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Abstract

Generative Adversarial Networks (GANs) have received

a great deal of attention due in part to recent success in gen-

erating original, high-quality samples from visual domains.

However, most current methods only allow for users to guide

this image generation process through limited interactions.

In this work we develop a novel GAN framework that allows

humans to be “in-the-loop” of the image generation process.

Our technique iteratively accepts relative constraints of the

form “Generate an image more like image A than image B”.

After each constraint is given, the user is presented with new

outputs from the GAN, informing the next round of feedback.

This feedback is used to constrain the output of the GAN

with respect to an underlying semantic space that can be

designed to model a variety of different notions of similarity

(e.g. classes, attributes, object relationships, color, etc.). In

our experiments, we show that our GAN framework is able to

generate images that are of comparable quality to equivalent

unsupervised GANs while satisfying a large number of the

constraints provided by users, effectively changing a GAN

into one that allows users interactive control over image

generation without sacrificing image quality.

1. Introduction

Learning a generative model from data is a task that has

gotten recent attention due to a number of breakthroughs

in complex data domains [15, 30, 13]. Some of the most

striking successes have been in creating novel imagery us-

ing Generative Adversarial Networks (GANs) [6]. While

GANs show promise in having machines effectively “draw”

realistic pictures, the mechanisms for allowing humans to

guide the image generation process have been largely limited

to conditioning on class labels [21] (e.g. “Draw a zero.”)

or domain-specific attributes [35] (e.g. “Draw a coat with

stripes.”). Such feedback, though powerful, limits the user

to expressing feedback through a pre-defined set of labels.

If the user is unable to accurately express the characteristics
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Figure 1: Interaction with the CONGAN generator: A user

provides a relative constraint in the form of two images mean-

ing “Generate an image more like image A than image B.”

The constraint is combined to previously given constraints

to form a set, which is input to the generator to produce an

image. This image is shown to the user to drive further itera-

tions of feedback. The goal for the generator is to “satisfy”

the constraints with respect to a mapping to an underlying

semantic space. The generator satisfies a constraint (A,B)
by producing an image that is mapped to a coordinate closer

to where A is mapped than to where B is mapped.

that they desire using this label set, then they cannot guide

the model to produce acceptable images.

In this work, we seek a more natural and powerful way for

humans to interact with a generative model. To this end, we

propose a novel GAN technique we call CONstrained GAN

(CONGAN). Our model is designed to accept human feed-

back iteratively, effectively putting users “in-the-loop” of the

generation process. Figure 1 illustrates how a user interacts

with the CONGAN generator. The generator accepts relative

constraints of the form “More like image A than image B.”
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These constraints are used to define a feasible region within

a given semantic space that models an underlying notion of

similarity between images. The goal of the generator is to

accept relative constraints as input, and output an image that

is within the corresponding feasible region.

Modeling interaction in this way has two primary benefits.

First, such relative pair-wise assessments have been shown

to be an easy medium for humans to articulate similarity [14,

26]. As such, CONGAN allows users to refine its output

in a natural way. Relative constraints can also be used to

allow for different interactions besides providing pair-wise

comparisons. If the output from the generator is then input

as the B (“less similar”) image in the next iteration, the user

need only provide the A (“more similar”) image. In this

way, the user can provide single examples, meaning “More

like image A than what was previously generated”, to refine

the output. Second, within the CONGAN framework, the

semantic space defines the characteristics that users guide

the image generation process. This allows for the option of

a variety of notions of similarity, such as class and attribute

information, but also more continuous or complex notions

such as color spaces, or size of objects within the image.

To achieve this form of interaction, our model must have

multiple interrelated components. The generator must be

able to accept a variable number of constraints as a set,

i.e. the output should be invariant to the order of the input

constraints. For this, we leverage recent work in Memory

Networks [7, 34, 27, 31] within the CONGAN generator to

learn a fixed length vector representation over the constraint

set as a whole. In addition, the generator must not only be

able to generate realistic looking images, but images that

are within the feasible region of a given semantic space.

During training, the CONGAN generator is trained against

a constraint critic that enforces the output to satisfy given

constraints. The result is a generator that is able to produce

imagery guided by iterative relative feedback.

The remainder of the paper will proceed as follows. First,

we discuss prior related work. Then, we describe our method

beginning with a formal definition of the constrained gen-

eration problem, continuing to an outline of the CONGAN

training algorithm, and ending with a description of the

CONGAN generator. Next, we perform an evaluation where

we compare our method to an unsupervised GAN, showing

qualitative and quantitative results. Finally, we conclude.

2. Related Work

Our proposed CONGAN method follows from a long line

of work in neural network image generation. Specifically,

autoencoders [15], autoregressive models [30], and genera-

tive adversarial networks [6] (GANs) have all shown recent

success. We chose to learn a model using the GAN frame-

work, as GANs are arguably the best performing generative

models in terms of qualitative image quality.

Much of the fundamental work in GANs have focused

on unsupervised learning settings [6, 39, 1]. The output of

these models can be controlled by manipulating the latent

space used as input [23, 22]. However, such manipulation is

limited in that the latent space often has no obvious human

understandable interpretation. Thus finding ways to manipu-

late it requires either trial and error or interpolating between

two points in the latent space. Other works learn conditional

GAN models [21], where generation is guided by side in-

formation, such as class labels [21], visual attributes [35],

text [24], and images [28]. In this work, we aim to develop

a method that allows more intuitive manipulation of a GANs

output that generalizes to many different forms of similarity.

The GAN method most similar to ours is the one intro-

duced in [40]. This method first maps an image to a manifold

of natural images using a GAN. Then, they provide a series

of image editing operations that users can use to move the

image along that manifold. We see our work as related but

orthogonal to this work as both the means for manipulation,

as well as the goals of the methods differ.

Another line of research that motivates this work is inter-

active learning over imagery. Much of the work in this field

has focused on classification problems [3, 32, 17, 33], but

also others such as learning localized attributes [4]. Most no-

tably, in [16] the authors propose an interactive image search

method that allows users to provide iterative refinements

to their query, based on visual attributes. This is similar in

principle to our method in that their method searches images

through interactive comparisons to other images in the do-

main of interest. However, our method does not necessarily

require predefined attributes and generates novel imagery

instead of retrieving relevant images from a database.

3. A Model for Constrained Image Generation

The goal of this work is to learn an image generation

model in the form of a mapping from a set of pair-wise

relative constraints to a realistic looking image. Let X be a

domain of images. We wish to learn the mapping:

gΘ :
{

(X×X )i | i ≥ 1
}

× Z 7→ X

This generator maps a set of constraints C = {C1, C2, ...}
and a random noise vector z ∈ Z to an image, where a

constraint C = (X+,X−) ∈ X × X is a pair of images

meaning “Generate an image more like X+ than X−.” Intu-

itively, z represents the variation of imagery allowed within

the constraints, and different z will produce different images.

Practically, z provides the noise component necessary for

our generator to be trained within the GAN framework.

For training our generator, we require a mechanism that

determines whether the output of gΘ satisfies input con-

straints. To this end, we assume the existence of a mapping

φ : X 7→ S that maps images to a semantic space. The only
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Algorithm 1 CONGAN Training Procedure

Input: Gradient penalty coefficient λ, constraint penalty co-

efficient γ, discriminator iterations per generator iteration

ndisc, batch size m, Adam optimizer parameters α, β1, β2

repeat

for t = 1, ...ndisc do

for i = 1, ...,m do

Sample X ∼ PD, C ∼ PC , z ∼ Z, ǫ ∼ U (0, 1)

X̂← gΘ (C, z)

X̃← ǫX+ (1− ǫ) X̂

Li ← dW (X̂)− dW (X) + λ(||∇
X̃
dW (X̃)||2 − 1)2

end for

W ← Adam
(

∇W
1
m

∑m

i=1 L
i, α, β1, β2

)

end for

Sample batches
{

zi
}m

i=1
∼ Z,

{

Ci
}m

i=1
∼ PC

{X̂i}mi=1 ←
{

gΘ
(

Ci, zi
)}m

i=1

L← 1
m

∑m

i=1−dW (X̂i) + γlφ,S(X̂
i)

Θ← Adam (∇ΘL, α, β1, β2)
until Θ converged

requirements are that φ be differentiable, and that there exists

a distance metric dS over elements of S . For instance, if one

wanted to have users manipulate generated images by their

attributes (i.e. the dimensions of S correspond to attributes),

φ could be a learned attribute classifier (for binary attributes)

or regressor (for continuous attributes). We say a generated

image X̂ satisfies a given constraint C = (X+,X−) with

respect to S if the following holds:

dS

(

φ(X̂), φ(X+)
)

< dS

(

φ(X̂), φ(X−)
)

(1)

Given a set of constraints C, the goal of gΘ is to produce an

X̂ that satisfies all constraints in the set. In doing so, the

generator produces images that are closer in the semantic

space to “positive” images X+ than “negative” images X−.

Put another way, C defines a feasible region in S for which

X̂ must lie in. How we use this idea of relative constraints

to train gΘ is discussed in the following section.

3.1. Adversarial Training with Relative Constraints

To train the generator gΘ, we utilize the GAN framework

that pits a generator gΘ against a discriminator dW , where

both g and d and neural networks parameterized by Θ and

W , respectively. The discriminator is trained to distinguish

outputs of the generator from real image samples. The gen-

erator is trained to produce images that the discriminator

cannot differentiate from real samples. The two are trained

against one another; at convergence, the generator is often

able to produce instances that are similar to real samples.

While dW ensures output images look realistic, we use

another model to enforce constraint satisfaction. For this,

we introduce the idea of a constraint critic that informs the

training procedure in a similar manner as dW . We define the

constraint critic loss as the average loss over each constraint

after mapping images into the semantic space:

lφ,S(X̂, C) = −
1

|C|

∑

(X+,X−)∈C

pS(φ(X̂), φ (X+) , φ (X−))

Loss over each constraint pS is inspired by the loss used in

t-Distributed Stochastic Triplet Embedding (STE) [29]:

pS (a, b, c) =

(

1 + dS(a,b)
α

)−
α+1

2

(

1 + dS(a,b)
α

)−
α+1

2

+
(

1 + dS(a,c)
α

)−
α+1

2

This loss compares pairs of objects according to a t-Student

kernel and is motivated by successes in dimensionality reduc-

tion techniques that use heavy tailed similarity kernels [19].

By minimizing the negation of pS for each constraint, X̂

is “pulled” closer to images X+ and “pushed” farther from

images X− in S . As a result, using this loss during training

will produce images more likely to satisfy constraints.

We leverage the constraint critic loss in tandem with

the discriminator to train the CONGAN generator. More

specifically, our training algorithm is an extension of the

Wasserstein GAN [1, 8]. We aim to optimize the following:

min
Θ

max
W

E
X∼PD

[dW (X)] − E
X̂∼Pg

[

dW (X̂)− γlφ,S(X̂, C)
]

Here, PD is a data distribution (i.e. X is a sample from

a training set), Pg is the generator distribution (i.e. X̂ =
gΘ (C, z) for a given z ∼ Z and a given C drawn from a

training set of constraint sets). Finally, dW is constrained to

be 1-Lipschitz. This objective is optimized by alternating

between updating discriminator parameters W and generator

parameters Θ using stochastic gradient descent, sampling

from the training set and generator where necessary. Intu-

itively, the discriminator’s output can be interpreted as a

score of how likely the input is from the data distribution.

When the discriminator updates, it attempts to increase its

score for real samples and decrease its score for generated

samples. Conversely, when the generator updates, it attempts

to increase the discriminator’s score for generated images.

In addition, generator updates decrease the constraint loss

by a factor of the hyperparameter γ. As a result, generator

updates encourage gΘ to produce images similar to those in

the image training set, while also satisfying samples from a

constraint training set. To enforce the 1-Lipschitz constraint

on dW we use the gradient penalty term proposed in [8].

The CONGAN training procedure is outlined in Alg. 1.

This algorithm is very similar to the WGAN training algo-

rithm (Algorithm 1 in [8]) with a few key additions. First,

when updating both the discriminator and generator, batches
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Figure 2: The CONGAN generator. Purple is the read network, orange is the process network, and green is the write network

of constraint sets are selected from a training set. In practice,

we use φ to construct ground truth constraint sets of variable

length from images in the image train set, ensuring that our

generator is trained on constraint sets that are feasible in S.

Second, the generator update has an additional term: the

constraint critic term that encourages constraint satisfaction.

3.2. A Constrained Generator Network

While Alg. 1 outlines how to train gΘ, we have yet to for-

mally define gΘ. In order for gΘ to accept C as a set it must

1) accept a variable number of constraints, and 2) output

the same image regardless of the order in which constraints

are given. For this we leverage the work of [31] that intro-

duces a neural network framework capable of considering

order-invariant inputs, such as sets. An illustration of the

CONGAN generator is depicted in Fig. 2. Our generator

has three components: 1) A read network used to learn a

representation of each constraint 2) a process network that

combines all constraints in a set into a single set representa-

tion, and 3) a write network that maps the set representation

to an image. Below we describe each of these components.

The read network puts images within a constraint set

through a Convolutional Neural Network (CNN) to extract

visual features. Feature vectors of images from a common

constraint pair are concatenated and input to a fully con-

nected layer. The result is a single vector ci for each con-

straint, which are collectively input to the process network.

The process network consists of a “processing unit” that

is repeated p times. Let {c1, ..., cn} be the output of the

read network for a size n set of constraints. For each of the

t repetitions of the processing unit, an iteration through an

LSTM cell with “content-based” attention is performed:

qt = LSTM
(

z,q∗
t−1

)

(2)

ei,t = ci · qt (3)

ai,t =
exp (ei,t)

∑n

j exp (ej,t)
(4)

rt =

n
∑

i

ai,tci (5)

q∗
t = [qt, rt] (6)

First, z (as “input”) and the hidden state from previous repe-

tition are put through LSTM unit. The resultant hidden state

output of the LSTM qt is then combined with each ci via

dot product to create a scalar value ei,t for each constraint.

These are used in a softmax function to obtain scalars ai,t,

which in turn are used in a weighted sum. This sum is the

key operation that combines the constraints. Because addi-

tion is commutative, the result of (5), and thus the output

of the processing network, is invariant to the order that the

constraints were given. The result rt is concatenated with

qt and is used as the input in the next processing iteration.

After p steps, q∗
p is put through a fully connected layer to

produce s, which is input to the write network.

One way of interpreting this network is that each process-

ing unit iteration refines the representation of the constraint

set produced by the previous iteration. The output of the

processing unit has two parts. First, rt is a learned weighted

average of the constraints, ideally emphasizing constraints

with stronger signal. Second, qt is the output of the LSTM

which combines the noise vector and the output from the pre-

vious iteration, using various gates to retain certain features

while removing others. These two components are sent back

through the processing unit for further rounds of refinement.

Similar to the generator in the unconditional GAN frame-

work, the write network maps a noise vector to image

space. Motivated by this, we use the transpose convolu-

tions [5, 25] utilized in Deep Convolutional GANs (DC-

GANs) [23]. Transpose convolutions effectively learn an

upsampling transformation. By building a network from

transpose convolutional layers, our write network is able to

learn how to map from a lower dimensional representation

of constraint set to a higher dimensional image.

4. Empirical Evaluation

In order to evaluate CONGAN we aim to show its ability

to satisfy constraints while achieving the image quality of

similar WGAN models. Further, we wish to highlight some

examples of how a user can interact with a CONGAN gen-

erator. To this end, we perform experiments with three data

sets: MNIST [18], CelebA [36], and Zappos50k [37, 38].

In all experiments, we use the hyperparameters suggested
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Figure 3: Example illustrating the order invariance property

of CONGAN. On the left are relative constraints (top is

positive image, bottom is negative) in the order they are

input to the CONGAN generator. On the right are the images

produced for two different z vectors. The output remains the

same even when the constraints are given in different orders.

in [8]: (λ = 10, ndisc = 5, α = 0.0001, β = 0, β = 0.9),

follow Algorithm 1 from the same work to train WGAN,

and set the batch size m = 32. We seed WGANs with noise

vectors z drawn from a standard normal (Z = N (0, I)), and

CONGANs with a uniform distribution (Z = U (−1, 1)).
We opt to use the uniform distribution as it allows both inputs

into the processing network to be in the same range. The

noise vectors are of size 64 for the MNIST experiments and

of size 128 for the CelebA and Zappos50k experiments. We

set p (number of “processing” steps) to 5 in both experiments,

but have observed that CONGAN is robust to this setting.

In [1] the authors observe that the Wasserstein Distance

can be used to determine convergence. In our experiments,

the Wasserstein Distance stopped improving by 100,000

generator update iterations for all models and use that as

the iteration limit. We chose values for γ that were able to

reduce the t-STE train error significantly while maintaining

Wasserstein Distance close to what was achieved by the

WGAN. To strike a good balance we set γ = 10 on MNIST,

γ = 250 on CelebA, and γ = 100 on Zappos50k.

WGAN models were trained on the designated trained

sets for MNIST and CelebA. For Zappos50k, we randomly

chose 90% of the images as the train set, leaving the rest

as test. Similarly, CONGAN model constraint sets C in the

training set of constraint sets are created by first randomly

choosing an image of the train set to be a reference image.

Then, anywhere between 1 and 10 pairs of images are ran-

domly chosen to be constraints. Next, φ is applied to the

reference image and each pair. The resultant representations

in S are used to determine which elements of the pairs are

considered X+ (positive examples) and X− (negative exam-

Figure 4: Examples from WGAN (left) and CONGAN

(right) generators trained on the MNIST data set.

ples) according to (1). Test sets are constructed similarly.

The CONGAN network architectures used in these exper-

iments are as follows 1. For MNIST: The discriminator and

read networks are five layer CNNs. The write network is a

five layer transpose convolutional network. For CelebA and

Zappos50k: The discriminator and read networks are resid-

ual networks [10] with four residual CNN blocks. The write

network has four transpose convolutional residual blocks. To

maintain some regularity between models in the interest of

fair comparison, we use the same discriminator architectures

for both WGAN and CONGAN and use the WGAN genera-

tor architecture as the CONGAN write network architecture.

Other than a few special cases, we use rectified linear units

as activation functions and perform layer normalization [2].

4.1. MNIST

MNIST is a well known data set containing 28x28 im-

ages of hand-written digits. For preprocessing we zero pad

the images to 32x32 and scale them to [-1,1]. For φ we

train a “mirrored” autoencoder on the MNIST train set using

squared Euclidean loss. The encoder portion consists of

four convolutional layers and a fully connected layer with

no activation to a two-dimensional encoding. We use the

encoder as φ. The decoder has a similar structure but uses

transpose convolutions to reverse the mapping. Simply au-

toencoding MNIST digits reveals a loose class structure in

the embedding space (S in this experiment). As such, this

experiment shows how class relationships can be retrieved

even if φ does not precisely map to classes.

We seek to evaluate the CONGAN’s ability to satisfy

given constraints. To this end, we constructed ten differ-

ent test sets, each containing constraint sets of a fixed size.

For example, each constraint set in the “2” test set has two

constraints. We call an evaluation over a different test set

an “experiment”. In each experiment, we performed ten

different trials where the generator was given different noise

vectors per constraint set. With these experiments we can

1A more rigorous description can be found in the supplement.
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Figure 5: Example of CONGAN generator outputs when trained on the CelebA data set. The bottom two rows of images are

constraints, where the positive and negative images only differ by a single attribute. The first three constraints differ by only

the “Male” attribute, the second three by only the “Beard” attribute, and the third three by only the “Eyeglasses” attribute. The

top three rows are images produced from three different seeds when the constraints are provided to the CONGAN generator

from left to right. For example, the third image in the first row is generated when z1 and the first three constraints are given.
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Figure 6: Another example of CONGAN generator outputs when trained on the CelebA data set. This is the same experiment

as in Fig. 5, but with the attributes “Pale Skin”, “Brown Hair”, and “Female” from left to right.

observe the effect constraint set size has on the generator.

Results: Table 1 shows the mean constraint satisfaction

error (i.e one minus the prevalence of (1)) of the CONGAN

generator for each MNIST experiment. Overall, it was able

to satisfy over 90% of given constraints. Note that the gen-

erator performs slightly better when more constraints are

given. This is somewhat counter-intuitive. We believe that

in this case the generator is using constraints to determine

what class of digit to produce. If given few constraints, it is

more difficult for the generator to determine the class of the

output. Figures 3 and 4 show example outputs of CONGAN

when trained on MNIST: One showing the order invariance

property of CONGAN and the other showing CONGAN gen-

erated images next to ones produced by a similar WGAN.
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# input constraints

1 2 3 4 5 6 7 8 9 10

0.0931 0.0895 0.0860 0.0831 0.0808 0.0784 0.0775 0.0756 0.0743 0.0733

Table 1: Mean constraint satisfaction errors of CONGAN on MNIST constraints per input set size (10 trials).

CONGAN (# input constraints)

WGAN 1 2 3 4 5 6 7 8 9 10

-WGAN 20.31 18.32 18.90 19.34 19.64 19.82 19.93 20.00 19.99 19.96 19.90

-CONGAN 481.12 479.27 480.08 480.74 481.29 481.74 482.07 482.36 482.57 482.71 482.80

MCSE 0.0885 0.1047 0.1154 0.1202 0.1257 0.1279 0.1296 0.1307 0.1318 0.1325

CONGAN (# input constraints)

WGAN 1 2 3 4 5 6 7 8 9 10

WGAN 60.31 44.85 46.03 46.99 47.45 47.30 46.76 45.84 44.86 43.81 42.78

CONGAN 5.43 -27.04 -18.64 -11.39 -5.53 -1.37 1.09 2.06 1.69 0.10 -2.41

MCSE 0.0950 0.0967 0.0974 0.1001 0.1009 0.1019 0.1052 0.1065 0.1065 0.1066

Table 2: Evaluation results on CelebA (top table) and Zappos50K (bottom table) data sets (10 trials). Rows 1-2 of each table:

Mean discriminator scores for WGAN and CONGAN discriminators at convergence on WGAN and CONGAN generators

(negative scores for CelebA). Row 3 of each table: Mean constraint satisfaction error of CONGAN models per input set size.

4.2. CelebA

The CelebA data set contains 202,599 color images of

celebrity faces. For our experiments, we resize each image

to 64x64 and scale to [-1,1]. Associated with each image are

40 binary attributes ranging from “Blond Hair” to “Smiling”.

We chose twelve of these attributes to be S. More specif-

ically, an image’s representation in S is a binary vector of

attributes, which differs from the MNIST experiment. In the

previous experiment, S was both lower dimensional and con-

tinuous. As such, this experiment will evaluate CONGAN’s

ability to adapt to different semantic spaces.

For φ we construct a simple multi-task CNN (MCNN) [9]
2 that consists of one base network and multiple specialized

networks, trained end-to-end. The base network accepts

the image as input and extracts features for detecting all

attributes. The specialized networks split from the base

network and learn to detect to their predetermined subset.

Our φ base network consists of two convolutional layers.

The specialized networks (one for each of twelve attributes)

consists of three convolutional layers followed by a fully

connected layer that maps to a scalar attribute identifier.

For this experiment we sought to more objectively com-

pare the WGAN generated images with those produced by

CONGAN. To this end we first train a WGAN on the CelebA

train set. Then, we initialize the CONGAN write network

and discriminator to the trained WGAN generator and dis-

criminator, respectively, before training the CONGAN gen-

erator. By doing this, we can observe how image quality is

2Details and an evaluation of the MCNN can be found in the supplement.

affected by adding the CONGAN components to a WGAN.

Results: Rows one and two of Table 2 (top table) show

the mean negative discriminator scores for both the WGAN

and CONGAN generators against the WGAN and CONGAN

discriminators at convergence over ten trials. We can see

that for both discriminators, WGAN generated images are

scored very similarly to those generated by CONGAN. This

is especially true when considering the standard deviation

for the WGAN generator against the WGAN and CONGAN

discriminators is 8.75 and 16.22, respectively, and slightly

higher on both for the CONGAN generator. We believe this

result shows evidence that adding the CONGAN framework

to the WGAN training did not drastically alter image quality.

The last row of Table 2 shows the mean constraint satis-

faction error on the test set for each experiment. Here, the

CONGAN generator is able to satisfy around 87% or more

of the constraints. Figures 5 and 6 show images generated by

CONGAN. As constraints are provided, the image produced

from different seeds take on the attributes indicated by the

constraints. In Fig. 5, the first three constraints indicate the

“Male” attribute, the next three indicate “Beard”, and the last

“Eyeglasses”. In Fig. 6, “Pale Skin”, “Brown Hair”, and

“Female” are indicated. These examples show that a user can

iteratively refine the images to have desired characteristics,

and still be given a variety of realistic, novel images.

4.3. Zappos50K

The Zappos50K data set contains 50,025 color images

of shoes. We resize each image to 64x64 and scale to [-
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Figure 7: Three sets of two examples from the CONGAN

generator trained on the Zappos data set. The generator was

first provided the initial constraint of the left, generating the

first (left-most) image in the generated images column. To

generate each of the next three images, the generator was fed

a constraint where the positive image was the target image,

and the negative image was the previously generated image.

1,1]. For this experiment, we chose S to be a color space.

To accomplish this, we computed a 64 bin color histogram

over each image and trained a nine-layer CNN to embed

the images in 2-dimensions using a triplet network [11] 3,

and used this as φ. We opted to use the T-STE loss in the

objective as it produced a clear separation of colors.

There is inherent bias in the Zappos50K data set when

it comes to color, as most shoes tend to be black, brown,

or white. This poses a challenge in that if constraint sets

used for training are formed by uniformly sampling over the

train set, the model will tend to favor few colors, making

it difficult to guide generation to other colors. To combat

this, we constructed constraints to include a more uniform

sampling over colors. When constructing the train set of

constraint sets, with probability 0.5 we uniformly sampled

over training images as in the other experiments. When not

sampling uniformly, we focused on a single color bin by

first selecting a bin and choosing all positive images in the

constraint set to be images where the highest histogram value

corresponded to that bin (e.g. all positive examples would be

“light blue”). Negative examples would be chose uniformly

from the other bins. We found this allowed the CONGAN

generator to more easily learn to produce a variety of colors.

Results: Table 2 (bottom table) shows the discrimina-

tor scores and mean constraint satisfaction errors for each

Zappos50K experiment. Here, the CONGAN generator pro-

3A visualization of this embedding can be found in the supplement.

duced lower scores than the WGAN for both discriminators,

though within one standard deviation. We believe this is due

to training the generator to produce a wider variety of colors.

If training data contains many brown, black, and white shoes,

then training the generator to produce blue, red and yellow

shoes will force it to produce images that differ than those

provided to the discriminator. Nevertheless, we believe that

image quality was only slightly degraded as a result.

Figure 7 shows examples of the images produced by the

CONGAN generator. Here, we wanted to test the use case

of providing single images, instead of pair-wise constraints,

to guide the generator to a result. An initial constraint is

provided to produce a starting images. After that, a single

target image is used repeatedly as the positive example to

generate shoes more similarly colored to the target.

5. Conclusion and Future Work

In this work, we introduce a Generative Adversarial Net-

work framework that is able to generate imagery guided by

iterative human feedback. Our model relies on two novel

components. First, we develop a generator, based on recent

work in memory networks, that maps variable-sized sets

of constraints to image space using order-invariant opera-

tions. Second, this generator is informed during training by

a critic that determines whether generated imagery satisfies

given constraints. The result is a generator that can can be

guided interactively by humans through relative constraints.

Empirically our model is able to generate images that are

of comparable quality to those produced by similar GAN

models, while satisfying a up to 90% of given constraints.

There are multiple avenues of future work that we believe

are worthy of further study. First, it may not be feasible for

users of CONGAN to search through large image databases

to find the exact constraints they desire. We will apply pair-

wise active ranking techniques [12] to suggest constraint

queries in order to quickly constrain the semantic space

without requiring users to search through images themselves.

Second, we will investigate the output of the process network

more closely seeing if constraint representations have prop-

erties that match intuition about how sets of constraints are

classically reasoned about, similar to word embeddings [20].
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Invertible conditional gans for image editing. arXiv preprint

arXiv:1611.06355, 2016.

[23] A. Radford, L. Metz, and S. Chintala. Unsupervised represen-

tation learning with deep convolutional generative adversarial

networks. ICLR, 2016.

[24] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and

H. Lee. Generative adversarial text to image synthesis. In

ICML, 2016.

[25] W. Shi, J. Caballero, L. Theis, F. Huszar, A. Aitken, C. Ledig,

and Z. Wang. Is the deconvolution layer the same as a convo-

lutional layer? arXiv preprint arXiv:1609.07009, 2016.

[26] N. Stewart, G. D. Brown, and N. Chater. Absolute identifica-

tion by relative judgment. Psychological review, 112(4):881,

2005.

[27] S. Sukhbaatar, J. Weston, R. Fergus, et al. End-to-end memory

networks. In NIPS, 2015.

[28] A. van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals,

A. Graves, et al. Conditional image generation with pixelcnn

decoders. In NIPS, 2016.

[29] L. Van Der Maaten and K. Weinberger. Stochastic triplet

embedding. In MLSP, 2012.

[30] A. Van Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel

recurrent neural networks. In ICML, 2016.

[31] O. Vinyals, S. Bengio, and M. Kudlur. Order matters: Se-

quence to sequence for sets. In ICLR, 2016.

[32] C. Wah, S. Branson, P. Perona, and S. Belongie. Multiclass

recognition and part localization with humans in the loop. In

ICCV, 2011.

[33] C. Wah, G. Van Horn, S. Branson, S. Maji, P. Perona, and

S. Belongie. Similarity comparisons for interactive fine-

grained categorization. In CVPR, 2014.

[34] J. Weston, S. Chopra, and A. Bordes. Memory networks. In

ICLR, 2015.

[35] X. Yan, J. Yang, K. Sohn, and H. Lee. Attribute2image:

Conditional image generation from visual attributes. In ECCV,

2016.

[36] S. Yang, P. Luo, C.-C. Loy, and X. Tang. From facial parts

responses to face detection: A deep learning approach. In

ICCV, 2015.

[37] A. Yu and K. Grauman. Fine-grained visual comparisons with

local learning. In CVPR, 2014.

[38] A. Yu and K. Grauman. Semantic jitter: Dense supervision

for visual comparisons via synthetic images. In ICCV. IEEE,

2017.

[39] J. Zhao, M. Mathieu, and Y. LeCun. Energy-based generative

adversarial network. ICLR, 2017.
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