learning deep

neural networks for vehicle re-id with visual-spatio-temporal

path proposals. In ICCV. IEEE, 2017.

[22] C. Su, J. Li, S. Zhang, J. Xing, W. Gao, and Q. Tian. Pose-

driven deep convolutional model for person re-identification.

In ICCV. IEEE, 2017.

[23] Y. Sun, X. Wang, and X. Tang. Deep convolutional network

cascade for facial point detection. In CVPR, 2013.

[24] Z. Wang, L. Tang, X. Liu, Z. Yao, S. Yi, J. Shao, J. Yan,

S. Wang, H. Li, and X. Wang. Orientation invariant feature

embedding and spatial temporal regularization for vehicle re-

identification. In CVPR, 2017.

[25] K. Q. Weinberger and L. K. Saul. Distance metric learning

for large margin nearest neighbor classification. Journal of

Machine Learning Research, 10(Feb), 2009.

[26] T. Xiao, H. Li, W. Ouyang, and X. Wang. Learning deep fea-

ture representations with domain guided dropout for person

re-identification. In CVPR, 2016.

[27] K. Yan, Y. Tian, Y. Wang, W. Zeng, and T. Huang. Exploit-

ing multi-grain ranking constraints for precisely searching

visually-similar vehicles. In ICCV, 2017.

[28] L. Yang, P. Luo, C. Change Loy, and X. Tang. A large-scale

car dataset for fine-grained categorization and verification.

In CVPR, 2015.

[29] H. Zhang, T. Xu, M. Elhoseiny, X. Huang, S. Zhang, A. El-

gammal, and D. Metaxas. Spda-cnn: Unifying semantic part

detection and abstraction for fine-grained recognition. In

CVPR, 2016.

[30] N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Part-

based r-cnns for fine-grained category detection. In ECCV.

Springer, 2014.

[31] X. Zhang, H. Luo, X. Fan, W. Xiang, Y. Sun, Q. Xiao,

W. Jiang, C. Zhang, and J. Sun. Alignedreid: Surpassing

human-level performance in person re-identification. arXiv

preprint arXiv:1711.08184, 2017.

[32] X. Zhang, H. Xiong, W. Zhou, W. Lin, and Q. Tian. Picking

deep filter responses for fine-grained image recognition. In

CVPR, 2016.

[33] Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Facial landmark

detection by deep multi-task learning. In ECCV. Springer,

2014.

[34] H. Zhao, M. Tian, S. Sun, J. Shao, J. Yan, S. Yi, X. Wang,

and X. Tang. Spindle net: Person re-identification with hu-

man body region guided feature decomposition and fusion.

In CVPR, 2017.

[35] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian.

Scalable person re-identification: A benchmark. In CVPR,

2015.

[36] Y. Zhou and L. Shao. Aware attentive multi-view inference

for vehicle re-identification. In CVPR, 2018.

[37] S. Zhu, C. Li, C. Change Loy, and X. Tang. Face alignment

by coarse-to-fine shape searching. In CVPR, 2015.

4005


