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Abstract

Recently, data-driven deep saliency models have

achieved high performance and have outperformed classi-

cal saliency models, as demonstrated by results on datasets

such as the MIT300 and SALICON. Yet, there remains a

large gap between the performance of these models and

the inter-human baseline. Some outstanding questions in-

clude what have these models learned, how and where they

fail, and how they can be improved. This article attempts

to answer these questions by analyzing the representations

learned by individual neurons located at the intermediate

layers of deep saliency models. To this end, we follow the

steps of existing deep saliency models, that is borrowing a

pre-trained model of object recognition to encode the vi-

sual features and learning a decoder to infer the saliency.

We consider two cases when the encoder is used as a fixed

feature extractor and when it is fine-tuned, and compare

the inner representations of the network. To study how the

learned representations depend on the task, we fine-tune the

same network using the same image set but for two differ-

ent tasks: saliency prediction versus scene classification.

Our analyses reveal that: 1) some visual salient regions

(e.g. head, text, symbol, vehicle) are already encoded within

various layers of the network pre-trained for object recog-

nition, 2) using modern datasets, we find that fine-tuning

pre-trained models for saliency prediction makes them fa-

vor some categories (e.g. head) over some others (e.g. text),

3) although deep models of saliency outperform classical

models on natural images, the converse is true for synthetic

stimuli (e.g. pop-out search arrays), an evidence of signif-

icant difference between human and data-driven saliency

models, and 4) we confirm that, after-fine tuning, the change

in inner-representations is mostly due to the task and not the

domain shift in the data.

1. Introduction

The human visual system routinely handles vast amounts

of information at about 108 to 109 bits per second [2, 3, 4,

Table 1: Five state-of-the-art deep saliency models and their

NSS scores [6] over the MIT300 saliency benchmark [5].

Fine

Model Backbone tuning NSS

Deep gaze II [19] VGG-19 [23] × 2.34

SAM [8] ResNet-50 [11]/VGG-16
√

2.34/2.30

Deepfix [18] VGG-16 [23]
√

2.26

SALICON [14] VGG-16
√

2.12

PDP [16] VGG-16
√

2.05

Human IO - - 3.29

15]. An essential mechanism that allows the human visual

system to process this amount of information in real time

is its ability to selectively focus attention on salient parts

of a scene. Which parts of a scene and what individual pat-

terns particularly attract the viewer’s eyes (e.g. salient areas)

have been the subject of psychological research for decades,

and designing computational models for predicting salient

areas is a longstanding problem in computer vision. In re-

cent years, we have observed a surge in the development of

data-driven models of saliency based on deep neural net-

works. Such deep models have demonstrated significant

performance improvements in comparison to classical mod-

els, which are based on hand-crafted features or psycho-

logical assumptions, outperforming them on most bench-

marks. However, while there still remains a relatively large

gap between deep models and the human visual system (see

Table 1), the performance of deep models appears to have

reached a ceiling. This raises the question of what is learned

by deep models that drives their superior performance over

classical models, and what are the remaining and missing

ingredients to attain human-like performance. Internal rep-

resentations of deep object recognition models have been

visualized and analyzed extensively in recent years. Such

efforts, however, are missing for saliency models and it is

unclear how saliency models do what they do.

In this work, we shed light on what is learned by deep

saliency models by analyzing their internal representations.

Our contribution are as follows:
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• We annotate 3 datasets for analyzing the relationship

between the deep model’s inner representation and the vi-

sual saliency in the image.

• A new dataset based on synthetic pop-out search arrays

is proposed to compare deep and classical saliency models.

• We investigate what and how saliency information is

encoded in a pre-trained deep model and look into the effect

of fine-tuning on inner-representations of the deep saliency

models.

• Finally, we study the effect of the task type on the in-

ner representations of a deep model by comparing a model

fine-tuned for saliency prediction with a model fine-tuned

for scene recognition.

2. Related Work

2.1. Deep saliency models

The SALICON challenge [17], by offering the first large

scale dataset for saliency, facilitated the development of

deep saliency models. Several such models learn a map-

ping from deep feature space to the saliency space, where

a pre-trained object recognition network acts as the feature

encoder. The encoder is then fine-tuned for the saliency

task. For example, DeepNet [22] learns saliency using

8 convolutional layers, where only the first 3 layers are

initialized from a pre-trained image classification model.

PDP [16] treats the saliency map as a small scale proba-

bility map, and investigates different loss functions for gaze

prediction. They also suggested the use of Bhattacharyya

distance when the gaze map is treated as a small scale

probability map. The SALICON [14] model uses multi-

resolution inputs, and combines feature representations in

the deep layers for saliency prediction. Deepfix [18] com-

bines deep architectures of VGG, GoogleNet [24], and Di-

lated convolutions [29] in a network and adds a central

bias, to achieve a higher performance than previous mod-

els. SalGAN [21] uses an encoder-decoder architecture and

proposes the binary cross entropy (BCE) loss function to

perform pixel-wise (rather than image-wise) saliency esti-

mation. After pre-training the encoder-decoder, it uses a

Generative Adversarial Network (GAN) [9] to boost per-

formance. DVA [26] uses multiple layer’s representations,

builds a decoder for each layer, and fuses them at the fi-

nal stage for pixel-wise gaze prediction. SAM [8] uses an

attention module and a LSTM [13] network to attend to dif-

ferent salient regions in the image. DeepGaze II [19] uses

the features at different layers of a pre-trained deep model

and combines them with the prior knowledge (i.e. center-

bias). DSCLRCN [20] uses multiple inputs by adding a

contextual information stream, and concatenates the orig-

inal representation and the contextual representation into a

LSTM network for the final prediction.

2.2. Visualizing deep neural networks

The success of deep convolutional neural networks has

raised the question of what representations are learned by

neurons located in intermediate and deep layers. One ap-

proach towards understanding how CNNs work and learn

is to visualize individual neurons’ activations and receptive

fields. Zeiler and Fergus [30] proposed a deconvolution net-

work in order to visualize the original patterns that activate

the corresponding activation maps. A deconvolution net-

work consists of the three steps of unpooling, transposed

convolution, and the ReLU operation. Yosinski et al. [28]

developed two tools for understanding deep convolutional

neural networks. The first of these tools is designed to visu-

alize the activation maps at different layers for a given input

image. The second tool aims to estimate the input pattern

which a network is maximally attuned to for a given object

class. In practice, the last layer of a deep neural network

typically consists of one neuron per object class. Yosinski

et al. proposed to use gradient ascent (with regularization)

to find the input image that maximizes the output of a spe-

cific neuron in regard to a specific object class. Hence, they

derive the optimum input that appeals to the network for a

specific class.

Both visualization methods discussed above are essen-

tially qualitative. In contrast, Bau et al. [1] proposed a

quantitative method to give each activation map a seman-

tic meaning. In their work, they proposed a dataset with

6 image categories and 63,305 images for network dissec-

tion, where each image is labeled with pixel-wise semantic

meaning. At first, they forward all images in the dataset into

a pre-trained deep model. For each activation map inside the

model, different inputs have different patterns. Then, they

compute the distribution of each unit activation map over

the whole dataset, and determine a threshold for each unit

based on its activation distribution. With the threshold for

each unit, the activation map for each input image is quan-

tized to a binary map. Finally, they compute the intersection

over union (IOU) between the quantized activation map and

the labeled ground truth to determine what objects or object

parts a unit is detecting.

The aforementioned approaches provide useful insight

into the internals of deep neural networks trained on Ima-

geNet for the classification task. However, our understand-

ing of the internal representations of deep saliency predic-

tion models is somewhat limited. Bylinskii et al. [7] tried

to understand deep models for saliency prediction. But their

study was mostly focused on where models fails, rather than

how they compute saliency. To our best of knowledge, our

work is the first to study the representations learned by deep

saliency models1.

1All the codes, data, models and other details in the paper can be found

at https://github.com/SenHe/uavdvsm
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(a) image (b) OSIE (c) OSIE-SR

Figure 1: (a) An example image from the OSIE dataset, (b)

OSIE annotation, and (c) the re-annotated OSIE-SR labels.

3. Data and Annotation

We first introduce the data used in our experiments as

well as our proposed annotated dataset.

SALICON: SALICON [17] is the largest database for

saliency prediction at the moment. It contains 10, 000 train-

ing images, 5, 000 validation images and 5, 000 testing im-

ages. Here, we use it to fine-tune a pre-trained model for

saliency prediction.

OSIE-SR: This acronym stands for the “OSIE Saliency

Re-annotated” (i.e. annotations of salient regions). The

original OSIE dataset [27] has 700 images with rich se-

mantics. It contains eye movements of 15 subjects for each

image recorded during free-viewing, and also has the an-

notated masks for objects in the image according to 12 at-

tributes. For our analysis, we extract clusters of fixation

locations, called salient regions. We, then, manually an-

notate each salient region as belonging to one of the 12

saliency categories, including: person head, person part, an-

imal head, animal part, object, text, symbol, vehicle, food,

drink, plant, and other. Similar categories have been ex-

ploited in previous research (e.g. [7, 27]). Fig. 1 provides

an example where each annotated region has a label accord-

ing to its salient category. The re-annotated data is used to

measure the association between inner representations (acti-

vation maps) in the deep model (pre-trained and fine-tuned)

and each salient category.

Synthetic Images: We selected 80 synthetic search ar-

rays [12], often used in pop-out experiments (Fig. 2). This

dataset contains various pop-out patterns where a target

stands out from the rest of the items in terms of color, ori-

entation, density, curvature, etc. We provide mask anno-

tation for the salient (i.e. pop-out) region in each image.

This database is used to compare deep models and classical

models on their ability to detect targets that pop-out in sim-

ple scenes. We also use it to study inner representations of

deep models over synthetic patterns.

SALICON-SAL-SCE: We select a subset of images

from the SALICON dataset and annotate each image with

a scene category label based on the categories of the Place-

CNN dataset [32]. We removed images belonging to the

scene categories with fewer than 50 images. Eventually, we

are left with 6,107 images with both fixation maps and scene

category labels (26 categories in total, see supplement). We

Figure 2: Example synthetic pop out search arrays

use this database to compare the effect of saliency predic-

tion and scene recognition on learned inner representations.

4. Methods

4.1. Modified NSS score

We propose using normalized scanpath score (NSS)

within salient regions as a method to interpret the inner rep-

resentations. We, thus, can look into the association be-

tween the activation maps and the salient regions of the im-

age for analyzing the inner representations of the deep vi-

sual saliency models. To implement this, we first forward

each image into the deep model and extract the activation

maps from different layers in the model. Then, the associ-

ation between each activation map (actm) and each salient

region (sr) in the image is computed as:

Assoc(actmij , srlk) = NSS(actmij , fixl ·masklk) (1)

where actmij is the jth activation map from the ith layer for

the input lth image, and srlk is the kth salient region in the

lth image. fixl is the fixation on the lth image, and masklk
is the annotated polygon mask in lth image for region k.

It is worth noting that all activation maps were normalized

and reshaped to the size of the input image.

4.2. Saliency model

For our analysis, we develop a saliency model using the

convolutional part of VGG-16 (conv1-1 to conv5-3) and a

simple 1×1 convolutional layer on top of the conv5-3 layer.

The model has a single resolution with input of size 224 ×
224 and is optimized with −NSS as the loss function. We

consider 2 setups to analyze the representations.

• Setup I: We first look into the inner representations

without fine-tuning the VGG part, i.e. we only learn the

last 1 × 1 convolution layer, motivated by the performance

of some of the existing models that achieve state-of-the-art

performance without fine-tuning. This can be observed in

Table 1. In other words, we analyze what types of saliency

information exist in the pre-trained VGG model and how it

is distributed within different layers. In this setup, we an-

alyze conv4-1 to conv5-3 layers, which correspond to the

last two blocks in VGG-16. The activation maps from lay-

ers below conv4-1 are sensitive to edge-like patterns and do

not correspond to annotated regions. We, thus, do not in-

clude them.
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Table 2: Inner representations in the pre-trained visual

saliency model (setup I; i.e. training the 1 × 1 convolution

layer) at different layers for all types of saliency categories

(Please see text for details).
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mean NSS for top 10 activation maps

conv5-3 1.21 0.98 2.04 1.6 0.69 1.1 1.07 1.53 1.25 1.21 1.48 0.57

conv5-2 2.57 1.64 2.89 1.91 1.07 1.59 1.91 2.18 1.59 2.05 2.13 0.92

conv5-1 2.95 1.58 2.6 1.67 1.16 1.91 2.06 2.48 1.8 1.96 1.85 1

conv4-3 3.46 1.67 2.93 1.5 1.27 2.4 2.37 2.71 1.54 1.62 1.88 0.91

conv4-2 2.85 1.78 2.63 1.39 1.19 2.04 2.05 2.33 1.48 1.59 1.53 0.74

conv4-1 2.08 1.56 1.89 1.18 1.11 2.17 1.99 1.93 1.38 1.58 1.33 0.72

# activation maps above threshold (T = 1.5)

conv5-3 2 1 21 7 0 2 1 4 1 2 4 0

conv5-2 41 11 50 21 0 5 19 33 8 12 15 0

conv5-1 27 7 35 7 0 9 16 30 9 11 23 0

conv4-3 35 9 40 4 1 12 20 30 3 5 13 0

conv4-2 35 12 18 2 0 11 14 23 4 6 4 0

conv4-1 23 5 18 0 0 18 17 21 3 5 2 0

• Setup II: We then look into the fine-tuned model. In

this setup, we learn the last 1 × 1 convolution layer and

fine-tune the VGG part of the model for different number of

layers (each time from scratch) and examine the responses

of neurons in the conv5-3 layer.

4.3. Local saliency statistics

In the OSIE-SR dataset, each region corresponds to one

saliency category (i.e. has one label). To compute the statis-

tics for saliency category c in each layer, we compute the

mean value of the top 10 activation maps with high mean

NSS values in Eq. (1) for all the regions of category c. We

also compute the number of activation maps whose mean

NSS value is above a threshold (T) in Eq. (1) for all regions

for category c.

5. Analysis of Learned Representations

How does fine-tuning the VGG neurons for saliency pre-

diction affect the network inner representation? To answer

this question, we train two saliency models, one keeping the

CNN features fixed during the training and the other one

fine-tuning the CNN features in conjunction with the 1× 1
convolution layer for saliency prediction (corresponding to

the two setups mentioned above).

5.1. Saliency representation before fine­tuning

Table 2 depicts the statistics of the inner representations

within different layers of the deep visual saliency model,

where the convolution part has not been fine-tuned (setup

Table 3: Inner representations in the last convolutional

layer (conv5-3) before and after fine-tuning for all types of

saliency categories. 0 in number of fine tuned layers indi-

cate setup I, otherwise setup II.
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mean NSS for top 10 activation maps

0 1.21 0.98 2.04 1.6 0.69 1.1 1.07 1.53 1.25 1.21 1.48 0.57

1 2.61 1.63 2.44 1.7 1.31 1.17 1.56 2.21 1.97 1.89 1.99 1.09

2 3.25 1.77 2.75 1.78 1.25 1.32 1.56 1.91 1.89 1.66 1.65 1.12

3 3.28 1.78 3.04 1.79 1.28 1.34 1.57 1.94 1.96 1.81 1.68 1.2

4 3.38 1.83 3.08 1.78 1.24 1.25 1.47 1.97 1.87 1.73 1.63 1.12

5 3.32 1.78 2.84 1.82 1.28 1.38 1.59 2.1 1.95 1.75 1.77 1.17

6 3.08 1.83 2.57 1.78 1.25 1.25 1.45 2.03 1.99 1.8 1.66 1.11

all 2.85 1.75 2.36 1.65 1.14 1.2 1.41 1.72 1.84 1.71 1.33 1.07

# activation maps above threshold (T = 1.5)

0 2 1 21 7 0 2 1 4 1 2 4 0

1 30 11 31 11 0 0 6 15 10 11 12 1

2 35 11 36 15 0 0 7 19 11 8 11 0

3 43 16 54 21 0 0 10 17 16 14 16 0

4 53 18 63 19 0 0 1 25 14 16 16 0

5 71 28 77 37 0 0 25 46 24 20 28 0

6 56 30 68 27 0 0 0 38 27 23 25 0

all 27 11 27 10 0 0 0 14 11 11 0 0

I). From Table 2, we can see that many visual saliency cat-

egories, including: person head, animal head, text, sym-

bol, vehicle and drink, have been encoded in the pre-trained

CNN features. We observe not only high mean NSS scores,

but also a large number of active response maps for each

saliency category. We also observe that the visual saliency

information is encoded within various layers, e.g. person

head, animal head, and text are present in conv4-3. Fig. 3

visualizes some examples of the activation maps in the

model without fine-tuning the VGG features. As depicted,

there is a relatively high association between salient regions

and activation maps.

5.2. Saliency representation after fine­tuning

Table 3 reports the statistics of visual saliency in layer

conv5-3, which is directly used for saliency prediction, af-

ter fine-tuning different number of layers in the model (0

indicates that only the final 1× 1 convolutional layer above

the pre-trained model for regression was trained on saliency

data, without fine-tuning the pre-trained model; 1 means

fine-tuning the layer conv5-3, 2 means fine-tuning the lay-

ers conv5-3 and conv5-2, and so on).

From Table 3, we can see that after fine-tuning, the acti-

vation maps became more selective to visual saliency, as the

mean NSS values improve for all saliency categories. The

improvements are, however, uneven as can be seen in Fig. 4;
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1 2

3
4

Figure 3: An example of the pre-trained model inner representation (Setup I). Top row: the original image, and the activation

maps with highest activation at salient regions from layer conv5-1. Bottom row: the image with masked salient regions

(1,2,3,4) and the activation maps that best respond to the salient regions of conv4-3.
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Figure 4: Top 10 mean NSS improvements for each cate-

gory when fine-tuning different numbers of layers

Figure 5: The 288th activation map in layer conv5-3 be-

fore and after fine-tuning for an input image. Notice that it

becomes attuned to person head after fine-tuning.

(a) (b) (c) (d)

Figure 6: The 512th activation map in layer conv5-3 before

and after fine-tuning (tuning 3 layers). (a) the input im-

age, image overlapped with the activation map before fine-

tuning (b), after fine-tuning (c), and the activation map after

fine-tuning (d). After fine-tuning, despite the fact that this

activation map has the highest mean NSS score for all re-

gions annotated as text in the dataset, it still favors heads.

i.e. some categories improve more. For example, person

head improves the most from 1.21 to 3.38 when fine-tuning

4 layers (see Fig. 5), while for text, the improvement is rel-

atively small (at most from 1.1 to 1.38 when fine-tuning 5

layers). Similar effects can be seen in Fig. 6, where activa-

tion maps which are most selective to texture regions in the

image after fine-tuning still respond to head regions in the

image, and with high activation values. It is withstanding

that an ANOVA test and multiple comparisons indicate per-

son head, animal head, and other are significantly different

than all other categories and each other.

An interesting observation is that by fine-tuning more

layers, i.e. more than 3 layers (and especially when fine-

tuning all the layers), the mean NSS values or the number

of activation maps for some saliency categories start to de-

crease. We also do not gain more saliency prediction im-

provement by fine-tuning more layers. We speculate that

one reason behind this observation might be the quality and

quantity of the current saliency data, which is biased to-

wards specific salient objects and regions.
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Figure 7: Top row: the relationship between the inner repre-

sentation saliency and output saliency (left) and the output

prediction difference (right). Bottom row: an example im-

age, ground truth fixation map, and model prediction.

6. The Relationship between Intermediate and

Final Representations

What is the relation between a model’s inner representa-

tion and its output? In other words, are the categories that

are more salient in the inner representations also more ac-

tive in the output saliency map? To what extend the salient

categories within the inner representations agree with the

ground truth salient categories? To answer these questions,

we define the the inner saliency for each category as the

mean NSS value of the top 10 activation maps for it, which

is the same as the values in Table 3. Following steps of [25]

for fine-grained contextual analysis, we assign the output

saliency of a model, defined as OSc for category c, as the

output’s mean NSS score of all salient regions in the OSIE-

SR dataset that belong to category c,

OSc =
1

A

N∑

i=1

M∑

j=1

NSS(predi,maski,cj · fixi) (2)

where, A is the total number of salient regions for category

c, N is the total number of images, and M is total number

of regions for category c in ith image, predi is the model

prediction for ith image, maski,cj is the annotated mask

for the jth region in ith image for category c (if category c

exists in the image) and fixi is the fixation location on the

ith image.

To measure the relation between salient categories and

representations, we define the concept of output salient cat-

egory difference, denoted as ODc. It measures the mean

difference of the NSS score between a model prediction and

the ground truth with respect to the salient categories,

ODc =
1

A

A∑

i=1

M∑

j=1

|fcj (predi)− fcj (GTi)| (3)

where, fcj (predi) = NSS(predi,maski,cj · fixi), and

GTi is the ground truth saliency map.

The results are shown in Fig. 7. As depicted in the top

left of this figure, the model’s saliency output is correlated

to the saliency of inner representations. In other words, we

can see that if a category is more salient in the model’s in-

ner representation, it is also more salient in the model’s out-

put (Spearman’s correlation coefficient: rs = 0.96). The

salient categories in inner representations and output, how-

ever, migh be different. The output salience category dif-

ference is lower for less salient inner categories and higher

for more salient inner ones. For example, as depicted in

top right panel of Fig. 7, the head category has more salient

inner representations and higher output salient category dif-

ference (ANOVA test with measurements and clusters as

factors showing significant difference p = 9e−9 < 0.05).

In other words, the model has learned to fire on faces, ir-

respective of whether they are salient in the context of the

given image.

7. Model Performance and Representations

over Synthetic Search Arrays

How do deep saliency models perform over the synthetic

images? We compare the performance of deep and classical

saliency models on a set of synthetic images. These images

are designed to simulate the feature pop-out, and have been

extensively used to study human attention, but they have

not been considered for evaluating deep saliency models.

There exists no eye-fixation on such images, but is it easy

to locate the target/salient item in the array (in fact we man-

ually labeled the images). we assess the performance of the

models using Normalized Mean value under the annotated

Mask (NMM) for each image:

NMMi = meanmaski
(
predi − µ(predi)

σ(predi)
) (4)

where maski and predi are the annotated mask and model

prediction for the ith image, respectively. Table 4 shows

Table 4: Performance comparison between deep models

and classical models on synthetic images in terms of NMM.

Deep models Classical models

DeepGaze II [19] SAM [8] DVA [26] GBVS [10] BMS [31]

1.66 1.25 1.19 2.57 3.65

the performance of deep and classic models on the synthetic

images. Surprisingly, although deep models achieve state-

of-the-art performance on the MIT300 benchmark, they

completely fail on synthetic images and are outclassed by

classical models, moreover, despite the DVA [26] has con-

nections between shallow layer and output layer in their
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Figure 8: Some qualitative examples for deep and classical

models on synthetic images, from left to right: image, pre-

dictions from DeepGaze II, SAM, DVA, GBVS, and BMS.

model, their performance is still not good on synthetic im-

ages. Fig. 8 illustrates saliency predictions on example

stimuli by the considered methods. To investigate the rea-

son behind this failure, we looked into the effect of fine-

tuning on the inner representations and neuron responses to

synthetic patterns. The results in Table 5 show that deep

models do indeed capture the salient patterns within the

middle layers of the architecture (e.g. conv4-1 layer). Some

examples (including curvature, orientation, etc) are shown

in Fig. 9. Nevertheless, as indicated in Table 6, no mat-

ter how many layers are fine-tuned, the output of the deep

saliency model never highlights such salient patterns. One

possible reason might be that the current large databases,

e.g. SALICON, are biased towards natural scenes contain-

ing daily objects (text, faces, animals, cars, etc) and do not

include any image similar to synthetic patters. The models,

thus, do not learn anything about simple pop-out.

Table 5: The mean NMM for top 10 activation maps in each

layer (from conv4-1 to conv5-3) in the pre-trained model for

synthetic images.

conv5-3 conv5-2 conv5-1 conv4-3 conv4-2 conv4-1

0.38 0.94 1.47 1.96 1.94 2.12

8. The Influence of Task on the Learned Rep-

resentations

What is the driving cause for the observed change in rep-

resentations after fine-tuning in previous sections? Is it due

to the network being fine-tuned to a new task (saliency pre-

diction) or is it the network being fine-tuned to a different

set of data (images from a saliency prediction dataset)? To

figure out, we compare two tasks of saliency prediction and

scene recognition on SALICON-SAL-SCE, which provides

saliency information and scene type labels. Note that in

both cases, the images used for fine-tuning are the same,

therefore if the observed shift in representation is only due

to the data, the inner representations should be similar in

Figure 9: Top row: synthetic search arrays with their anno-

tated masks. Bottom row: the activation maps from layer

conv4-1 that best correlated with the masked regions in the

synthetic images.

Table 6: The mean NMM score for top 10 activation maps

in the last convolutional layer for synthetic images, when

fine-tuning different number of layers.

# layers fine-tuned

0 1 2 3 4 5 6 all

0.38 0.8 0.98 0.92 0.65 0.86 0.83 0.73

Ski ResortVGG-16 conv1-1 

to conv5-3

Input Image
VGG-16 conv1-1 

to conv5-3

Fully Connected Layer

1 by 1 Convolutional Layer

Figure 10: Our architecture to study task-dependency of

representations (saliency prediction vs. scene classifica-

tion). We use the same data to fine-tune the pre-trained

model for different tasks.

both tasks; conversely, if the task is what is driving the

change, the representations should differ.

We check three CNN trunks, including, 1) a pre-traind

CNN based on VGG network for scene recognition (pt), 2)

a CNN fine-tuned for saliency prediction (sp), and 3) a CNN

fine-tuned for scene recognition (sr). The saliency predic-

tion is the same as explained above. The scene recognition

network consists of the VGG and 3 fully connected layers

(see Fig. 10). Due to the data limitation, we only fine-tuned

1 layer of the pre-trained model (layer conv5-3) for both

tasks, weight balance was used when fine-tuning the scene

recognition model to compensate imbalanced categories.

Table 7 shows how the inner representation changes with
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Table 7: Inner representation for different tasks (saliency

prediction and scene recognition) before and after fine-

tuning (pt: pre-traind CNN based on VGG network scene

recognition, sp: CNN fine-tuned for saliency prediction, sr:

CNN fine-tuned for scene recognition).
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mean NSS for top 10 activation maps

pt 1.21 0.98 2.04 1.6 0.69 1.1 1.07 1.53 1.25 1.21 1.48 0.57

sp 2.51 1.6 2.32 1.7 1.3 1.44 1.74 2.29 1.86 1.58 2.01 1.13

sr 0.47 0.57 1.54 1.24 0.57 0.83 0.61 0.88 0.91 0.97 1.28 0.41

# activation maps above threshold (T = 1.5)

pt 2 1 21 7 0 2 1 4 1 2 4 0

sp 44 6 27 10 1 2 10 19 16 7 1 0

sr 0 0 4 1 0 0 0 0 0 2 3 0

respect to saliency categories, once the CNN is fine-tuned

for different tasks using the same data. The results show that

fine-tuning for saliency prediction drives the inner represen-

tations to became more selective to salient categories, while

fine-tuning for scene recognition leads to less selectivity to

salient categories and inhibition of some other salient re-

gions. Examples of the activation map change for each task

is provided in Fig. 11.

Figure 11: From left to right: Original image, image over-

lapped with the ground-truth fixation map, overlapped with

the activation map by the pre-trained model, overlapped

with the activation map after fine-tuning for scene recog-

nition, overlapped with the activation map after fine-tuning

for saliency prediction.

Table 8: The NSS scores of mean activation maps for cor-

rect and wrong prediction in scene recognition task.

correct prediction wrong prediction

0.12 0.11

To what degree the inner representations in the scene

recognition network is consistent with human attention?

Does the scene recognition model attend to the locations a

human may find salient? We investigate this by computing

the NSS score between the attention of model (the mean of

512 activation maps in layer conv5-3) and the human fixa-

tion on the image. The results are summarized in Table 8,

showing that the NSS score is small irrespective of whether

the model’s prediction is correct or not. In other words, the

model’s attention in scene recognition is different from hu-

man attention in free-viewing.

To summarize, the above results indicate that the inner

representations, during fine-tuning the same CNN for the

two different tasks of saliency prediction and scene recog-

nition on the same data, mostly change because of the task

and not the data.

9. Discussion and Conclusion

In this work, we analyzed the internals of deep saliency

models. To this end, we annotated 3 datasets and conducted

several experiments to unveil the secrets of deep saliency

models. Our analysis on this data revealed that a deep neural

network pre-trained for image recognition already encodes

some visual saliency in the image. Fine-tuning this pre-

trained model for saliency prediction produces a model with

uneven response to saliency categories, e.g. neurons sensi-

tive to textual input start attending more to human head.

We showed that although deep models do capture synthetic

pop-out stimuli within their inner layers, they fail to pre-

dict such salient patterns in their output, contrary to classi-

cal models of saliency prediction. We also confirmed that

the observed change in the inner representations after fine-

tuning is mainly due to fine-tuning for the task and not the

data. In our study, fine-tuning the model for saliency pre-

diction resulted in more selective responses to salient re-

gions, though uneven. On the other hand, fine-tuning the

model for scene recognition had inhibitory effect and the

inner representations were losing their selectivity to some

of the existing salient patterns.

To conclude, pushing the development of better data-

driven deep visual saliency models further may require del-

icate attention to the diversity of salient categories within

images. In other words, we may need not only a large scale

dataset, but also a dataset with rich saliency categories to

ensure generalization.
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