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Abstract

In the past years, deep convolution neural network has
achieved great success in many artificial intelligence ap-
plications. However, its enormous model size and massive
computation cost have become the main obstacle for the de-
ployment of such powerful algorithm in the low power and
resource-limited mobile systems. As the countermeasure to
this problem, deep neural networks with ternarized weights
(i.e., -1, 0, +1) have been widely explored to greatly re-
duce the model size and computational cost, with limited
accuracy degradation. In this work, we propose a novel
ternarized neural network training method which simulta-
neously optimizes both weights and quantizer during train-
ing, differentiating from prior works. Instead of fixed and
uniform weight ternarization, we are the first to incorpo-
rate the thresholds of weight ternarization into a closed-
form representation using truncated Gaussian approxima-
tion, enabling simultaneous optimization of weights and
quantizer through back-propagation training. With both of
the first and last layer ternarized, the experiments on the Im-
ageNet classification task show that our ternarized ResNet-
18/34/50 only has ~3.9/2.52/2.16% accuracy degradation
in comparison to the full-precision counterparts.

1. Introduction

Artificial intelligence is nowadays one of the hottest re-
search topics, which has drawn tremendous efforts from
various fields in the past years. While computer scientists
have succeeded to develop Deep Neural Networks (DNN)
with transcendent performance in the domains of computer
vision, speech recognition, big data processing and etc.
[13]. The state-of-the-art DNN evolves into structures with
larger model size, higher computational cost and denser
layer connections [8, 25, 24, 11]. Such evolution brings
great challenges to the computer hardware in terms of both
computation and on-chip storage [10], which leads to great
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research effort on the topics of model compression in recent
years, including channel pruning [9, 29], weight sparsifica-
tion [7], weight quantization [6] and etc [10].

Weight ternarization, as a special case of weight quan-
tization technique to efficiently compress DNN model,
mainly provides three benefits: 1) it converts the floating-
point weights into the ternary format (i.e., -1, 0, +1), which
can significantly reduce the model size by 16 x. With proper
sparse encoding technique, such model compression rate
can be further boosted. 2) Besides the model size reduc-
tion, the ternarized weight enables elimination of hardware-
expensive floating-point multiplication operations, while re-
placing with hardware friendly addition/subtraction opera-
tions. Thus, it could significantly reduce the inference la-
tency. 3) The ternarized weights with zero values intrin-
sically prune network connections, thus the computations
related to those zero weights can be simply skipped.

In the previous low bit-width quantization works, such
as TTN [15], TTQ [28] and BNN [5], they do re-train the
models’ weights but a fixed weight quantizer is used and
not properly updated together with other model parame-
ters, which leads to accuracy degradation and slow con-
vergence of training. In this work, we have proposed a
network ternarization method which simultaneously update
both weights and quantizer (i.e. thresholds) during training,
where our contributions can be summarized as:

e We propose a fully trainable DNN ternarization
method that can jointly train the quantizer threshold,
layer-wise scaling factor, and weights to minimize the
accuracy degradation caused by the model compres-
sion.

e Rather than utilizing the fixed and uniform ternar-
izer, we are the first to incorporate the thresholds of
weight ternarization into a closed-form expression us-
ing truncated Gaussian approximation, which can be
optimized through back-propagation together with net-
work’s other parameters through the end-to-end train-
ing.
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e We further optimize the widely used Straight-
Through-Estimator (STE) [2, 5] with gradient correct-
ness technique. It gives better gradient approximation
for the non-differential staircase ternarization function,
which leads to faster convergence speed and higher in-
ference accuracy.

e In order to validate the effectiveness of our proposed
methods, we apply the proposed model ternarization
method on CIFAR-10 and ImageNet datasets for object
classification task.

The rest of this paper is organized as follows. We first
give a brief introduction to the related works regarding the
topics of model compression. Then the proposed network
ternarization method and the applied tricks are explained in
details. In the following section, experiments are performed
on both small and large scale dataset with the various DNN
architectures, to evaluate the effectiveness of our proposed
method. After that, the conclusion is drawn in the end.

2. Related Works

Recently, model compression on deep convolutional
neural network has emerged as one hot topic in the hard-
ware deployment of artificial intelligence. There are various
techniques, including network pruning [17], knowledge dis-
tillation [ 18], weight sparsification [7], weight quantization
[6] and etc. [22], to perform network model compression.

As one of the most popular technique, weight quan-
tization techniques are widely explored in many related
works which can significantly shrink the model size and re-
duce the computation complexity [10]. The famous deep
compression technique [6] adopts the scheme that optimiz-
ing weight quantizer using K-means clustering on the pre-
trained model. Even though the deep compression tech-
nique can achieve negligible accuracy degradation with 8-
bit quantized weight, its performance on low-bit quantized
case is non-ideal. Thereafter, many works are devoted to
quantize the model parameters into binary [5, 20] or ternary
formats [28], not only for its extremely model size reduc-
tion (16 x ~ 32x), but also the computations are simplified
from floating-point multiplication (i.e. mul) operations into
addition/subtraction (i.e. add/sub). BinaryConnect [4] is
the first work of binary CNN which can get close to the
state-of-the-art accuracy on CIFAR-10, whose most effec-
tive technique is to introduce the gradient clipping. After
that, both BWN in [20] and DoreFa-Net [27] show better
or close validation accuracy on ImageNet dataset. In order
to reduce the computation complexity, XNOR-Net [20] bi-
narizes the input tensor of convolution layer which further
converts the Add/Sub operations into bit-wise Xnor and
bit-count operations.

Besides weight binarization, there are also recent works
proposing to ternarize the weights of neural network using

trained scaling factors [28]. Leng ef al. employ ADMM
method to optimize neural network weights in configurable
discrete levels to trade off between accuracy and model size
[14]. ABC-Net in [16] proposes multiple parallel binary
convolution layers to improve the network model capac-
ity and accuracy, while maintaining binary kernel. All the
aforementioned aggressive DNN binarization or ternariza-
tion methods sacrifice inference accuracy, in comparison
with the full precision counterpart, to achieve large model
compression rate and computation cost reduction.

3. Methodology
3.1. Problem Definition

As for weight quantization of neural networks, the state-
of-the-art work [20] typically divides it into two sub-
problems: 1) minimizing the quantization noise (i.e., Mean-
Square-Error) between floating-point weights and quan-
tized weights, and 2) minimizing the inference error of
DNN w.r.t the defined objective function of DNN infer-
ence. In this work, instead of optimizing two sub-problems
separately, we mathematically incorporate the thresholds of
weight quantizer into neural network forward path, thus en-
abling the simultaneous optimization of weights and thresh-
olds through back-propagation method. In this work, given
the vectorized input x and target ¢, the network optimiza-
tion problem can be described as:

arg min ﬁ(f($§ {wi}fﬂ)at)
{w, S, AV (1

s.t. w] = Tern(wy, Sy, Af)

where f(x; {w)]}L_,) calculates the outputs of DNN, which
is parameterized by the ternarized weight, w.r.t the input
x. {w)}l~,. L is the number of layers in DNN. wy is
the floating-point weights in [-th layer, before ternarization.
L(-,) is the defined loss function. The ternarization func-
tion Tern() in Eq. (1) is parameterized by the ternarized
value S; and thresholds Ali, where the equation detail is
given as Eq. (2) in the following section.

3.2. Trainable ternarization under Gaussian ap-
proximation

In this subsection, we will first introduce our weight
ternarization methodology. Then, our proposed method
to incorporate ternarization thresholds into neural network
inference path, which makes it trainable through back-
propagation, is discussed particularly.

3.2.1 Network Ternarization:

For the sake of obtaining a DNN with ternarized weight
and minimized accuracy gap w.r.t to its full-precision coun-
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Figure 1. The flowchart of network ternarization, where
solid/dashed line indicate activate/inactive step transition.
1)=2)=-3)=2)=-4) steps are iteratively operated during training.

terpart, the training scheme for one iteration (as shown in
Fig. 1) can be generally enumerated as four steps:

1) Initialize the weight with full-precision pre-trained
model. Previous works have experimentally demon-
strated that fine-tuning the pre-trained model with
small learning rate normally generates a quantized
model with higher accuracy. More importantly, with
the pre-trained model as parameter initialization, much
less number of training epochs is required to get model
converged in comparison to training from scratch.

2) Ternarize the full-precision weight w; ; w.r.t the layer-
wise thresholds Ai and quantized value .S; (aka. scal-
ing coefficient) in real time. The weight ternarization
function can be described as:

wf’l- =S - Tern(wy;, Ali)

+1 w; > A;'_ 2
=890 A7 <wp; <A
-1 wy; < Af

Note that, the scaling coefficient .S; can be written in
a closed-form function with threshold, which is key to
incorporate the the quantizer optimization into DNN
training without modifying the loss function. The for-
mula derivation of S; will be specified in Section 3.2.2.
Moreover, since we propose to use symmetric thresh-
olds centered by p; for weight ternarization, thus we
reformat Ali = py+4;, where p; is the statistical mean
of w;.

3) With one given input batch, this step only updates the
thresholds {8}~ , through back-propagation. Mean-
while, the update of weight is suspended in the current
step.

4) With the identical input batch, it repeats step-2 to
synchronize the ternarized weights {w]}/, w.r.t the
updated thresholds {§;}%_, in step-3. Then, it sus-
pends the update of thresholds and only allows full-
precision weight base to be updated !. Since the stair-
case ternarization function (T'ern(-) in Eq. (2)) is non-
differential owing to its zero derivatives almost ev-
erywhere, we adopt the method of Straight-Through-
Estimator (STE) [2] similar as previous network quan-
tization works [28]. It is noteworthy that we propose
and apply the gradient correctness technique on STE,
which is critical to improving the convergence speed
for weight retraining (see details in Section 3.3).

Now with the ternarized weights, the major computa-
tion of DNN is converted from the computational expensive
floating-point Multiplication-and-Accumulation (MAC) to
more efficient and less complex addition and subtraction
(Add/Sub). The computation can be expressed as’:

a -w) = x| - (Si-Tern(w;)) = Si- (2] -Tern(wy)) (3)
where @; and w; are the vectorized input and ternarized
weight of [-th layer respectively. In the state-of-the-art
DNN architectures, convolution/fully-connected layers nor-
mally follows a batch-normalization layer [12] (i.e., Affine
function) or ReLU, where both of them perform element-
wise multiplication on their input tensor (i.e., x] - wj).
Therefore, the element-wise scaling with S; in Eq. (3)
can be emitted and integrated with the following batch-
norm/RELU layer in the forward path. In addition to the
above description, we formalize the operations in Algo-
rithm 1 as well for clarification.

3.2.2 Trainable thresholds utilizing truncated Gaus-
sian distribution approximation:

It has been discussed in previous works [3, 1] that the
weighted distributions of spatial convolution layers and
fully-connected layers are intending to follow Gaussian dis-
tribution, whose histogram is in bell-shape, owing to the
regularization effect of L?-norm weight penalty. For exam-
ple, in Fig. 2, we have shown the weight distributions and
their corresponding Probability Density Function (PDF) us-
ing the calculated mean and standard deviation for each
parametric layer (i.e., convolution and fully-connected lay-
ers) in ResNet-18b [8]. Meanwhile, the Shapiro-Wilk nor-
mality test [23] is conducted to identify whether the weight
sample originated from Gaussian distribution quantitatively.
The given test statistic W, of Shapiro-Wilk normality test
indicate a good normally distribution match with minimum

'During the training, ternarized weights are calculated from the full-
precision weight base in real-time, thus the weight update is performed on
the full-precision weight instead of its ternarized counterpart.

2For simplicity, we neglect the bias term.
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Figure 2. The histogram of weights w; (blue shadow) along with the PDF curve (red line) of Gaussian distribution A (uz, 07), for each
convolution, fully-connected and residual layers in ResNet-18b [8]. j; and o} are the statistical mean and variance of w;, respectively. For
layers with more number of weights (#w), the weights distribution conforms to the Gaussian distribution more precisely.

0.82 value. Note that, the asymmetry (i.e., Skewness) of
the last fully-connected layer is due to the existence of bias
term. In this work, we consider the weight of parametric
layers (i.e., convolution and fully-connected layers) approx-
imately following Gaussian distribution, then we perform
the weight ternarization based on such approximation.

In order to make the thresholds {8}~ , as trainable
parameters that can be updated through back-propagation,
there are two criteria that have to meet:

e Thresholds {8}, have to be parameters within the
DNN inference path in a closed-form expression.

e Such closed-form expression is differentiable w.r.t the
thresholds.

Hereby, we first make the assumption that:

Assumption 1 the weights of designated layer | are ap-
proximately following Gaussian distribution (i.e., w; ~
N (i, 0?)), where p, and oy are the calculated mean and
standard deviation of the weight sample wj.

where such assumption is the key to incorporate the thresh-
olds into DNN inference path in a differentiable closed-
form.

For the quantizer design of either uniformly or non-
uniformly distributed data, the centroid is normally taken
as the quantized value to minimize the quantization error
[19]. Thus, for weight ternarization, the layerwise scaling
coefficient (i.e., quantized value) can be described as:

oo

A
Sy (wy, AF) = / ¢c(x) - zdz —|—/ ¢c(x) - zdx

Ay
= B(|lwiil[(wii > A7) U (wii < A7)

(C))

where ¢.(z) is the conditional PDF under the condition of (z >
APV (z < A;). In this work, by setting A = 1y & &, we can
approximate the Eq. (4) and reformat it into:

b=teo d(x| 1, 00)

®(b|pu, 1) — ®(a|pu, o1)

Sl(#z,az,51)=/ ~zdz (5)

a=p;+8;

where ¢(x’pl,al) and ® (x|, 01) are the PDF and CDF for
Gaussian distribution A/ (, 07) . Such calculation can directly
utilize the closed-form expression of mathematical expectation
for truncated Gaussian distribution with lower bound a and up-
per bound b. Thus, we finally obtain a closed-form expression of
scaling factor embedding trainable thresholds d;:

e e ©)
o)) (o)) [}
01,80 = 1001 G 510,1) — (a0, 1)
)
o _Olal01)
HET O T8 (a0, 1)

where ¢(-|0,1) and ®(-|0, 1) are PDF and CDF of standard nor-
mal distribution A/(0, 1).
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Figure 3. The forward and backward curves for (a) S; (w1, o1, 01)
and (b) Si(w, o1, 07) w.rt &, where &7 is ¢; with clipping con-
straints . Note that, we choose y; = 0 and o; = 1 as the example
for visualization.

As shown in Fig. 3a, we plot the function of S; in the for-
ward and backward paths w.r.t the variation of §; for visualiza-
tion. Since most of the popular deep learning frameworks using
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numerical method (e.g., Monte-Carlo method) for distribution re-
lated calculation, there will be error for calculating S; and 9.S; /99,
at the tail of distribution (i.e., &; > 30;). For ensuring the cor-
rectness of \S; in both forward and backward path and prevent the
framework convergence issue, we perform the clipping on §;, thus
|6:] € (0,307). Such clipping operation is functionally equivalent
as propagating J; through the hard-tanh function, which is piece-
wise linear activation function with upper-limit j and lower-limit
k, then the trainable thresholds with clipping constraints can be
expressed as:

hardtanh(z, j, k) = Clip(z, 7, k) = max(j, min(z,k))  (8)

07 = hardtanh(abs(d;), 0, 307) )

After the substitution of §; with its clipped version ¢;, the forward
and backward function of S; is transformed from Fig. 3a to Fig. 3b.
Beyond that, since the weight decay tends to push the trainable
threshold of ; close to zero which biases the ternary weight rep-
resentation towards the binary counterpart, thus we do not apply
weight decay on threshold §; during training.

In summary, we finalize the scaling factor term and weight
ternarization function to substitute the original full-precision
weight in the forward propagation path:

¢(6i/a1]0, 1)

—o( /om0,y 0

Si(pe, 01,01) = pu + o1 -
+1 wy >+ 607
m—0; <wg < +6 (1D

-1 wy,; <p—0f

Tern(wy,i, p,0) =140

3.3. STE with Gradient Correctness

Almost for any quantization function which maps the continu-
ous values into discrete space, it has encountered the same prob-
lem that such stair-case function is non-differentiable. Thus, a
widely adopted solution is using the so-called Straight-Through-
Estimator (STE) to manually assign an approximated gradient to
the quantization function. We take the STE in famous binarized
neural network [5] as an example to perform the analysis (Fig. 4a),
where the forward and backward of binarization function are de-
fined as:

Forward : r, = sgn(r;) (12)
Backward : OL ste OL Oro =1 (13)
Oro il il

where L is the DNN inference loss. The rule behind such STE
setup is that the output of quantization function r, can effec-
tively represent the full-precision input value r;. Thus, Sign(-)
performs the similar function as f(r;) = 7; whose derivative is
df(r;)/0r; = 1. However, the rough approximation in Eq. (12)
and Eq. (13) leads to significant quantization error and hamper the
network training. When r; is either too large or too small (r; << 1
or r; >> 1), the gradients of r; will be stationary if binarized
value 7, is not changed.

In order to encounter the drawback of naive STE design dis-
cussed above, we propose a method called gradient correctness for
better gradient approximation. For our weight ternarization case,
the full-precision weight base w; is represented by S; (1, 01, 01) -

+1 s +1 - |

(@) (b)
Figure 4. Analysis about the quantizer’s straight-through-estimator
design for (a) r, = sign(r;) for [5]and (b) ro = Tern(r;) in this
work.

Tern(w;), where both terms can pass back gradients to update
the embedding parameters. For assigning a proper gradient to the
Tern(w,,;), we follow STE design rule which leads to the follow-
ing expression:
awfﬂ' 0S; - Tern(wi ;) S 0T ern(wi,s)
= =5

=1 14
810172' (910171- le’i ( )

Thus, the STE for ternarization function can be derived Eq. (14)
as:
OTern(wy) 1

ow: S ()

As seen in Eq. (15), instead of simply assigning the gradient as 1,
we scale the 9T ern(w,;)/Ow;,; w.rt the value of S;(u, 01, 81)
in real time. As shown in Fig. 4b, STE could better approximate
the gradient with adjustable gradient correctness term.

4. Experiment and Result Evaluation
4.1. Experiment setup

In this work, we evaluate our proposed network ternarization
method for object classification task with CIFAR-10 and ImageNet
datasets. All the experiments are performed under Pytorch deep
learning framework using 4-way NVIDIA Titan-XP GPUs. For
clarification, in this work, both the first and last layer are ternarized
during the training and test stage.

CIFAR-10 contains 50 thousands training samples and 10 thou-
sands test samples with 32 x 32 image size. The data augmentation
method is identical as used in [8]. For fine-tuning, we set the initial
learning rate as 0.1, which is scheduled to scale by 0.1 at epoch 80,
120 respectively. The mini-batch size is set to 128. In order to pro-
vide a more comprehensive experimental results on large dataset,
we examine our model ternarization techniques on image classifi-
cation task with ImageNet [21] (ILSVRC2012) dataset. ImageNet
contains 1.2 million training images and 50 thousands validation
images, which are labeled with 1000 categories. For the data pre-
processing, we choose the scheme adopted by ResNet [8]. Aug-
mentations applied to the training images can be sequentially enu-
merated as: 224 x 224 randomly resized crop, random horizontal
flip, pixel-wise normalization. All the reported classification ac-
curacy on validation dataset is single-crop result. The mini-batch
size is set to 256.
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Algorithm 1 Training both the weights and thresholds of
ternarized network under the assumption that weights are
following Gaussian distribution.

Require: : a mini-batch of inputs  and its correspond-
ing targets y;, number of layers NN, full-precision pre-
trained weights w, initial thresholds ¢ full-precision
weight base w' and layer-wise thresholds §* from last
training iteration ¢, learning rate 7, network inference
function f(-).

Ensure: for current iteration index of ¢ 4 1, updated full-

precision weights w!*!, updated layer-wise thresholds
5+,

{Step-1. Initialization:}

1: if t = 0 then > This is the first training iteration
2: w < w;0 — 0 > load pretrained model
3: else

4: w — wh; § — & > load from last iteration
5: end if

{Step-2. Weight ternarization: }
6: for [ :=1to N do

7: < w.mean(); o; < w;.std()

8: wy « Si(w, 01,0;) - Tern(wy, w, 0;) > Egs. (10)
and (11)

9: end for

{Step-3. Update thresholds ¢ only:}
10: y + f(z,w’) > forward propagation, Eq. (3)
11: L+ Loss(y,y:) > get inference error
12: for [ := N to1do
13: gs, < OL]00;
14: 0; < Update(dy, gs,,m)
15: end for

{Repeat Step-2: from op-6 to op-10} > important step!

{Step-4. Update weights w only:}
16: y « f(x,w’)
17: L < Loss(y,y:)
18: for [ := N to 1 do
19: Guw, < OL/0w;
20: w; « Update(w;, guw,, N)
21: end for

return w't! < w; 5t &

> back-propagate for gradients
> Using vanilla SGD

> back-propagate for gradients
> Using SGD/Adam

4.2. Ablation studies

In order to exam the effectiveness of our proposed methods, we
have performed the following ablation studies. The experiments
are conducted with ResNet-20 [8] on CIFAR-10 dataset, where
the differences are significant enough to tell the effectiveness.

4.2.1 Gradient Correctness

We compare the accuracy curve convergence speed between the
STE with or without the gradient correctness. As shown in Fig. 5,
the network training speed with gradient correctness is much faster
in comparison with the case without gradient correctness. The

Table 1. Ablation study of proposed method using ResNet-20 on
CIFAR-10 dataset.

Configurations Accuracy
full-precision (baseline) 91.7%
w/ gradient correctness 90.39%
w/o gradient correctness 87.89%
vanilla SGD 90.39%
Adam 56.31%
Initialize with 6; = 0.05max(Jw;|)  89.96%
Initialize with 6; = 0.1lmax(Jw;|)  90.24%
Initialize with §; = 0.15max(|Jw;|)  90.12%
90 1 AN
—~ 801
8
> 701
o
3 601 .
g w/ gradient correctness-test
50 1 ---- w/ gradient correctness-train
—— w/o gradient correctness-test
401 | ---- wj/o gradient correctness-train

0 25 50 75 100 125 150
Epoch
Figure 5. The accuracy evolution curve for train and test for the
cases w/ or w/o gradient correctness.

main reason cause the convergence speed degradation is that when
layer-wise scaling factor is less than 1, without gradient correct-
ness, the gradient of the loss function w.r.t the weights is scaled
by the scaling factor due to the chain-rule. Thus, weights are up-
dated with a much smaller step-size in comparison to the thresh-
olds, when optimized are set up with identical parameters (e.g.,
learning rate, etc.).

4.2.2 Optimizer on thresholds

The vanilla SGD and Adam are two most adopted optimizers for
quantized neural network training. Hereby, we took those two op-
timizers as an example to show the training evolution. Note that,
since weights and thresholds are iteratively updated for each input
mini-batch, we can use different optimizer for weights and thresh-
olds. In this experiment, we use SGD for weight optimization,
while using SGD and Adam on thresholds. The result depicted in
Fig. 6 shows that it is better to use the same SGD optimizers to
achieve higher accuracy.

4.2.3 Thresholds Initialization

In order to exam how the threshold initialization affects
the network training, we initialize the threshold as § =
{0.05,0.1,0.15} - max(|w;|) for all the layers. The experimental
results reported in Fig. 7 shows that the initialization does not play
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Table 2. Validation accuracy (topl/topS %) of ResNet-18/34/50b [8] on ImageNet using various model quantization methods.

Quan.  First Last Accuracy  Comp.
scheme layer layer (topl/top5) rate
ResNet-18b
Full precision - FP FP  69.75/89.07 Ix
BWN[20] Bin. FP FP 60.8/83.0 ~32x%
ABC-Net[16] Bin. FP*  FP* 68.3/87.9  ~6.4x
ADMM] 14] Bin. FP*  FP* 64.8/86.2 ~32x
TWN[ 15, 14] Tern. FP  FP  61.8/842  ~16x
TTN[28] Tern. FP FP 66.6/87.2 ~16x
ADMM] 14] Tern. FP*  FP* 67.0/87.5 ~16x
APPRENTICE[18]  Tern. FP*  FP* 68.5/- ~16x%
this work Tern. FP FP  68.09/87.90 ~16x
this work Tern. Tern Tern 65.83/86.68 ~16x%
ResNet-34b
Full precision - FP FP  73.31/91.42 1x
APPRENTICE[18]  Tern. FP*  FP* 72.8/- ~16x%
this work Tern. Tern Tern 70.79/89.89 ~16x
ResNet-50b
Full precision - FP FP  76.13/92.86 1x
APPRENTICE[ 18] Tern. FP* FP* 74.7/- ~16x
this work Tern. Tern Tern 73.97/91.65 ~16x
90 1 At T AR e
80
| TR i
S @ 80 ]&”".‘h":'w Sy %"n
E 60 - T —— >0 iV —— initial with 0.05 - max(|w|)-test
© '\/’-— = 8 e i . . _ .
é A r\“m‘ IAM\AAA é Tn!t!al w!th 0.05 - max(|w|)-train
O 401 vanilla SGD-test g 607 | —— initial with 0.1 - max(|w|)-test
< (AT o i —--- initial with 0.1 - max(|w])-train
. Adam-test 5071 initial with 0.15 - max(|w|)-test
201 ---- Adam-train 40 | initial with 0.15 - max(|w|)-train
0 25 50 75 100 125 150 0 25 50 75 100 125 150
Epoch Epoch

Figure 6. The accuracy evolution curve for train and test for the
cases with vanilla SGD and Adam optimizer

an important role for network ternarization in our case. The reason
of that may comes to twofolds: 1) on one hand, all the layer-wise
ternarization thresholds are initialized with small values where the
difference is not significant. 2) on the other hand, all the thresh-
olds are fully trainable which will mitigate the difference during
training.

4.3. Performance on ImageNet dataset

Beyond the ablation studies we performed on the CIFAR-10
dataset, we also conduct the experiment on large scale ImageNet
dataset with ResNet-18/34/50 (type-b residual connection) net-
work structures. The experimental results are listed in Table 2

Figure 7. The accuracy evolution curve for train and test for the
cases with various threshold initialization.

together the methods adopted in related works. Since for the realis-
tic case that neural network operating on the specifically designed
hardware, it is expected that all the layers are ternarized. The re-
sults shows that, our result can achieve the state-of-the-art results.
The layer-wise thresholds are initialized as §; = 0.1 X |maxz(wy)|.
We use the full-precision pre-trained model for weight initializa-
tion as described in Fig. 1. The learning rate starts from le-4, then
change to 2e-5, 4e-6, 2e-6 at epoch 30, 40, 45 correspondingly.
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5. Conclusion and future works

In this work, we have proposed a neural network ternariza-
tion method which incorporate thresholds as trainable parameter
within the network inference path, thus both weights and thresh-
olds are updated through back-propagation. Furthermore, we ex-
plicitly discuss the importance of straight-through-estimator de-
sign for approximating the gradient for staircase function. In gen-
eral, our work is based on the assumption that the weight of deep
neural network is tend to following Gaussian distribution. It turns
out that such assumption somehow successfully returns a abstract
model for network ternarization purpose.
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