
Tracking by Animation:

Unsupervised Learning of Multi-Object Attentive Trackers

Zhen He1,2,3∗ Jian Li2 Daxue Liu2 Hangen He2 David Barber3,4

1Academy of Military Medical Sciences
2National University of Defense Technology

3University College London
4The Alan Turing Institute

Abstract

Online Multi-Object Tracking (MOT) from videos is a

challenging computer vision task which has been extensively

studied for decades. Most of the existing MOT algorithms

are based on the Tracking-by-Detection (TBD) paradigm

combined with popular machine learning approaches which

largely reduce the human effort to tune algorithm param-

eters. However, the commonly used supervised learning

approaches require the labeled data (e.g., bounding boxes),

which is expensive for videos. Also, the TBD framework is

usually suboptimal since it is not end-to-end, i.e., it consid-

ers the task as detection and tracking, but not jointly. To

achieve both label-free and end-to-end learning of MOT, we

propose a Tracking-by-Animation framework, where a differ-

entiable neural model first tracks objects from input frames

and then animates these objects into reconstructed frames.

Learning is then driven by the reconstruction error through

backpropagation. We further propose a Reprioritized Atten-

tive Tracking to improve the robustness of data association.

Experiments conducted on both synthetic and real video

datasets show the potential of the proposed model. Our

project page is publicly available at: https://github.

com/zhen-he/tracking-by-animation

1. Introduction

We consider the problem of online 2D multi-object track-

ing from videos. Given the historical input frames, the goal

is to extract a set of 2D object bounding boxes from the

current input frame. Each bounding box should have an

one-to-one correspondence to an object and thus should not

change its identity across different frames.

MOT is a challenging task since one must deal with:

(i) unknown number of objects, which requires the tracker

to be correctly reinitialized/terminated when the object ap-

pears/disappears; (ii) frequent object occlusions, which re-

∗Correspondence to Zhen He (email: hezhen.cs@gmail.com).

quire the tracker to reason about the depth relationship

among objects; (iii) abrupt pose (e.g., rotation, scale, and

position), shape, and appearance changes for the same ob-

ject, or similar properties across different objects, both of

which make data association hard; (iv) background noises

(e.g., illumination changes and shadows), which can mislead

tracking.

To overcome the above issues, one can seek to use ex-

pressive features, or improve the robustness of data associa-

tion. E.g., in the predominant Tracking-by-Detection (TBD)

paradigm [1, 21, 7, 8], well-performed object detectors are

first applied to extract object features (e.g., potential bound-

ing boxes) from each input frame, then appropriate matching

algorithms are employed to associate these candidates of dif-

ferent frames, forming object trajectories. To reduce the hu-

man effort to manually tune parameters for object detectors

or matching algorithms, many machine learning approaches

are integrated into the TBD framework and have largely im-

proved the performance [68, 54, 53, 39]. However, most of

these approaches are based on supervised learning, while

manually labeling the video data is very time-consuming.

Also, the TBD framework does not consider the feature ex-

traction and data association jointly, i.e., it is not end-to-end,

thereby usually leading to suboptimal solutions.

In this paper, we propose a novel framework to achieve

both label-free and end-to-end learning for MOT tasks. In

summary, we make the following contributions:

• We propose a Tracking-by-Animation (TBA) framework,

where a differentiable neural model first tracks objects

from input frames and then animates these objects into

reconstructed frames. Learning is then driven by the

reconstruction error through backpropagation.

• We propose a Reprioritized Attentive Tracking (RAT) to

mitigate overfitting and disrupted tracking, improving

the robustness of data association.

• We evaluate our model on two synthetic datasets

(MNIST-MOT and Sprites-MOT) and one real dataset

(DukeMTMC [49]), showing its potential.

1318



2. Tracking by Animation

Our TBA framework consists of four components: (i) a

feature extractor that extracts input features from each input

frame; (ii) a tracker array where each tracker receives input

features, updates its state, and emits outputs representing

the tracked object; (iii) a renderer (parameterless) that ren-

ders tracker outputs into a reconstructed frame; (iv) a loss

that uses the reconstruction error to drive the learning of

Components (i) and (ii), both label-free and end-to-end.

2.1. Feature Extractor

To reduce the computation complexity when associat-

ing trackers to the current observation, we first use a neu-

ral network NNfeat, parameterized by θfeat, as a feature

extractor to compress the input frame at each timestep

t∈{1, 2, . . . , T}:

Ct = NNfeat
(
Xt;θ

feat
)

(1)

where Xt ∈ [0, 1]H×W×D is the input frame of height H ,

width W , and channel size D, and Ct ∈ R
M×N×S is the

extracted input feature of height M , width N , and channel

size S, containing much fewer elements than Xt.

2.2. Tracker Array

The tracker array comprises I neural trackers indexed by

i∈{1, 2, . . . , I} (thus I is the maximum number of tracked

objects). Let ht,i ∈ R
R be the state vector (vectors are

assumed to be in row form throughout this paper) of Tracker

i at time t, and Ht={ht,1,ht,2, . . . ,ht,I} be the set of all

tracker states. Tracking is performed by iterating over two

stages:

(i) State Update. The trackers first associate input fea-

tures from Ct to update their states Ht, through a neural

network NNupd parameterized by θupd:

Ht = NNupd
(
Ht−1,Ct;θ

upd
)

(2)

Whilst it is straightforward to set NNupd as a Recurrent

Neural Network (RNN) [52, 16, 11] (with all variables

vectorized), we introduce a novel RAT to model NNupd

in order to increase the robustness of data association,

which will be discussed in Sec. 3.

(ii) Output Generation. Then, each tracker generates its

output from ht,i via a neural network NNout parame-

terized by θout:

Yt,i = NNout
(
ht,i;θ

out
)

(3)

where NNout is shared by all trackers, and the output

Yt,i =
{
yct,i,y

l
t,i,y

p
t,i,Y

s
t,i,Y

a
t,i

}
is a mid-level repre-

sentation of objects on 2D image planes, including:

Confidence yct,i∈ [0, 1] Probability of having cap-

tured an object, which can be thought as a soft sign

of the trajectory validity (1/0 denotes valid/invalid).

When time proceeds, an increase/decrease of yct,i
can be thought as a soft initialization/termination of

the trajectory.

Layer yl
t,i∈{0, 1}K One-hot encoding of the image

layer possessed by the object. We consider each im-

age to be composed of K object layers and a back-

ground layer, where higher layer objects occlude

lower layer objects and the background is the 0-th

(lowest) layer. E.g., when K=4, yl
t,i=[0, 0, 1, 0]

denotes the 3-rd layer.

Pose y
p
t,i=[ŝxt,i, ŝ

y
t,i, t̂

x
t,i, t̂

y
t,i]∈ [−1, 1]4 Normalized

object pose for calculating the scale [sxt,i, s
y
t,i] =

[1 + ηxŝxt,i, 1 + ηy ŝyt,i] and the translation

[txt,i, t
y
t,i] = [W2 t̂xt,i,

H
2 t̂

y
t,i], where ηx, ηy > 0 are

constants.

Shape Y s
t,i∈{0, 1}U×V×1 Binary object shape mask

with height U , width V , and channel size 1.

Appearance Y a
t,i∈ [0, 1]U×V×D Object appearance

with height U , width V , and channel size D.

In the output layer of NNout, yct,i and Y a
t,i are gener-

ated by the sigmoid function, y
p
t,i is generated by the

tanh function, and yl
t,i and Y s

t,i are sampled from the

Categorical and Bernoulli distributions, respectively.

As sampling is not differentiable, we use the Straight-

Through Gumbel-Softmax estimator [26] to reparam-

eterize both distributions so that backpropagation can

still be applied.

The above-defined mid-level representation is not only

flexible, but also can be directly used for input frame

reconstruction, enforcing the output variables to be dis-

entangled (as would be shown later). Note that through

our experiments, we have found that the discreteness of

yl
t,i and Y s

t,i is also very important for this disentangle-

ment.

2.3. Renderer

To define a training objective with only the tracker outputs

but no training labels, we first use a differentiable renderer

to convert all tracker outputs into reconstructed frames, and

then minimize the reconstruction error through backpropa-

gation. Note that we make the renderer both parameterless

and deterministic so that correct tracker outputs can be en-

couraged in order to get correct reconstructions, enforcing

the feature extractor and tracker array to learn to generate

desired outputs. The rendering process contains three stages:

(i) Spatial Transformation. We first scale and shift Y s
t,i

and Y a
t,i according to y

p
t,i via a Spatial Transformer

Network (STN) [25]:

T s
t,i = STN

(
Y s
t,i,y

p
t,i

)
(4)

T a
t,i = STN

(
Y a
t,i,y

p
t,i

)
(5)

1319



Figure 1: Illustration of the rendering process converting the tracker outputs into a

reconstructed frame at time t, where the tracker number I=4 and the layer number

K=2.

Figure 2: Overview of the TBA frame-

work, where the tracker number I=4.

where T s
t,i ∈ {0, 1}H×W×1 and T a

t,i ∈ [0, 1]H×W×D are

the spatially transformed shape and appearance, respec-

tively.

(ii) Layer Compositing. Then, we synthesize K image

layers, where each layer can contain several objects.

The k-th layer is composited by:

Lm
t,k = min

(
1,
∑

i

yct,iy
l
t,i,kT

s
t,i

)
(6)

L
f
t,k =

∑

i

yct,iy
l
t,i,kT

s
t,i ⊙ T a

t,i (7)

where Lm
t,k∈ [0, 1]H×W×1 is the layer foreground mask,

L
f
t,k ∈ [0, I]H×W×D is the layer foreground, and ⊙ is

the element-wise multiplication which broadcasts its

operands when they are in different sizes.

(iii) Frame Compositing. Finally, we iteratively recon-

struct the input frame layer-by-layer, i.e., for k =
1, 2, . . . ,K:

X̂
(k)
t =

(
1−Lm

t,k

)
⊙ X̂

(k−1)
t +L

f
t,k (8)

where X̂
(0)
t is the extracted background, and X̂

(K)
t is

the final reconstruction. The whole rendering process

is illustrated in Fig. 1, where ηx=ηy=1.

Whilst the layer compositing can be parallelized by ma-

trix operations, it cannot model occlusion since pixel values

in overlapped object regions are simply added; conversely,

the frame compositing well-models occlusion, but the iter-

ation process cannot be parallelized, consuming more time

and memory. Thus, we combine the two to both reduce the

computation complexity and maintain the ability of occlu-

sion modeling. Our key insight is that though the number of

occluded objects can be large, the occlusion depth is usually

small. Thus, occlusion can be modeled efficiently by using

a small layer number K (e.g., K =3), in which case each

layer will be shared by several non-occluded objects.

2.4. Loss

To drive the learning of the feature extractor as well as

the tracker array, we define a loss lt for each timestep:

lt = MSE
(
X̂t,Xt

)
+ λ ·

1

I

∑

i

sxt,i s
y
t,i (9)

where, on the RHS, the first term is the reconstruction Mean

Squared Error, and the second term, weighted by a constant

λ > 0, is the tightness constraint penalizing large scales

[sxt,i, s
y
t,i] in order to make object bounding boxes more com-

pact. An overview of our TBA framework is shown in Fig. 2.

3. Reprioritized Attentive Tracking

In this section, we focus on designing the tracker state

update network NNupd defined in (2). Although NNupd can

be naturally set as a single RNN as mentioned in Sec. 2.2,

there can be two issues: (i) overfitting, since there is no

mechanism to capture the data regularity that similar pat-

terns are usually shared by different objects; (ii) disrupted

tracking, since there is no incentive to drive each tracker to

associate its relevant input features. Therefore, we propose

the RAT, which tackles Issue (i) by modeling each tracker

independently and sharing parameters for different trackers

(this also reduces the parameter number and makes learning

more scalable with the tracker number), and tackles Issue (ii)

by utilizing attention to achieve explicit data association

(Sec. 3.1). RAT also avoids conflicted tracking by employ-

ing memories to allow tracker interaction (Sec. 3.2) and

reprioritizing trackers to make data association more robust

1320



(Sec. 3.3), and improves efficiency by adapting the compu-

tation time according to the number of objects presented in

the scene (Sec. 3.4).

3.1. Using Attention

To make Tracker i explicitly associate its relevant input

features from Ct to avoid disrupted tracking, we adopt a

content-based addressing. Firstly, the previous tracker state

ht−1,i is used to generate key variables kt,i and βt,i:

{
kt,i, β̂t,i

}
= Linear

(
ht−1,i;θ

key
)

(10)

βt,i = 1 + ln
(
1 + exp

(
β̂t,i

))
(11)

where Linear is the linear transformation parameterized by

θkey, kt,i ∈ R
S is the addressing key, and β̂t,i ∈ R is the

activation for the key strength βt,i∈(1,+∞). Then, kt,i is

used to match each feature vector in Ct, denoted by ct,m,n∈
R

S where m∈{1, 2, . . . ,M} and n∈{1, 2, . . . , N}, to get

attention weights:

Wt,i,m,n =
exp

(
βt,i K(kt,i, ct,m,n)

)

∑
m′,n′ exp

(
βt,i K(kt,i, ct,m′,n′)

) (12)

where K is the cosine similarity defined as K(p, q) =
pqT/ (‖p‖‖q‖), and Wt,i,m,n is an element of the atten-

tion weight Wt,i∈ [0, 1]M×N , satisfying
∑

m,nWt,i,m,n=1.

Next, a read operation is defined as a weighted combination

of all feature vectors of Ct:

rt,i =
∑

m,n

Wt,i,m,n ct,m,n (13)

where rt,i ∈R
S is the read vector, representing the associ-

ated input feature for Tracker i. Finally, the tracker state is

updated with an RNN parameterized by θrnn, taking rt,i
instead of Ct as its input feature:

ht,i = RNN(ht−1,i, rt,i;θ
rnn) (14)

Whilst each tracker can now attentively access Ct, it still

cannot attentively access Xt if the receptive field of each

feature vector ct,m,n is too large. In this case, it remains

hard for the tracker to correctly associate an object from Xt.

Therefore, we set the feature extractor NNfeat as a Fully

Convolutional Network (FCN) [37, 70, 61] purely consisting

of convolution layers. By designing the kernel size of each

convolution/pooling layer, we can control the receptive field

of ct,m,n to be a local region on the image so that the tracker

can also attentively access Xt. Moreover, parameter sharing

in FCN captures the spatial regularity that similar patterns are

shared by objects on different image locations. As a local

image region contains little information about the object

translation [txt,i, t
y
t,i], we add this information by appending

the 2D image coordinates as two additional channels to Xt.

3.2. Input as Memory

To allow trackers to interact with each other to avoid con-

flicted tracking, at each timestep, we take the input feature

Ct as an external memory through which trackers can pass

messages. Concretely, Let C
(0)
t =Ct be the initial memory,

we arrange trackers to sequentially read from and write to

it, so that C
(i)
t records all messages written by the past i

trackers. In the i-th iteration (i=1, 2, . . . , I), Tracker i first

reads from C
(i−1)
t to update its state ht,i by using (10)–(14)

(where Ct is replaced by C
(i−1)
t ). Then, an erase vector

et,i∈ [0, 1]S and a write vector vt,i∈R
S are emitted by:

{êt,i,vt,i} = Linear
(
ht,i;θ

wrt
)

(15)

et,i = sigmoid (êt,i) (16)

With the attention weight Wt,i produced by (12), we then

define a write operation, where each feature vector in the

memory is modified as:

c
(i)
t,m,n = (1−Wt,i,m,net,i)⊙ c

(i−1)
t,m,n +Wt,i,m,nvt,i (17)

Our tracker state update network defined in (10)–(17)

is inspired by the Neural Turing Machine [18, 19]. Since

trackers (controllers) interact through the external memory

by using interface variables, they do not need to encode mes-

sages of other trackers into their own working memories (i.e.,

states), making tracking more efficient.

3.3. Reprioritizing Trackers

Whilst memories are used for tracker interaction, it is

hard for high-priority (small i) but low-confidence trackers

to associate data correctly. E.g., when the first tracker (i=1)

is free (yct−1,1=0), it is very likely for it to associate or, say,

‘steal’ a tracked object from a succeeding tracker, since from

the unmodified initial memory C
(0)
t , all objects are equally

chanced to be associated by a free tracker.

To avoid this situation, we first update high-confidence

trackers so that features corresponding to the tracked objects

can be firstly associated and modified. Therefore, we define

the priority pt,i∈{1, 2, . . . , I} of Tracker i as its previous (at

time t−1) confidence ranking (in descending order) instead

of its index i, and then we can update Tracker i in the pt,i-th
iteration to make data association more robust.

3.4. Using Adaptive Computation Time

Since the object number varies with time and is usu-

ally less than the tracker number I (assuming I is set large

enough), iterating over all trackers at every timestep is in-

efficient. To overcome this, we adapt the idea of Adaptive

Computation Time (ACT) [17] to RAT. At each timestep t,
we terminate the iteration at Tracker i (also disable the write

operation) once yct−1,i < 0.5 and yct,i < 0.5, in which case

there are unlikely to be more tracked/new objects. While

for the remaining trackers, we do no use them to generate

outputs. An illustration of the RAT is shown in Fig. 3. The

algorithm of the full TBA framework is presented in Fig. 4.

1321



Figure 3: Illustration of the RAT with the tracker number

I = 4. Green/Blue bold lines denote attentive read/write

operations on memory. Dashed arrows denote copy opera-

tions. At time t, the iteration is performed by 3 times and

terminated at Tracker 1.

1: # Initialization

2: for i← 1 to I do

3: h0,i ← 0

4: yc
0,i ← 0

5: end for

6: # Forward pass

7: for t← 1 to T do

8: # (i) Feature extractor

9: extract Ct from Xt, see (1)

10: # (ii) Tracker array

11: C
(0)
t ← Ct

12: use yc
t−1,1, y

c
t−1,2, . . . , y

c
t−1,I to calculate

pt,1, pt,2, . . . , pt,I
13: for j ← 1 to I do

14: select the i-th tracker whose priority pt,i = j

15: use ht−1,i and C
(j−1)
t to generate Wt,i, see (10)–(12)

16: read from C
(j−1)
t according to Wt,i, and update

ht−1,i to ht,i, see (13) and (14)

17: use ht,i to generate Yt,i, see (3)

18: if yt−1,i < 0.5 and yt,i < 0.5 then

19: break

20: end if

21: write to C
(j−1)
t using ht,i and Wt,i, obtaining C

(j)
t ,

see (15)–(17)

22: end for

23: # (iii) Renderer

24: use Yt,1,Yt,2, . . . ,Yt,I to render X̂t, see (4)–(8)

25: # (iv) Loss

26: calculate lt, see (9)

27: end for

Figure 4: Algorithm of the TBA framework.

4. Experiments

The main purposes of our experiments are: (i) investigat-

ing the importance of each component in our model, and (ii)

testing whether our model is applicable to real videos. For

Purpose (i), we create two synthetic datasets (MNIST-MOT

and Sprites-MOT), and consider the following configura-

tions:

TBA The full TBA model as described in Sec. 2 and Sec. 3.

TBAc TBA with constant computation time, by not using

the ACT described in Sec. 3.4.

TBAc-noOcc TBAc without occlusion modeling, by setting

the layer number K=1.

TBAc-noAtt TBAc without attention, by reshaping the

memory Ct into size [1, 1,MNS], in which case the at-

tention weight degrades to a scalar (Wt,i=Wt,i,1,1=1).

TBAc-noMem TBAc without memories, by disabling the

write operation defined in (15)–(17).

TBAc-noRep TBAc without the tracker reprioritization de-

scribed in Sec. 3.3.

AIR Our implementation of the ‘Attend, Infer, Re-

peat’ (AIR) [13] for qualitative evaluation, which is a

probabilistic generative model that can be used to detect

objects from individual images through inference.

Note that it is hard to set a supervised counterpart of our

model for online MOT, since calculating the supervised loss

with ground truth data is per se an optimization problem

which requires to access complete trajectories and thus is

usually done offline [54]. For Purpose (ii), we evaluate TBA

on the challenging DukeMTMC dataset [49], and compare

it to the state-of-the-art methods. In this paper, we only

consider videos with static backgrounds X̂
(0)
t , and use the

IMBS algorithm [6] to extract them for input reconstruction.

Implementation details of our experiments are given in

Appendix A.1. The MNIST-MOT experiment is reported in

Appendix A.2. The appendix can be downloaded from our

project page.

4.1. SpritesMOT

In this toy task, we aim to test whether our model can

robustly handle occlusion and track the pose, shape, and

appearance of the object that can appear/disappear from the

scene, providing accurate and consistent bounding boxes.

Thus, we create a new Sprites-MOT dataset containing

2M frames, where each frame is of size 128×128×3, con-

sisting of a black background and at most three moving

Figure 5: Training curves of different configurations on

Sprites-MOT.

1322



Figure 6: Qualitative results of different configurations on Sprites-MOT. For each configuration, we show the reconstructed

frames (top) and the tracker outputs (bottom). For each frame, tracker outputs from left to right correspond to tracker 1 to I
(here I=4), respectively. Each tracker output Yt,i is visualized as

(
yct,i Y

s
t,i ⊙ Y a

t,i

)
∈ [0, 1]U×V×D.

Table 1: Tracking performances of different configurations on Sprites-MOT.

Configuration IDF1↑ IDP↑ IDR↑ MOTA↑ MOTP↑ FAF↓ MT↑ ML↓ FP↓ FN↓ IDS↓ Frag↓

TBA 99.2 99.3 99.2 99.2 79.1 0.01 985 1 60 80 30 22

TBAc 99.0 99.2 98.9 99.1 78.8 0.01 981 0 72 83 36 29

TBAc-noOcc 93.3 93.9 92.7 98.5 77.9 0 969 0 48 227 64 105

TBAc-noAtt 43.2 41.4 45.1 52.6 78.6 0.19 982 0 1,862 198 8,425 89

TBAc-noMem 0 – 0 0 – 0 0 987 0 22,096 0 0

TBAc-noRep 93.0 92.5 93.6 96.9 78.8 0.02 978 0 232 185 267 94

sprites that can occlude each other. Each sprite is ran-

domly scaled from a 21×21×3 image patch with a random

shape (circle/triangle/rectangle/diamond) and a random color

(red/green/blue/yellow/magenta/cyan), moves towards a ran-

dom direction, and appears/disappears only once. To solve

this task, for TBA configurations we set the tracker number

I=4 and layer number K=3.

Training curves are shown in Fig. 5. TBAc-noMem has

the highest validation loss, indicating that it cannot well

reconstruct the input frames, while other configurations per-

form similarly and have significantly lower validation losses.

However, TBA converges the fastest, which we conjecture

benefits from the regularization effect introduced by ACT.

To check the tracking performance, we compare TBA

against other configurations on several sampled sequences,

as shown in Fig. 6. We can see that TBA consistently per-

forms well on all situations, where in Seq. 1 TBAc perform

as well as TBA. However, TBAc-noOcc fails to track objects

from occluded patterns (in Frames 4 and 5 of Seq. 2, the red

diamond is lost by Tracker 2). We conjecture the reason is

that adding values of occluded pixels into a single layer can

result in high reconstruction errors, and thereby the model

just learns to suppress tracker outputs when occlusion oc-

curs. Disrupted tracking frequently occurs on TBAc-noAtt

which does not use attention explicitly (in Seq. 3, trackers

frequently change their targets). For TBAc-noMem, all track-

ers know nothing about each other and compete for a same

object, resulting in identical tracking with low confidences.

For TBAc-noRep, free trackers incorrectly associate the ob-

jects tracked by the follow-up trackers. Since AIR does not

consider the temporal dependency of sequence data, it fails

to track objects across different timesteps.

1323



We further quantitatively evaluate different configura-

tions using the standard CLEAR MOT metrics (Multi-Object

Tracking Accuracy (MOTA), Multi-Object Tracking Preci-

sion (MOTP), etc.) [4] that count how often the tracker

makes incorrect decisions, and the recently proposed ID

metrics (Identification F-measure (IDF1), Identification Pre-

cision (IDP), and Identification Recall (IDR)) [49] that mea-

sure how long the tracker correctly tracks targets. Note

that we only consider tracker outputs Yt,i with confidences

yct,i > 0.5 and convert the corresponding poses y
p
t,i into

object bounding boxes for evaluation. Table 1 reports the

tracking performance. Both TBA and TBAc gain good per-

formances and TBA performs slightly better than TBAc.

For TBAc-noOcc, it has a significantly higher False Nega-

tive (FN) (227), ID Switch (IDS) (64), and Fragmentation

(Frag) (105), which is consistent with our conjecture from

the qualitative results that using a single layer can sometimes

suppress tracker outputs. TBAc-noAtt performs poorly on

most of the metrics, especially with a very high IDS of 8425

potentially caused by disrupted tracking. Note that TBAc-

noMem has no valid outputs as all tracker confidences are

below 0.5. Without tracker reprioritization, TBAc-noRep is

less robust than TBA and TBAc, with a higher False Positive

(FP) (232), FN (185), and IDS (267) that we conjecture are

mainly caused by conflicted tracking.

4.2. DukeMTMC

To test whether our model can be applied to the real

applications involving highly complex and time-varying

data patterns, we evaluate the full TBA on the challenging

DukeMTMC dataset [49]. It consists of 8 videos of reso-

lution 1080×1920, with each split into 50/10/25 minutes

long for training/test(hard)/test(easy). The videos are taken

from 8 fixed cameras recording movements of people on

various places of Duke university campus at 60fps. For TBA

configurations, we set the tracker number I=10 and layer

number K=3. Input frames are down-sampled to 10fps and

resized to 108×192 to ease processing. Since the hard test

set contains very different people statistics from the training

set, we only evaluate our model on the easy test set.

Fig. 7 shows sampled qualitative results. TBA performs

well under various situations: (i) frequent object appear-

ing/disappearing; (ii) highly-varying object numbers, e.g., a

single person (Seq. 4) or ten persons (Frame 1 in Seq. 1); (iii)

frequent object occlusions, e.g., when people walk towards

each other (Seq. 1); (iv) perspective scale changes, e.g.,

when people walk close to the camera (Seq. 3); (v) frequent

shape/appearance changes; (vi) similar shapes/appearances

for different objects (Seq. 6).

Quantitative performances are presented in Table 2. We

can see that TBA gains an IDF1 of 82.4%, a MOTA of 79.6%,

and a MOTP of 80.4% which is the highest, being very

competitive to the state-of-the-art methods in performance.

However, unlike these methods, our model is the first one

free of any training labels or extracted features.

4.3. Visualizing the RAT

To get more insights into how the model works, we visu-

alize the process of RAT on Sprites-MOT (see Fig. 8). At

time t, Tracker i is updated in the pt,i-th iteration, using its

attention weight Wt,i to read from and write to the memory

C
(pt,i−1)
t , obtaining C

(pt,i)
t . We can see that the memory

content (bright region) related to the associated object is

attentively erased (becomes dark) by the write operation,

thereby preventing the next tracker from reading it again.

Note that at time (t+1), Tracker 1 is reprioritized with a

priority pt+1,1=3 and thus is updated at the 3-rd iteration,

and the memory value has not been modified in the 3-rd iter-

ation by Tracker 1 at which the iteration is terminated (since

yct,1<0.5 and yct+1,1<0.5).

5. Related Work

Unsupervised Learning for Visual Data Understanding

There are many works focusing on extracting interpretable

representations from visual data using unsupervised learning:

some attempt to find low-level disentangled factors ([33, 10,

51] for images and [43, 29, 20, 12, 15] for videos), some

aim to extract mid-level semantics ([35, 41, 24] for images

and [28, 63, 67, 22] for videos), while the remaining seek

to discover high-level semantics ([13, 71, 48, 57, 66, 14] for

images and [62, 65] for videos). However, none of these

works deal with MOT tasks. To the best of our knowledge,

the proposed method first achieves unsupervised end-to-end

learning of MOT.

Data Association for online MOT In MOT tasks, data

association can be either offline [73, 42, 34, 3, 45, 9, 40] or

online [59, 2, 64], deterministic [44, 23, 69] or probabilis-

tic [55, 5, 30, 60], greedy [7, 8, 56] or global [47, 31, 46].

Since the proposed RAT deals with online MOT and uses

soft attention to greedily associate data based on tracker con-

fidence ranking, it belongs to the probabilistic and greedy

online methods. However, unlike these traditional methods,

RAT is learnable, i.e., the tracker array can learn to generate

matching features, evolve tracker states, and modify input

features. Moreover, as RAT is not based on TBD and is

end-to-end, the feature extractor can also learn to provide

discriminative features to ease data association.

6. Conclusion

We introduced the TBA framework which achieves unsu-

pervised end-to-end learning of MOT tasks. We also intro-

duced the RAT to improve the robustness of data association.

We validated our model on different tasks, showing its po-

tential for real applications such as video surveillance. Our

future work is to extend the model to handle videos with

dynamic backgrounds. We hope our method could pave the

way towards more general unsupervised MOT.

1324



Figure 7: Qualitative results of TBA on DukeMTMC. For each sequence, we show the input frames (top), reconstructed frames

(middle), and the tracker outputs (bottom). For each frame, tracker outputs from left to right correspond to tracker 1 to I (here

I=10), respectively. Each tracker output Yt,i is visualized as
(
yct,i Y

s
t,i ⊙ Y a

t,i

)
∈ [0, 1]U×V×D.

Table 2: Tracking performances of different methods on DukeMTMC.

Method IDF1↑ IDP↑ IDR↑ MOTA↑ MOTP↑ FAF↓ MT↑ ML↓ FP↓ FN↓ IDS↓ Frag↓

DeepCC [50] 89.2 91.7 86.7 87.5 77.1 0.05 1,103 29 37,280 94,399 202 753

TAREIDMTMC [27] 83.8 87.6 80.4 83.3 75.5 0.06 1,051 17 44,691 131,220 383 2,428

TBA (ours)* 82.4 86.1 79.0 79.6 80.4 0.09 1,026 46 64,002 151,483 875 1,481

MYTRACKER [72] 80.3 87.3 74.4 78.3 78.4 0.05 914 72 35,580 193,253 406 1,116

MTMC CDSC [58] 77.0 87.6 68.6 70.9 75.8 0.05 740 110 38,655 268,398 693 4,717

PT BIPCC [38] 71.2 84.8 61.4 59.3 78.7 0.09 666 234 68,634 361,589 290 783

BIPCC [49] 70.1 83.6 60.4 59.4 78.7 0.09 665 234 68,147 361,672 300 801

* The results are hosted at https://motchallenge.net/results/DukeMTMCT, where our TBA tracker is named as ‘MOT TBA’.

Figure 8: Visualization of the RAT on Sprites-MOT. Both

the memory Ct and the attention weight Wt,i are visualized

as M×N (8×8) matrices, where for Ct the matrix denotes

its channel mean 1
S

∑S

s=1 Ct,1:M,1:N,s normalized in [0, 1].

References

[1] Mykhaylo Andriluka, Stefan Roth, and Bernt Schiele. People-

tracking-by-detection and people-detection-by-tracking. In

CVPR, 2008. 1

[2] Seung-Hwan Bae and Kuk-Jin Yoon. Robust online multi-

object tracking based on tracklet confidence and online dis-

criminative appearance learning. In CVPR, 2014. 7

[3] Jerome Berclaz, Francois Fleuret, Engin Turetken, and Pascal

Fua. Multiple object tracking using k-shortest paths optimiza-

tion. IEEE TPAMI, 33(9):1806–1819, 2011. 7

[4] Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple

object tracking performance: the clear mot metrics. Journal

on Image and Video Processing, 2008:1, 2008. 7

[5] Samuel S Blackman. Multiple hypothesis tracking for multi-

ple target tracking. IEEE Aerospace and Electronic Systems

Magazine, 19(1):5–18, 2004. 7

1325



[6] Domenico Bloisi and Luca Iocchi. Independent multimodal

background subtraction. In CompIMAGE, 2012. 5

[7] Michael D Breitenstein, Fabian Reichlin, Bastian Leibe, Es-

ther Koller-Meier, and Luc Van Gool. Robust tracking-by-

detection using a detector confidence particle filter. In ICCV,

2009. 1, 7

[8] Michael D Breitenstein, Fabian Reichlin, Bastian Leibe, Es-

ther Koller-Meier, and Luc Van Gool. Online multiperson

tracking-by-detection from a single, uncalibrated camera.

IEEE TPAMI, 33(9):1820–1833, 2011. 1, 7

[9] Asad A Butt and Robert T Collins. Multi-target tracking by

lagrangian relaxation to min-cost network flow. In CVPR,

2013. 7

[10] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya

Sutskever, and Pieter Abbeel. Infogan: Interpretable rep-

resentation learning by information maximizing generative

adversarial nets. In NIPS, 2016. 7

[11] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,

Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and

Yoshua Bengio. Learning phrase representations using rnn

encoder-decoder for statistical machine translation. arXiv

preprint arXiv:1406.1078, 2014. 2, 11

[12] Emily L Denton et al. Unsupervised learning of disentangled

representations from video. In NIPS, 2017. 7

[13] SM Ali Eslami, Nicolas Heess, Theophane Weber, Yuval

Tassa, David Szepesvari, Geoffrey E Hinton, et al. Attend, in-

fer, repeat: Fast scene understanding with generative models.

In NIPS, 2016. 5, 7

[14] SM Ali Eslami, Danilo Jimenez Rezende, Frederic Besse,

Fabio Viola, Ari S Morcos, Marta Garnelo, Avraham Ru-

derman, Andrei A Rusu, Ivo Danihelka, Karol Gregor,

et al. Neural scene representation and rendering. Science,

360(6394):1204–1210, 2018. 7

[15] Marco Fraccaro, Simon Kamronn, Ulrich Paquet, and Ole

Winther. A disentangled recognition and nonlinear dynamics

model for unsupervised learning. In NIPS, 2017. 7

[16] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins.

Learning to forget: Continual prediction with lstm. Neural

Computation, 12(10):2451–2471, 2000. 2

[17] Alex Graves. Adaptive computation time for recurrent neural

networks. arXiv preprint arXiv:1603.08983, 2016. 4

[18] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing

machines. arXiv preprint arXiv:1410.5401, 2014. 4

[19] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley,

Ivo Danihelka, Agnieszka Grabska-Barwińska, Sergio Gómez

Colmenarejo, Edward Grefenstette, Tiago Ramalho, John

Agapiou, et al. Hybrid computing using a neural network

with dynamic external memory. Nature, 538(7626):471–476,

2016. 4

[20] Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber.

Neural expectation maximization. In NIPS, 2017. 7

[21] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge

Batista. Exploiting the circulant structure of tracking-by-

detection with kernels. In ECCV, 2012. 1

[22] Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li F Fei-Fei, and

Juan Carlos Niebles. Learning to decompose and disentangle

representations for video prediction. In NeurIPS, 2018. 7

[23] Chang Huang, Bo Wu, and Ramakant Nevatia. Robust object

tracking by hierarchical association of detection responses.

In ECCV, 2008. 7

[24] Jonathan Huang and Kevin Murphy. Efficient inference in

occlusion-aware generative models of images. In ICLR Work-

shop, 2016. 7

[25] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.

Spatial transformer networks. In NIPS, 2015. 2

[26] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparam-

eterization with gumbel-softmax. In ICLR, 2017. 2

[27] Na Jiang, SiChen Bai, Yue Xu, Chang Xing, Zhong Zhou, and

Wei Wu. Online inter-camera trajectory association exploit-

ing person re-identification and camera topology. In ACM

International Conference on Multimedia, 2018. 8

[28] Nebojsa Jojic and Brendan J Frey. Learning flexible sprites

in video layers. In CVPR, 2001. 7

[29] Maximilian Karl, Maximilian Soelch, Justin Bayer, and

Patrick van der Smagt. Deep variational bayes filters: Un-

supervised learning of state space models from raw data. In

ICLR, 2017. 7

[30] Zia Khan, Tucker Balch, and Frank Dellaert. Mcmc-based

particle filtering for tracking a variable number of interacting

targets. IEEE TPAMI, 27(11):1805–1819, 2005. 7

[31] Suna Kim, Suha Kwak, Jan Feyereisl, and Bohyung Han. On-

line multi-target tracking by large margin structured learning.

In ACCV, 2012. 7

[32] Diederik Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015. 11

[33] Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and

Josh Tenenbaum. Deep convolutional inverse graphics net-

work. In NIPS, 2015. 7

[34] Cheng-Hao Kuo, Chang Huang, and Ramakant Nevatia.

Multi-target tracking by on-line learned discriminative ap-

pearance models. In CVPR, 2010. 7

[35] Nicolas Le Roux, Nicolas Heess, Jamie Shotton, and John

Winn. Learning a generative model of images by factoring

appearance and shape. Neural Computation, 23(3):593–650,

2011. 7

[36] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

11

[37] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In CVPR,

2015. 4

[38] Andrii Maksai, Xinchao Wang, Francois Fleuret, and Pascal

Fua. Non-markovian globally consistent multi-object tracking.

In ICCV, 2017. 8

[39] Anton Milan, Seyed Hamid Rezatofighi, Anthony R Dick,

Ian D Reid, and Konrad Schindler. Online multi-target track-

ing using recurrent neural networks. In AAAI, 2017. 1

[40] Anton Milan, Stefan Roth, and Konrad Schindler. Continuous

energy minimization for multitarget tracking. IEEE TPAMI,

36(1):58–72, 2014. 7

[41] Pol Moreno, Christopher KI Williams, Charlie Nash, and

Pushmeet Kohli. Overcoming occlusion with inverse graphics.

In ECCV, 2016. 7

[42] Juan Carlos Niebles, Bohyung Han, and Li Fei-Fei. Efficient

extraction of human motion volumes by tracking. In CVPR,

2010. 7

[43] Peter Ondrúška and Ingmar Posner. Deep tracking: seeing

beyond seeing using recurrent neural networks. In AAAI,

2016. 7

1326



[44] AG Amitha Perera, Chukka Srinivas, Anthony Hoogs, Glen

Brooksby, and Wensheng Hu. Multi-object tracking through

simultaneous long occlusions and split-merge conditions. In

CVPR, 2006. 7

[45] Hamed Pirsiavash, Deva Ramanan, and Charless C Fowlkes.

Globally-optimal greedy algorithms for tracking a variable

number of objects. In CVPR, 2011. 7

[46] Zhen Qin and Christian R Shelton. Improving multi-target

tracking via social grouping. In CVPR, 2012. 7

[47] Vladimir Reilly, Haroon Idrees, and Mubarak Shah. Detec-

tion and tracking of large number of targets in wide area

surveillance. In ECCV, 2010. 7

[48] Danilo Jimenez Rezende, SM Ali Eslami, Shakir Mohamed,

Peter Battaglia, Max Jaderberg, and Nicolas Heess. Unsuper-

vised learning of 3d structure from images. In NIPS, 2016.

7

[49] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara,

and Carlo Tomasi. Performance measures and a data set for

multi-target, multi-camera tracking. In ECCV, 2016. 1, 5, 7,

8

[50] Ergys Ristani and Carlo Tomasi. Features for multi-target

multi-camera tracking and re-identification. In CVPR, 2018.

8

[51] Jason Tyler Rolfe. Discrete variational autoencoders. In ICLR,

2017. 7

[52] David E Rumelhart, Geoffrey E Hinton, and Ronald J

Williams. Learning representations by back-propagating er-

rors. Nature, 323(6088):533–536, 1986. 2

[53] Amir Sadeghian, Alexandre Alahi, and Silvio Savarese. Track-

ing the untrackable: Learning to track multiple cues with

long-term dependencies. In ICCV, 2017. 1

[54] Samuel Schulter, Paul Vernaza, Wongun Choi, and Manmo-

han Chandraker. Deep network flow for multi-object tracking.

In CVPR, 2017. 1, 5

[55] Dirk Schulz, Wolfram Burgard, Dieter Fox, and Armin B Cre-

mers. People tracking with mobile robots using sample-based

joint probabilistic data association filters. The International

Journal of Robotics Research, 22(2):99–116, 2003. 7

[56] Guang Shu, Afshin Dehghan, Omar Oreifej, Emily Hand,

and Mubarak Shah. Part-based multiple-person tracking with

partial occlusion handling. In CVPR, 2012. 7

[57] Russell Stewart and Stefano Ermon. Label-free supervision

of neural networks with physics and domain knowledge. In

AAAI, 2017. 7

[58] Yonatan Tariku Tesfaye, Eyasu Zemene, Andrea Prati, Mar-

cello Pelillo, and Mubarak Shah. Multi-target tracking in

multiple non-overlapping cameras using constrained domi-

nant sets. arXiv preprint arXiv:1706.06196, 2017. 8

[59] Ryan D Turner, Steven Bottone, and Bhargav Avasarala. A

complete variational tracker. In NIPS, 2014. 7

[60] B-N Vo and W-K Ma. The gaussian mixture probability

hypothesis density filter. IEEE Transactions on Signal Pro-

cessing, 54(11):4091–4104, 2006. 7

[61] Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan

Lu. Visual tracking with fully convolutional networks. In

ICCV, 2015. 4

[62] Nicholas Watters, Daniel Zoran, Theophane Weber, Peter

Battaglia, Razvan Pascanu, and Andrea Tacchetti. Visual in-

teraction networks: Learning a physics simulator from video.

In NIPS, 2017. 7

[63] John Winn and Andrew Blake. Generative affine localisation

and tracking. In NIPS, 2005. 7

[64] Bo Wu and Ram Nevatia. Detection and tracking of multi-

ple, partially occluded humans by bayesian combination of

edgelet based part detectors. IJCV, 75(2):247–266, 2007. 7

[65] Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, and Josh

Tenenbaum. Learning to see physics via visual de-animation.

In NIPS, 2017. 7

[66] Jiajun Wu, Joshua B Tenenbaum, and Pushmeet Kohli. Neural

scene de-rendering. In CVPR, 2017. 7

[67] Jonas Wulff and Michael Julian Black. Modeling blurred

video with layers. In ECCV, 2014. 7

[68] Yu Xiang, Alexandre Alahi, and Silvio Savarese. Learning to

track: Online multi-object tracking by decision making. In

ICCV, 2015. 1

[69] Junliang Xing, Haizhou Ai, and Shihong Lao. Multi-object

tracking through occlusions by local tracklets filtering and

global tracklets association with detection responses. In

CVPR, 2009. 7

[70] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron

Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua

Bengio. Show, attend and tell: Neural image caption genera-

tion with visual attention. In ICML, 2015. 4

[71] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and

Honglak Lee. Perspective transformer nets: Learning single-

view 3d object reconstruction without 3d supervision. In

NIPS, 2016. 7

[72] Kwangjin Yoon, Young-min Song, and Moongu Jeon. Mul-

tiple hypothesis tracking algorithm for multi-target multi-

camera tracking with disjoint views. IET Image Processing,

2018. 8

[73] Li Zhang, Yuan Li, and Ramakant Nevatia. Global data

association for multi-object tracking using network flows. In

CVPR, 2008. 7

1327


