
Simultaneously Optimizing Weight and Quantizer of Ternary Neural Network

using Truncated Gaussian Approximation

Zhezhi He

University of Central Florida

Orlando, FL 32816

Elliot.He@Knights.ucf.edu

Deliang Fan

University of Central Florida

Orlando, FL 32816

dfan@ucf.edu

Abstract

In the past years, deep convolution neural network has

achieved great success in many artificial intelligence ap-

plications. However, its enormous model size and massive

computation cost have become the main obstacle for the de-

ployment of such powerful algorithm in the low power and

resource-limited mobile systems. As the countermeasure to

this problem, deep neural networks with ternarized weights

(i.e., -1, 0, +1) have been widely explored to greatly re-

duce the model size and computational cost, with limited

accuracy degradation. In this work, we propose a novel

ternarized neural network training method which simulta-

neously optimizes both weights and quantizer during train-

ing, differentiating from prior works. Instead of fixed and

uniform weight ternarization, we are the first to incorpo-

rate the thresholds of weight ternarization into a closed-

form representation using truncated Gaussian approxima-

tion, enabling simultaneous optimization of weights and

quantizer through back-propagation training. With both of

the first and last layer ternarized, the experiments on the Im-

ageNet classification task show that our ternarized ResNet-

18/34/50 only has ∼3.9/2.52/2.16% accuracy degradation

in comparison to the full-precision counterparts.

1. Introduction

Artificial intelligence is nowadays one of the hottest re-

search topics, which has drawn tremendous efforts from

various fields in the past years. While computer scientists

have succeeded to develop Deep Neural Networks (DNN)

with transcendent performance in the domains of computer

vision, speech recognition, big data processing and etc.

[13]. The state-of-the-art DNN evolves into structures with

larger model size, higher computational cost and denser

layer connections [8, 25, 24, 11]. Such evolution brings

great challenges to the computer hardware in terms of both

computation and on-chip storage [10], which leads to great

research effort on the topics of model compression in recent

years, including channel pruning [9, 29], weight sparsifica-

tion [7], weight quantization [6] and etc [10].

Weight ternarization, as a special case of weight quan-

tization technique to efficiently compress DNN model,

mainly provides three benefits: 1) it converts the floating-

point weights into the ternary format (i.e., -1, 0, +1), which

can significantly reduce the model size by 16×. With proper

sparse encoding technique, such model compression rate

can be further boosted. 2) Besides the model size reduc-

tion, the ternarized weight enables elimination of hardware-

expensive floating-point multiplication operations, while re-

placing with hardware friendly addition/subtraction opera-

tions. Thus, it could significantly reduce the inference la-

tency. 3) The ternarized weights with zero values intrin-

sically prune network connections, thus the computations

related to those zero weights can be simply skipped.

In the previous low bit-width quantization works, such

as TTN [15], TTQ [28] and BNN [5], they do re-train the

models’ weights but a fixed weight quantizer is used and

not properly updated together with other model parame-

ters, which leads to accuracy degradation and slow con-

vergence of training. In this work, we have proposed a

network ternarization method which simultaneously update

both weights and quantizer (i.e. thresholds) during training,

where our contributions can be summarized as:

• We propose a fully trainable DNN ternarization

method that can jointly train the quantizer threshold,

layer-wise scaling factor, and weights to minimize the

accuracy degradation caused by the model compres-

sion.

• Rather than utilizing the fixed and uniform ternar-

izer, we are the first to incorporate the thresholds of

weight ternarization into a closed-form expression us-

ing truncated Gaussian approximation, which can be

optimized through back-propagation together with net-

work’s other parameters through the end-to-end train-

ing.

11438

• We further optimize the widely used Straight-

Through-Estimator (STE) [2, 5] with gradient correct-

ness technique. It gives better gradient approximation

for the non-differential staircase ternarization function,

which leads to faster convergence speed and higher in-

ference accuracy.

• In order to validate the effectiveness of our proposed

methods, we apply the proposed model ternarization

method on CIFAR-10 and ImageNet datasets for object

classification task.

The rest of this paper is organized as follows. We first

give a brief introduction to the related works regarding the

topics of model compression. Then the proposed network

ternarization method and the applied tricks are explained in

details. In the following section, experiments are performed

on both small and large scale dataset with the various DNN

architectures, to evaluate the effectiveness of our proposed

method. After that, the conclusion is drawn in the end.

2. Related Works

Recently, model compression on deep convolutional

neural network has emerged as one hot topic in the hard-

ware deployment of artificial intelligence. There are various

techniques, including network pruning [17], knowledge dis-

tillation [18], weight sparsification [7], weight quantization

[6] and etc. [22], to perform network model compression.

As one of the most popular technique, weight quan-

tization techniques are widely explored in many related

works which can significantly shrink the model size and re-

duce the computation complexity [10]. The famous deep

compression technique [6] adopts the scheme that optimiz-

ing weight quantizer using K-means clustering on the pre-

trained model. Even though the deep compression tech-

nique can achieve negligible accuracy degradation with 8-

bit quantized weight, its performance on low-bit quantized

case is non-ideal. Thereafter, many works are devoted to

quantize the model parameters into binary [5, 20] or ternary

formats [28], not only for its extremely model size reduc-

tion (16× ∼ 32×), but also the computations are simplified

from floating-point multiplication (i.e. mul) operations into

addition/subtraction (i.e. add/sub). BinaryConnect [4] is

the first work of binary CNN which can get close to the

state-of-the-art accuracy on CIFAR-10, whose most effec-

tive technique is to introduce the gradient clipping. After

that, both BWN in [20] and DoreFa-Net [27] show better

or close validation accuracy on ImageNet dataset. In order

to reduce the computation complexity, XNOR-Net [20] bi-

narizes the input tensor of convolution layer which further

converts the Add/Sub operations into bit-wise Xnor and

bit-count operations.

Besides weight binarization, there are also recent works

proposing to ternarize the weights of neural network using

trained scaling factors [28]. Leng et al. employ ADMM

method to optimize neural network weights in configurable

discrete levels to trade off between accuracy and model size

[14]. ABC-Net in [16] proposes multiple parallel binary

convolution layers to improve the network model capac-

ity and accuracy, while maintaining binary kernel. All the

aforementioned aggressive DNN binarization or ternariza-

tion methods sacrifice inference accuracy, in comparison

with the full precision counterpart, to achieve large model

compression rate and computation cost reduction.

3. Methodology

3.1. Problem Definition

As for weight quantization of neural networks, the state-

of-the-art work [26] typically divides it into two sub-

problems: 1) minimizing the quantization noise (i.e., Mean-

Square-Error) between floating-point weights and quan-

tized weights, and 2) minimizing the inference error of

DNN w.r.t the defined objective function of DNN infer-

ence. In this work, instead of optimizing two sub-problems

separately, we mathematically incorporate the thresholds of

weight quantizer into neural network forward path, thus en-

abling the simultaneous optimization of weights and thresh-

olds through back-propagation method. In this work, given

the vectorized input x and target t, the network optimiza-

tion problem can be described as:

argmin
{wl,Sl,∆

±

l
}L

l=1

L(f(x; {w′
l}

L
l=1), t)

s.t. w′
l = Tern(wl, Sl,∆

±
l)

(1)

where f(x; {w′
l}

L
l=1) calculates the outputs of DNN, which

is parameterized by the ternarized weight, w.r.t the input

x. {w′
l}

L
l=1. L is the number of layers in DNN. wl is

the floating-point weights in l-th layer, before ternarization.

L(·, ·) is the defined loss function. The ternarization func-

tion Tern() in Eq. (1) is parameterized by the ternarized

value Sl and thresholds ∆±
l , where the equation detail is

given as Eq. (2) in the following section.

3.2. Trainable ternarization under Gaussian ap­
proximation

In this subsection, we will first introduce our weight

ternarization methodology. Then, our proposed method

to incorporate ternarization thresholds into neural network

inference path, which makes it trainable through back-

propagation, is discussed particularly.

3.2.1 Network Ternarization:

For the sake of obtaining a DNN with ternarized weight

and minimized accuracy gap w.r.t to its full-precision coun-

11439

Batch Loss


'



 1) 2)

3)

4)



(a) processes to only update thresholds δ

Batch Loss


'



 1) 2)

3)

4)



(b) processes to only update weights w

Figure 1. The flowchart of network ternarization, where

solid/dashed line indicate activate/inactive step transition.

1)⇒2)⇒3)⇒2)⇒4) steps are iteratively operated during training.

terpart, the training scheme for one iteration (as shown in

Fig. 1) can be generally enumerated as four steps:

1) Initialize the weight with full-precision pre-trained

model. Previous works have experimentally demon-

strated that fine-tuning the pre-trained model with

small learning rate normally generates a quantized

model with higher accuracy. More importantly, with

the pre-trained model as parameter initialization, much

less number of training epochs is required to get model

converged in comparison to training from scratch.

2) Ternarize the full-precision weight wl,i w.r.t the layer-

wise thresholds ∆±
l and quantized value Sl (aka. scal-

ing coefficient) in real-time. The weight ternarization

function can be described as:

w′
l,i = Sl · Tern(wl,i,∆

±
l)

= Sl ·











+1 wl,i > ∆+

l

0 ∆−
l ≤ wl,i ≤ ∆+

l

−1 wl,i < ∆−
l

(2)

Note that, the scaling coefficient Sl can be written in

a closed-form function with threshold, which is key to

incorporate the the quantizer optimization into DNN

training without modifying the loss function. The for-

mula derivation of Sl will be specified in Section 3.2.2.

Moreover, since we propose to use symmetric thresh-

olds centered by µl for weight ternarization, thus we

reformat ∆±
l = µl±δl, where µl is the statistical mean

of wl.

3) With one given input batch, this step only updates the

thresholds {δl}
L
l=1 through back-propagation. Mean-

while, the update of weight is suspended in the current

step.

4) With the identical input batch, it repeats step-2 to

synchronize the ternarized weights {w′
l}

L
l=1 w.r.t the

updated thresholds {δl}
L
l=1 in step-3. Then, it sus-

pends the update of thresholds and only allows full-

precision weight base to be updated 1. Since the stair-

case ternarization function (Tern(·) in Eq. (2)) is non-

differential owing to its zero derivatives almost ev-

erywhere, we adopt the method of Straight-Through-

Estimator (STE) [2] similar as previous network quan-

tization works [28]. It is noteworthy that we propose

and apply the gradient correctness technique on STE,

which is critical to improving the convergence speed

for weight retraining (see details in Section 3.3).

Now with the ternarized weights, the major computa-

tion of DNN is converted from the computational expensive

floating-point Multiplication-and-Accumulation (MAC) to

more efficient and less complex addition and subtraction

(Add/Sub). The computation can be expressed as2:

xT
l ·w

′
l = xT

l ·(Sl ·Tern(wl)) = Sl ·(x
T
l ·Tern(wl)) (3)

where xl and w′
l are the vectorized input and ternarized

weight of l-th layer respectively. In the state-of-the-art

DNN architectures, convolution/fully-connected layers nor-

mally follows a batch-normalization layer [12] (i.e., Affine

function) or ReLU, where both of them perform element-

wise multiplication on their input tensor (i.e., xT
l · w

′
l).

Therefore, the element-wise scaling with Sl in Eq. (3)

can be emitted and integrated with the following batch-

norm/RELU layer in the forward path. In addition to the

above description, we formalize the operations in Algo-

rithm 1 as well for clarification.

3.2.2 Trainable thresholds utilizing truncated Gaus-

sian distribution approximation:

It has been discussed in previous works [3, 1] that the

weighted distributions of spatial convolution layers and

fully-connected layers are intending to follow Gaussian dis-

tribution, whose histogram is in bell-shape, owing to the

regularization effect of L2-norm weight penalty. For exam-

ple, in Fig. 2, we have shown the weight distributions and

their corresponding Probability Density Function (PDF) us-

ing the calculated mean and standard deviation for each

parametric layer (i.e., convolution and fully-connected lay-

ers) in ResNet-18b [8]. Meanwhile, the Shapiro-Wilk nor-

mality test [23] is conducted to identify whether the weight

sample originated from Gaussian distribution quantitatively.

The given test statistic Ws of Shapiro-Wilk normality test

indicate a good normally distribution match with minimum

1During the training, ternarized weights are calculated from the full-

precision weight base in real-time, thus the weight update is performed on

the full-precision weight instead of its ternarized counterpart.
2For simplicity, we neglect the bias term.

11440

0.5 0.0 0.5 1.0
0

10

20

conv1
=2.94E-05
=1.30E-01

#w=9408
Ws=0.86

0.5 0.0 0.5
0

25

50

layer1.0.conv1
=-3.09E-03
=5.34E-02

#w=36864
Ws=0.82

0.4 0.2 0.0 0.2
0

5

10

layer1.0.conv2
=-8.89E-04
=4.52E-02

#w=36864
Ws=0.95

0.5 0.0 0.5
0

5

10

layer1.1.conv1
=-2.42E-03
=5.08E-02

#w=36864
Ws=0.90

0.4 0.2 0.0 0.2
0

5

10

layer1.1.conv2
=-1.26E-03
=4.40E-02

#w=36864
Ws=0.96

0.2 0.0 0.2
0

5

10

layer2.0.conv1
=-1.45E-03
=4.16E-02

#w=73728
Ws=0.95

0.2 0.0 0.2 0.4
0

10

layer2.0.conv2
=-1.25E-03
=3.40E-02

#w=147456
Ws=0.94

0.5 0.0 0.5
0

5

10
layer2.0.downsample.0

=-2.59E-03
=7.06E-02

#w=8192
Ws=0.86

0.4 0.2 0.0 0.2 0.4
0

10

layer2.1.conv1
=-1.53E-03
=3.42E-02

#w=147456
Ws=0.95

0.2 0.0 0.2
0

10

layer2.1.conv2
=-1.27E-03
=3.01E-02

#w=147456
Ws=0.97

0.4 0.2 0.0 0.2
0

10

layer3.0.conv1
=-1.37E-03
=2.90E-02

#w=294912
Ws=0.95

0.2 0.0 0.2
0

10

20
layer3.0.conv2

=-7.87E-04
=2.50E-02

#w=589824
Ws=0.96

0.2 0.0 0.2
0

10

layer3.0.downsample.0
=-1.90E-03
=3.29E-02

#w=32768
Ws=0.96

0.2 0.0 0.2
0

10

20
layer3.1.conv1

=-1.66E-03
=2.24E-02

#w=589824
Ws=0.97

0.2 0.0 0.2
0

10

20
layer3.1.conv2

=-1.44E-03
=2.07E-02

#w=589824
Ws=0.98

0.2 0.0 0.2 0.4
0

10

20
layer4.0.conv1

=-1.56E-03
=1.99E-02

#w=1179648
Ws=0.98

0.2 0.0 0.2
0

10

20

layer4.0.conv2
=-1.30E-03
=1.73E-02

#w=2359296
Ws=0.99

0.5 0.0 0.5
0

10

layer4.0.downsample.0
=-8.43E-04
=3.28E-02

#w=131072
Ws=0.96

0.2 0.0 0.2
0

10

20

layer4.1.conv1
=-2.26E-03
=1.78E-02

#w=2359296
Ws=0.99

0.1 0.0 0.1 0.2
0

20

layer4.1.conv2
=-1.08E-04
=1.32E-02

#w=2359296
Ws=0.98

0.25 0.00 0.25 0.50 0.75
0

5

fc
=5.85E-08
=6.95E-02

#w=512000
Ws=0.91

Figure 2. The histogram of weights wl (blue shadow) along with the PDF curve (red line) of Gaussian distribution N (µl, σ
2
l), for each

convolution, fully-connected and residual layers in ResNet-18b [8]. µl and σ2
l are the statistical mean and variance of wl, respectively. For

layers with more number of weights (#w), the weights distribution conforms to the Gaussian distribution more precisely.

0.82 value. Note that, the asymmetry (i.e., Skewness) of

the last fully-connected layer is due to the existence of bias

term. In this work, we consider the weight of parametric

layers (i.e., convolution and fully-connected layers) approx-

imately following Gaussian distribution, then we perform

the weight ternarization based on such approximation.

In order to make the thresholds {δl}
L
l=1 as trainable

parameters that can be updated through back-propagation,

there are two criteria that have to meet:

• Thresholds {δl}
L
l=1 have to be parameters within the

DNN inference path in a closed-form expression.

• Such closed-form expression is differentiable w.r.t the

thresholds.

Hereby, we first make the assumption that:

Assumption 1 the weights of designated layer l are ap-

proximately following Gaussian distribution (i.e., wl ∼
N (µl, σ

2
l)), where µl and σl are the calculated mean and

standard deviation of the weight sample wl.

where such assumption is the key to incorporate the thresh-

olds into DNN inference path in a differentiable closed-

form.
For the quantizer design of either uniformly or non-

uniformly distributed data, the centroid is normally taken
as the quantized value to minimize the quantization error
[19]. Thus, for weight ternarization, the layerwise scaling
coefficient (i.e., quantized value) can be described as:

Sl(wl,∆
±
l) =

∫ ∆
−

l

−∞

φc(x) · xdx+

∫ +∞

∆l

φc(x) · xdx

= E(|wl,i|
∣

∣(wl,i > ∆+

l) ∪ (wl,i < ∆−
l))

(4)

where φc(x) is the conditional PDF under the condition of (x >
∆+

l)∨ (x < ∆−
l). In this work, by setting ∆±

l = µl ± δl, we can

approximate the Eq. (4) and reformat it into:

Sl(µl, σl, δl) =

∫ b=+∞

a=µl+δl

φ(x
∣

∣µl, σl)

Φ(b
∣

∣µl, σl)− Φ(a
∣

∣µl, σl)
· xdx (5)

where φ(x
∣

∣µl, σl) and Φ(x
∣

∣µl, σl) are the PDF and CDF for

Gaussian distribution N (µl, σ
2
l) . Such calculation can directly

utilize the closed-form expression of mathematical expectation

for truncated Gaussian distribution with lower bound a and up-

per bound b. Thus, we finally obtain a closed-form expression of

scaling factor embedding trainable thresholds δl:

α =
a− µl

σl

=
δl
σl

; β =
b− µl

σl

= +∞ (6)

Sl(µl, σl, δl) = µl − σl ·
φ(β|0, 1)− φ(α|0, 1)

Φ(β|0, 1)− Φ(α|0, 1)

= µl + σl ·
φ(α|0, 1)

1− Φ(α|0, 1)

(7)

where φ(·
∣

∣0, 1) and Φ(·
∣

∣0, 1) are PDF and CDF of standard nor-

mal distribution N (0, 1).

5.0 2.5 0.0 2.5 5.0
l

0

2

4

Forward
Sl(l=0, l=1, l)

5.0 2.5 0.0 2.5 5.0
l

0.0
0.5
1.0
1.5
2.0

Backward
Sl(l=0, l=1, l)

l

(a)

5.0 2.5 0.0 2.5 5.0
l

0
1
2
3
4
5

Forward
Sl(l=0, l=1, c

l)

5.0 2.5 0.0 2.5 5.0
l

1

0

1

2

Backward
Sl(l=0, l=1, c

l)
l

(b)

Figure 3. The forward and backward curves for (a) Sl(µl, σl, δl)
and (b) Sl(µl, σl, δ

c
l) w.r.t δl, where δcl is δl with clipping con-

straints . Note that, we choose µl = 0 and σl = 1 as the example

for visualization.

As shown in Fig. 3a, we plot the function of Sl in the for-

ward and backward paths w.r.t the variation of δl for visualiza-

tion. Since most of the popular deep learning frameworks using

11441

numerical method (e.g., Monte-Carlo method) for distribution re-

lated calculation, there will be error for calculating Sl and ∂Sl/∂δl
at the tail of distribution (i.e., δl > 3σl). For ensuring the cor-

rectness of Sl in both forward and backward path and prevent the

framework convergence issue, we perform the clipping on δl, thus

|δl| ∈ (0, 3σl). Such clipping operation is functionally equivalent

as propagating δl through the hard-tanh function, which is piece-

wise linear activation function with upper-limit j and lower-limit

k, then the trainable thresholds with clipping constraints can be

expressed as:

hardtanh(x, j, k) = Clip(x, j, k) = max(j,min(x, k)) (8)

δcl = hardtanh(abs(δl), 0, 3σl) (9)

After the substitution of δl with its clipped version δcl , the forward

and backward function of Sl is transformed from Fig. 3a to Fig. 3b.

Beyond that, since the weight decay tends to push the trainable

threshold of δl close to zero which biases the ternary weight rep-

resentation towards the binary counterpart, thus we do not apply

weight decay on threshold δl during training.

In summary, we finalize the scaling factor term and weight

ternarization function to substitute the original full-precision

weight in the forward propagation path:

Sl(µl, σl, δl) = µl + σl ·
φ(δcl /σl|0, 1)

1− Φ(δcl /σl|0, 1)
(10)

Tern(wl,i, µl, δl) =











+1 wl,i > µl + δcl

0 µl − δcl ≤ wl,i ≤ µl + δcl

−1 wl,i < µl − δcl

(11)

3.3. STE with Gradient Correctness

Almost for any quantization function which maps the continu-

ous values into discrete space, it has encountered the same prob-

lem that such stair-case function is non-differentiable. Thus, a

widely adopted solution is using the so-called Straight-Through-

Estimator (STE) to manually assign an approximated gradient to

the quantization function. We take the STE in famous binarized

neural network [5] as an example to perform the analysis (Fig. 4a),

where the forward and backward of binarization function are de-

fined as:

Forward : ro = sgn(ri) (12)

Backward :
∂L

∂ro

STE
=

∂L

∂ri

∣

∣

∣

∣

|ri|≤1

=⇒
∂ro
∂ri

∣

∣

∣

∣

|ri|≤1

= 1 (13)

where L is the DNN inference loss. The rule behind such STE

setup is that the output of quantization function ro can effec-

tively represent the full-precision input value ri. Thus, Sign(·)
performs the similar function as f(ri) = ri whose derivative is

∂f(ri)/∂ri = 1. However, the rough approximation in Eq. (12)

and Eq. (13) leads to significant quantization error and hamper the

network training. When ri is either too large or too small (ri << 1
or ri >> 1), the gradients of ri will be stationary if binarized

value ro is not changed.

In order to encounter the drawback of naive STE design dis-

cussed above, we propose a method called gradient correctness for

better gradient approximation. For our weight ternarization case,

the full-precision weight base wl is represented by Sl(µl, σl, δl) ·

+1

-1

+1-1 i
r

o
r

io
rr 

(a)

+1

-1

+1-1

i

l

o
r

s
r

1


io
rr 

i
r

o
r

(b)

Figure 4. Analysis about the quantizer’s straight-through-estimator

design for (a) ro = sign(ri) for [5] and (b) ro = Tern(ri) in this

work.

Tern(wl), where both terms can pass back gradients to update

the embedding parameters. For assigning a proper gradient to the

Tern(wl,i), we follow STE design rule which leads to the follow-

ing expression:

∂w′
l,i

∂wl,i

=
∂Sl · Tern(wl,i)

∂wl,i

= Sl
∂Tern(wl,i)

∂wl,i

= 1 (14)

Thus, the STE for ternarization function can be derived Eq. (14)

as:

∂Tern(wl,i)

∂wl,i

=
1

Sl

(15)

As seen in Eq. (15), instead of simply assigning the gradient as 1,

we scale the ∂Tern(wl,i)/∂wl,i w.r.t the value of Sl(µl, σl, δl)
in real time. As shown in Fig. 4b, STE could better approximate

the gradient with adjustable gradient correctness term.

4. Experiment and Result Evaluation

4.1. Experiment setup

In this work, we evaluate our proposed network ternarization

method for object classification task with CIFAR-10 and ImageNet

datasets. All the experiments are performed under Pytorch deep

learning framework using 4-way NVIDIA Titan-XP GPUs. For

clarification, in this work, both the first and last layer are ternarized

during the training and test stage.

CIFAR-10 contains 50 thousands training samples and 10 thou-

sands test samples with 32×32 image size. The data augmentation

method is identical as used in [8]. For fine-tuning, we set the initial

learning rate as 0.1, which is scheduled to scale by 0.1 at epoch 80,

120 respectively. The mini-batch size is set to 128. In order to pro-

vide a more comprehensive experimental results on large dataset,

we examine our model ternarization techniques on image classifi-

cation task with ImageNet [21] (ILSVRC2012) dataset. ImageNet

contains 1.2 million training images and 50 thousands validation

images, which are labeled with 1000 categories. For the data pre-

processing, we choose the scheme adopted by ResNet [8]. Aug-

mentations applied to the training images can be sequentially enu-

merated as: 224× 224 randomly resized crop, random horizontal

flip, pixel-wise normalization. All the reported classification ac-

curacy on validation dataset is single-crop result. The mini-batch

size is set to 256.

11442

Algorithm 1 Training both the weights and thresholds of

ternarized network under the assumption that weights are

following Gaussian distribution.

Require: : a mini-batch of inputs x and its correspond-

ing targets yt, number of layers N , full-precision pre-

trained weights w̄, initial thresholds δ full-precision

weight base wt and layer-wise thresholds δt from last

training iteration t, learning rate η, network inference

function f(·).
Ensure: for current iteration index of t + 1, updated full-

precision weights wt+1, updated layer-wise thresholds

δt+1.

{Step-1. Initialization:}
1: if t = 0 then ⊲ This is the first training iteration

2: w ← w̄; δ ← δ̄ ⊲ load pretrained model

3: else

4: w ← wt; δ ← δt ⊲ load from last iteration

5: end if

{Step-2. Weight ternarization:}
6: for l := 1 to N do

7: µl ← wl.mean();σl ← wl.std()

8: w′
l ← Sl(µl, σl, δl) · Tern(wl, µl, δl) ⊲ Eqs. (10)

and (11)

9: end for

{Step-3. Update thresholds δ only:}
10: y ← f(x,w′) ⊲ forward propagation, Eq. (3)

11: L ← Loss(y,yt) ⊲ get inference error

12: for l := N to 1 do

13: gδl ← ∂L/∂δl ⊲ back-propagate for gradients

14: δl ← Update(δl, gδl , η) ⊲ Using vanilla SGD

15: end for

{Repeat Step-2: from op-6 to op-10} ⊲ important step!

{Step-4. Update weights w only:}
16: y ← f(x,w′)
17: L ← Loss(y,yt)
18: for l := N to 1 do

19: gwl
← ∂L/∂wl ⊲ back-propagate for gradients

20: wl ← Update(wl, gwl
, η) ⊲ Using SGD/Adam

21: end for

return wt+1 ← w; δt+1 ← δ

4.2. Ablation studies

In order to exam the effectiveness of our proposed methods, we

have performed the following ablation studies. The experiments

are conducted with ResNet-20 [8] on CIFAR-10 dataset, where

the differences are significant enough to tell the effectiveness.

4.2.1 Gradient Correctness

We compare the accuracy curve convergence speed between the

STE with or without the gradient correctness. As shown in Fig. 5,

the network training speed with gradient correctness is much faster

in comparison with the case without gradient correctness. The

Table 1. Ablation study of proposed method using ResNet-20 on

CIFAR-10 dataset.

Configurations Accuracy

full-precision (baseline) 91.7%

w/ gradient correctness 90.39%

w/o gradient correctness 87.89%

vanilla SGD 90.39%

Adam 56.31%

Initialize with δl = 0.05max(|wl|) 89.96%

Initialize with δl = 0.1max(|wl|) 90.24%

Initialize with δl = 0.15max(|wl|) 90.12%

0 25 50 75 100 125 150
Epoch

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

w/ gradient correctness-test
w/ gradient correctness-train
w/o gradient correctness-test
w/o gradient correctness-train

Figure 5. The accuracy evolution curve for train and test for the

cases w/ or w/o gradient correctness.

main reason cause the convergence speed degradation is that when

layer-wise scaling factor is less than 1, without gradient correct-

ness, the gradient of the loss function w.r.t the weights is scaled

by the scaling factor due to the chain-rule. Thus, weights are up-

dated with a much smaller step-size in comparison to the thresh-

olds, when optimized are set up with identical parameters (e.g.,

learning rate, etc.).

4.2.2 Optimizer on thresholds

The vanilla SGD and Adam are two most adopted optimizers for

quantized neural network training. Hereby, we took those two op-

timizers as an example to show the training evolution. Note that,

since weights and thresholds are iteratively updated for each input

mini-batch, we can use different optimizer for weights and thresh-

olds. In this experiment, we use SGD for weight optimization,

while using SGD and Adam on thresholds. The result depicted in

Fig. 6 shows that it is better to use the same SGD optimizers to

achieve higher accuracy.

4.2.3 Thresholds Initialization

In order to exam how the threshold initialization affects

the network training, we initialize the threshold as δl =
{0.05, 0.1, 0.15} · max(|wl|) for all the layers. The experimental

results reported in Fig. 7 shows that the initialization does not play

11443

Table 2. Validation accuracy (top1/top5 %) of ResNet-18/34/50b [8] on ImageNet using various model quantization methods.

Quan.

scheme

First

layer

Last

layer

Accuracy

(top1/top5)

Comp.

rate

ResNet-18b

Full precision - FP FP 69.75/89.07 1×
BWN[20] Bin. FP FP 60.8/83.0 ∼32×

ABC-Net[16] Bin. FP* FP* 68.3/87.9 ∼6.4×
ADMM[14] Bin. FP* FP* 64.8/86.2 ∼32×

TWN[15, 14] Tern. FP FP 61.8/84.2 ∼16×
TTN[28] Tern. FP FP 66.6/87.2 ∼16×

ADMM[14] Tern. FP* FP* 67.0/87.5 ∼16×
APPRENTICE[18] Tern. FP* FP* 68.5/- ∼16×

this work Tern. FP FP 68.09/87.90 ∼16×
this work Tern. Tern Tern 65.83/86.68 ∼16×

ResNet-34b

Full precision - FP FP 73.31/91.42 1×
APPRENTICE[18] Tern. FP* FP* 72.8/- ∼16×

this work Tern. Tern Tern 70.79/89.89 ∼16×

ResNet-50b

Full precision - FP FP 76.13/92.86 1×
APPRENTICE[18] Tern. FP* FP* 74.7/- ∼16×

this work Tern. Tern Tern 73.97/91.65 ∼16×

0 25 50 75 100 125 150
Epoch

20

40

60

80

Ac
cu

ra
cy

 (%
)

vanilla SGD-test
vanilla SGD-train
Adam-test
Adam-train

Figure 6. The accuracy evolution curve for train and test for the

cases with vanilla SGD and Adam optimizer

an important role for network ternarization in our case. The reason

of that may comes to twofolds: 1) on one hand, all the layer-wise

ternarization thresholds are initialized with small values where the

difference is not significant. 2) on the other hand, all the thresh-

olds are fully trainable which will mitigate the difference during

training.

4.3. Performance on ImageNet dataset

Beyond the ablation studies we performed on the CIFAR-10

dataset, we also conduct the experiment on large scale ImageNet

dataset with ResNet-18/34/50 (type-b residual connection) net-

work structures. The experimental results are listed in Table 2

0 25 50 75 100 125 150
Epoch

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

initial with 0.05 max(|w|)-test
initial with 0.05 max(|w|)-train
initial with 0.1 max(|w|)-test
initial with 0.1 max(|w|)-train
initial with 0.15 max(|w|)-test
initial with 0.15 max(|w|)-train

Figure 7. The accuracy evolution curve for train and test for the

cases with various threshold initialization.

together the methods adopted in related works. Since for the realis-

tic case that neural network operating on the specifically designed

hardware, it is expected that all the layers are ternarized. The re-

sults shows that, our result can achieve the state-of-the-art results.

The layer-wise thresholds are initialized as δl = 0.1×|max(wl)|.
We use the full-precision pre-trained model for weight initializa-

tion as described in Fig. 1. The learning rate starts from 1e-4, then

change to 2e-5, 4e-6, 2e-6 at epoch 30, 40, 45 correspondingly.

11444

5. Conclusion and future works

In this work, we have proposed a neural network ternariza-

tion method which incorporate thresholds as trainable parameter

within the network inference path, thus both weights and thresh-

olds are updated through back-propagation. Furthermore, we ex-

plicitly discuss the importance of straight-through-estimator de-

sign for approximating the gradient for staircase function. In gen-

eral, our work is based on the assumption that the weight of deep

neural network is tend to following Gaussian distribution. It turns

out that such assumption somehow successfully returns a abstract

model for network ternarization purpose.

Acknowledgement: This work is supported in part by the Na-

tional Science Foundation under Grant No. 1740126 and Semi-

conductor Research Corporation nCORE.

References

[1] C. Baskin, E. Schwartz, E. Zheltonozhskii, N. Liss,

R. Giryes, A. M. Bronstein, and A. Mendelson. Uniq: uni-

form noise injection for the quantization of neural networks.

arXiv preprint arXiv:1804.10969, 2018. 3

[2] Y. Bengio, N. Léonard, and A. Courville. Estimating or prop-

agating gradients through stochastic neurons for conditional

computation. arXiv preprint arXiv:1308.3432, 2013. 2, 3

[3] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wier-

stra. Weight uncertainty in neural networks. arXiv preprint

arXiv:1505.05424, 2015. 3

[4] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect:

Training deep neural networks with binary weights during

propagations. In Advances in neural information processing

systems, pages 3123–3131, 2015. 2

[5] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and

Y. Bengio. Binarized neural networks: Training deep neu-

ral networks with weights and activations constrained to+ 1

or-1. arXiv preprint arXiv:1602.02830, 2016. 1, 2, 5

[6] S. Han, H. Mao, and W. J. Dally. Deep compres-

sion: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015. 1, 2

[7] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights

and connections for efficient neural network. In Advances

in neural information processing systems, pages 1135–1143,

2015. 1, 2

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016. 1, 3, 4, 5, 6, 7

[9] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerat-

ing very deep neural networks. In Proceedings of the IEEE

International Conference on Computer Vision, pages 1389–

1397, 2017. 1

[10] Z. He, B. Gong, and D. Fan. Optimize deep convolutional

neural network with ternarized weights and high accuracy. In

2019 IEEE Winter Conference on Applications of Computer

Vision (WACV), pages 913–921. IEEE, 2019. 1, 2

[11] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.

Densely connected convolutional networks. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, volume 1, page 3, 2017. 1

[12] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167, 2015. 3

[13] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature,

521(7553):436, 2015. 1

[14] C. Leng, H. Li, S. Zhu, and R. Jin. Extremely low bit neural

network: Squeeze the last bit out with admm. arXiv preprint

arXiv:1707.09870, 2017. 2, 7

[15] F. Li, B. Zhang, and B. Liu. Ternary weight networks. arXiv

preprint arXiv:1605.04711, 2016. 1, 7

[16] X. Lin, C. Zhao, and W. Pan. Towards accurate binary convo-

lutional neural network. In Advances in Neural Information

Processing Systems, pages 344–352, 2017. 2, 7

[17] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning

method for deep neural network compression. arXiv preprint

arXiv:1707.06342, 2017. 2

[18] A. Mishra and D. Marr. Apprentice: Using knowledge dis-

tillation techniques to improve low-precision network accu-

racy. arXiv preprint arXiv:1711.05852, 2017. 2, 7

[19] J. G. Proakis, M. Salehi, N. Zhou, and X. Li. Communication

systems engineering, volume 2. Prentice Hall New Jersey,

1994. 4

[20] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-

net: Imagenet classification using binary convolutional neu-

ral networks. In European Conference on Computer Vision,

pages 525–542. Springer, 2016. 2, 7

[21] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge.

International Journal of Computer Vision, 115(3):211–252,

2015. 5

[22] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.

Chen. Mobilenetv2: Inverted residuals and linear bottle-

necks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4510–4520, 2018. 2

[23] S. S. Shapiro and M. B. Wilk. An analysis of variance test

for normality (complete samples). Biometrika, 52(3/4):591–

611, 1965. 3

[24] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 2818–2826, 2016. 1

[25] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated

residual transformations for deep neural networks. In Com-

puter Vision and Pattern Recognition (CVPR), 2017 IEEE

Conference on, pages 5987–5995. IEEE, 2017. 1

[26] D. Zhang, J. Yang, D. Ye, and G. Hua. Lq-nets: Learned

quantization for highly accurate and compact deep neural

networks. arXiv preprint arXiv:1807.10029, 2018. 2

[27] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou.

Dorefa-net: Training low bitwidth convolutional neural

networks with low bitwidth gradients. arXiv preprint

arXiv:1606.06160, 2016. 2

11445

[28] C. Zhu, S. Han, H. Mao, and W. J. Dally. Trained ternary

quantization. arXiv preprint arXiv:1612.01064, 2016. 1, 2,

3, 7

[29] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu,

J. Huang, and J. Zhu. Discrimination-aware channel pruning

for deep neural networks. In Advances in Neural Information

Processing Systems, pages 875–886, 2018. 1

11446

