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Abstract

A profound idea in learning invariant features for trans-

fer learning is to align statistical properties of the domains.

In practice, this is achieved by minimizing the disparity be-

tween the domains, usually measured in terms of their sta-

tistical properties. We question the capability of this school

of thought and propose to minimize the maximum dispar-

ity between domains. Furthermore, we develop an end-to-

end learning scheme that enables us to benefit from the pro-

posed min-max strategy in training deep models. We show

that the min-max solution can outperform the existing sta-

tistical alignment solutions, and can compete with state-of-

the-art solutions on two challenging learning tasks, namely,

Unsupervised Domain Adaptation (UDA) and Zero-Shot

Learning (ZSL).

1. Introduction

Minimizing the statistical disparity between distributions

is a fundamental approach used to learn domain invariant

features [25, 26, 14]. In this work and in contrast to the pre-

vious attempts, we propose to learn features by minimizing

the maximum statistical disparity. We show that by min-

imizing the maximum (i.e., min-max) statistical disparity,

we can learn better domain invariant features (compared to

features attained by only minimizing the disparities). In par-

ticular, we demonstrate that in Unsupervised Domain Adap-

tation (UDA) [8, 24] and Zero-Shot Learning (ZSL) [31],

the learned features by min-max alignment lead to com-

parable performances to the very involved state-of-the-art

methods specifically designed to address each task (e.g., ad-

versarial solutions).

Recent techniques for UDA and ZSL aim to learn task-

independent and discriminative features through end-to-end

learning [9, 26, 30]. A prominent idea here is to learn a mu-

tual space where examples from the source and target do-

mains behave similarly from a statistical point of view. For

example, the CORrelation ALignment (CORAL) [25] and

its variants [27, 26] opt to minimize the statistical disparity

of data measured by the second order statistics.

Our idea goes beyond minimizing statistical disparities

and makes use of a novel structure, namely the confusion

network to align distributions in a min-max framework. The

confusion network, as the name implies, is by itself a neural

network. Therefore, the proposed min-max solution can be

seamlessly used in deep learning frameworks for end-to-end

training (see Fig. 1). Our code is available at https://

bitbucket.org/sherath.

One may wonder why min-max? In other words, what

power such a solution endows that a min solution does not.

In learning theory, methods such as SVM [3] , aim at min-

imizing the maximal loss. Nevertheless, very few studies

in deep learning [23, 20] make use of the min-max frame-

work, our paper being one. This can be attributed to the fact

that minimizing a loss can be conveniently achieved using

stochastic techniques.

For the problem of interest in this paper, the min-max

solution has a somehow intuitive meaning. We are inter-

ested in finding invariant features across domains with mis-

matched statistics. Learning representations by minimiza-

tion may result in degeneracy (e.g., by collapsing the space

into a point). On the other hand, maximization can preserve

the variance of the distributions, avoiding degeneracies.

To visualize the difference between min and min-max

frameworks, we designed a toy example (see Fig. 1) where

the task is to align an input distribution (given in purple,

yellow and red points) to a fixed target distribution (given in

blue). The top row shows the alignment by minimization

according to [26]. In the second row, we aligned the yellow

points, again by minimizing the disparities using the Kull-

backLeibler (KL) divergence. Finally, the third row shows

our min-max alignment. The figure is self-explanatory, with

the proposed min-max solution showing the most consistent

alignment on all studied cases.
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Figure 1. Toy data demonstration (Should be viewed in color). A comparison of aligning the input data, D1 (i.e., Gaussian noise) to

synthetic target data, D0 (given in blue color points) with Deep CORAL [27], minimization of KL divergence and min-max alignment with

KL divergence. (a) The schematic diagram for aligning the output features of f1 with D0 by minimizing a statistical alignment loss (e.g.,

correlation loss as in Deep CORAL, KL divergence). (b) The schematic diagram using the proposed confusion network, g for min-max

alignment of the output features from f1. (c) Comparison of statistically aligned outputs of f1 at the beginning and after training for Deep

CORAL, minimization and Min-max alignment. We provide details of this experiment in our supplementary material.

In summary, our contributions in this paper are;

• We propose min-max statistical alignment for domain

invariant feature learning using a novel confusion net-

work.

• We provide two frameworks to use the proposed statis-

tical alignment for UDA and ZSL.

2. Min-Max Statistical Alignment

In this section, we introduce our proposed min-max so-

lution. We start by describing the notations. Bold capital

letters denote matrices (e.g., X) and bold lower case let-

ters show column vectors (e.g., x). We represent sets with

curled capital letters, (e.g., X ) and their cardinality with | · |
(e.g., |X |). The Frobenius norm of a matrix is shown by

‖·‖F . We use DKL(P0‖P1) to denote the Kullback-Leibler

divergence between two distributions P0 and P1. We use the

notation D to represent a domain (e.g., D0 for domain 0).

For simplicity, we also use this notation D when referring

to the data samples from a domain (e.g., x
(0)
i ∈ D0, for

i = 1, 2, 3, · · · , N0 to denote the samples with y
(0)
i ∈ D0

being their labels from domain 0.). We consider the di-

mensionality of samples from a domain Dk to be nk (e.g.,

x
(0)
i ∈ R

n0 ).

Our objective is to learn two non-linear mappings,

fk(·,θk) : R
nk → R

d, k ∈ {0, 1} to embed samples

from domainsDk, k ∈ {0, 1} to a shared feature space such

that they are statistically aligned . The non-linear mappings

are parametrized by θ0 and θ1 and realized by two neural

networks. In particular, we consider the case where there

is no direct pair-wise correspondences between instances

from the two domains. This is due to the fact that statis-

tical alignment is widely used to address problems such as

UDA and ZSL where associations are not available.

As such, statistical alignment can be performed by min-

imizing a loss reflecting the statistical disparity such as

KL-divergence (DKL) between domain feature distribu-

tions.When the feature distribution, Pk of domain k is

parameterized with the mean, µk = 1
Nk

∑Nk

i=1 fk(x
(k)
i )

and the covariance, Σk = 1
(Nk−1)

∑Nk

i=1(fk(x
(k)
i ) −

µk)(fk(x
(k)
i )− µk)

T the statistical misalignment loss, Lu

between D0 and D1 can be expressed using symmetric KL-

divergence as,

Lu =
1

2

(

DKL(P0‖P1) +DKL(P1‖P0)
)

. (1)

A widely accepted assumption is to model distributions as

Gaussians, leading to

DKL(P0‖P1) =
1

2

(

tr
(

Σ
−1
1 Σ0

)

+ log

(

detΣ1

detΣ0

)

+
(

µ1 − µ0

)T
Σ

−1
1

(

µ1 − µ0

)

− d
)

. (2)

In realizing min-max alignment we propose to make

use of an additional mapping (i.e., the confusion network),

g(·,θg) : R
d → R

p. The inputs to the confusion net-

work are the domain features from the functions f0(·,θ0)
and f1(·,θ1). We refer to the output features of g(·,θg)
as the confused features. We implement the confusion net-

work, g(·,θg) using a neural network parameterized by θg .

Thereafter, we propose to perform the min-max alignment

by optimizing,

min
θ0, θ1

max
θg

L̃u , (3)

with

L̃u =
1

2

(

DKL(P̃0‖P̃1) +DKL(P̃1‖P̃0)
)

. (4)

9289



Statistical 
alignment 

loss

Statistical Alignment Module

Aligned domain features 
in the shared space

Input domains

Accum. 
moments

Accum. 
moments

Forward Pass Backward Pass with Gradient Reversal

Figure 2. Schematic diagram for the proposed min-max statistical alignment (Best viewed in color). The input domains D0 (square

markers) and D1 (circular markers) are aligned by min-max optimization of the statistical loss L̃u.To realize the min-max training we

propose using the additional confusion model, g. We propose accumulation of computed mini-batch moments (i.e., means and covariances)

prior to computing the statistical alignment loss. The statistically aligned features are obtained through the feature extraction models f0 and

f1. We use marker colors to represent the class labels of the instances. To incorporate the min-max optimization we contain our proposed

confusion network between two gradient reversal layers (i.e., grl).

However, distinct to the defined statistical loss in equa-

tion (1), the feature distributions, P̃k , k ∈ {0, 1} are pa-

rameterized with,

µ̃k =
1

Nk

Nk
∑

i=1

g◦fk(x
(k)
i ), (5)

Σ̃k =
1

Nk − 1

Nk
∑

i=1

(

g◦fk(x
(k)
i )− µ̃k

)(

g◦fk(x
(k)
i )− µ̃k

)⊤

.

The objective of the confusion network is to maximize the

statistical disparity (see (3)). Furthermore, we learn f0 and

f1 to minimize the statistical disparity of the confused fea-

tures. Therefore, we perform a minimization of the maxi-

mum statistical disparity between the two domain features.

In a way, our confusion network can be considered as

an attention model. The attention is in particular given for

features that maximizes the statistical disparity between the

domains. The theorem below establishes the condition to

recover minimization as an especial case of the min-max

framework.

Theorem 1. If the confusion function, g is a linear invert-

ible transformation, Q with QQ−1 = Q−1Q = I ∈ R
d×d

then the proposed min-max statistical alignment by confu-

sion is equivalent to statistical alignment by minimization.

Here, d is the dimensionality of the domain input and con-

fused features.

Proof. The proof is provided in the supplementary material

due to space limitations. �

The behaviour of the proposed confusion network is sim-

ilar in spirit to the discriminator in Generative Adversarial

Networks (GANs) [11]. However, unlike the classification

objective of the GAN’s discriminator, the confusion net-

work is trained to maximize a statistical misalignment.

2.1. Maximization with the Confusion Network

To train a Deep Neural Network (DNN), parameters of

the network are updated such that the end loss is minimized.

That is, each parameter is updated in the negative direc-

tion of the gradient of the loss function with respect to it.

However, in the case of the confusion network, we need to

learn the parameters in a way that the end loss is maximized

(see (3)). In other words, we require to perform a gradient

ascent for the confusion network. To seamlessly integrate

this gradient ascent into our solution, we perform a direction

reversal of the back propagated gradients into the confusion

network. For this we use the gradient reversal layer (i.e., grl

layer) of Ganin and Lempitsky, [8]. The grl layer acts as an

identity mapping in the forward pass. However, during the

backward pass it reverses the back-propagated gradient di-

rection by negation. Furthermore, we enclose the confusion

network between two grl layers (see Fig. 2). Thereby, we

make sure that the gradients back-propagated into f0 and

f1 are compatible with gradient descent for minimization.

2.2. Moment Accumulation

Training a network by stochastic optimization is central

to deep learning. In the context of statistical alignment, this

translates into computing statistics (i.e., means and covari-
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ances) per mini-batch, followed by aligning the mini-batch

statistics. For the min-max framework, we propose to make

use of the accumulated statistics instead. When Σ̃
(t)

and

µ̃(t) are the computed covariance matrix and the mean vec-

tor for mini-batch at iteration t, the accumulated moments,

Σ̃
(t)

accu. and µ̃(t)
accu. are computed as,

Σ̃
(t)

accu. = m× Σ̃
(t−1)

accu. + (1−m)× Σ̃
(t)
, (6)

µ̃(t)
accu.

= m× µ̃(t−1)
accu. + (1−m)× µ̃(t). (7)

Here, 0 ≤ m < 1 is the momentum hyper-parameter for

the accumulation. We integrate this moment accumulation

along with the proposed min-max alignment into a single

statistical alignment module as in Fig. 2. In the supplemen-

tary material, we provide a study of the effect of accumula-

tion.

3. Case studies : Min-Max Statistical Align

In this section, we will show how the min-max frame-

work can be used to address two case studies, namely UDA

and ZSL.

3.1. Case 1 : Unsupervised Domain Adaptation

In UDA, labeled samples from a source domain, Ds

are used to train a classifier to classify unlabeled sam-

ples from the target domain, Dt. Samples from both do-

mains are assumed to share the same set of classes, C =
{1, 2, 3, · · · , c}. Here, we use letters “s” and “t” to refer

to source and target domains respectively 1.

It is typical to use a two-stream network in deep UDA

where each stream corresponds to a specific domain (i.e.,

either Ds or Dt). Thereafter, the source domain stream is

trained on classifying labeled source samples and the target

domain stream is trained to generate features that match the

source features distribution [8, 27]. We realize our UDA

model with two deep network streams, hs = softmax ◦ h ◦
fs and ht = softmax ◦ h ◦ ft. Here, hs and ht are the

source and target domain model streams, respectively. The

model, h(·,θh) : Rd → R
c represents a shared classifier

with parameters, θh. The source and target domain feature

extraction models, fs and ft are parameterized with θs and

θt, respectively (see Fig. 3(a) for a schematic).

For UDA, our objective is to jointly learn the shared fea-

ture space and the classifier h(·,θh). Per the discussion

in § 2, the proposed min-max alignment will be used for

learning the shared feature space. We use the softmax cross-

entropy loss on labeled source domain samples to train the

classifier. All in all, the UDA model is trained end-to-end

by optimizing,

1Note the domain equivalences D0 ∼ Ds and D1 ∼ Dt with the

discussion in § 2.

min
θs, θt, θh

max
θg

Ld,s + λtLd,t + λuL̃u. (8)

Here, Ld,s is the softmax cross-entropy loss computed

using the labeled source samples, the loss term Ld,t is the

entropy loss,

Ld,t = − Ex∼Dt
[ht(x)

T
log ht(x)], (9)

computed from unlabeled target domain samples as in [24].

We denote the proposed statistical alignment loss with L̃u.

The parameter λu and λt are training hyper-parameters. We

will provide a study on the effect of these parameters in the

supplementary material.

3.2. Case 2 : Zero­Shot Learning

ZSL is the problem of identifying instances never seen

during the training. We use C and C̃ to represent the set

of seen and unseen classes, respectively2. We define the

domain, Ds to contain the labeled training instances from

classes in C. For training, we are provided with semantic

descriptions for all the classes, C̃ ∪C. Without losing gener-

ality and inline with general practice (e.g., [31]), semantic

descriptions are in the form of attribute vectors. Each el-

ement of an attribute vector represents a meaningful prop-

erty of the seen and unseen classes (e.g., has stripes, has

four legs, has a long tail). We will use Datt. and D̃att. to

represent the domains related to attribute vectors describing

classes C and C̃, respectively.

Following [30], we propose a two-stage ZSL solution.

In the first stage, we will train a conditional generator,

fatt.(·,θatt.) : R
natt. → R

d with natt. denoting the di-

mensionality of the attribute vectors. To be specific, we use

our min-max statistical alignment to train a model to gener-

ate discriminative instance features given an attribute vector

from a seen class. Note that D0 ∼ Ds and D1 ∼ Datt. per

notations used in § 2. Later, we use fatt. to generate features

for unseen classes, C̃ given their attributes.

As for the first stage, we define two network streams,

hs = softmax ◦ h ◦ fs and hatt. = softmax ◦ h ◦ fatt. (see

Fig. 3 for a schematic). Here, fs(·,θs) : R
s → R

d is a fea-

ture extraction network for real seen class instances. The

function h(·,θh) : R
d → R

|C| is a shared classifier for real

and generated seen class features. We parameterize h, fatt.
and fs with θh, θatt. and θs, respectively. Thereafter, we

learn our generator network by following the two optimiza-

tions,

min
θs, θh

Ld,s, (10)

min
θatt.

max
θg

Ld,att. + λuL̃u. (11)

2Note C ∩ C̃ = ∅
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Figure 3. Schematic diagram for UDA and ZSL models with the proposed statistical alignment (a) The UDA model is trained on

the softmax cross entropy loss, Ld,s on labeled source data, the discriminative cross-entropy loss, Ld,t on unlabeled target domain data

and the statistical alignment loss, L̃u. (b) The generator training stage of the proposed two staged ZSL model. The model is trained on

discriminative losses, Ls , Latt. and the statistical alignment loss, L̃u.

Here, Ld,s and Ld,att. are softmax cross-entropy loss func-

tions computed on predictions from networks hs and hatt.,

respectively. The scalar constant λu is a training hyper-

parameter. The proposed statistical alignment losses be-

tween the domains Ds and Datt. is given by L̃u (see § 2).

3.2.1 ZSL Classifier Training with Generated Samples

In this second stage, we feed the trained conditional gen-

erator, fatt. with unseen class attributes (i.e., inputs from

D̃att.). The idea here is to generate features that represent

unseen class instances, assuming that the learned condi-

tional generator, fatt. is able to generalize well to unseen

classes. Note that such a generalization assumption is ex-

tensively used in ZSL literature [7, 1, 22, 30]. Thereafter,

we use the generated features together with real seen class

features (i.e., outputs from fs for real seen class instances)

to train a new feature classifier, h∗ : Rd → R
|C|+|C̃|3. For

evaluation, we use the model h∗ ◦ fs to classify test in-

stances.

4. Related Work

In this section, we first discuss related UDA and ZSL

solutions. Thereafter, we discuss deep algorithms that are

based on the min-max optimization framework.

Unsupervised Domain Adaptation: Our proposal can be

employed to address UDA by statistical alignment. Statis-

tical alignment of domains is a fundamental solution for

UDA [25, 14, 26]. Focusing on UDA methods, the clos-

est work to ours is the Deep Correlation Alignment solution

(D-CORAL) of Sun et al. [26]. Apart from the fundamen-

tal difference in the formulation, i.e., min-max in our case

in comparison to min in D-CORAL, the statistical disparity

measure is different between the two solutions. Here, we

3Note that we evaluate our ZSL on the Generalized ZSL protocol pro-

posed in [31]

use a symmetric KL-divergence while D-CORAL measures

the disparity using the Frobenius norm.

Domain adversarial learning [9, 28, 24] uses GAN [11]

principles for learning domain invariant features. Here, a

feature extractor acts as the generator network of the GAN.

Its objective is to outperform the ability of the domain dis-

criminator to distinguish the domain of a given instance.

As explained, our confusion network is somewhat similar

in spirit to the discriminator network of domain adversarial

solutions. However, the purpose of the confusion network

is to maximize the statistical disparity.

Zero-Shot Learning: Learning a relationship between

semantic descriptors and instance features is the core con-

cept behind ZSL solutions. For instance, [7, 1, 22] learn

a bilinear relationship between semantic attributes and in-

stance features. Furthermore, Deep Auto-Encoders [17,

16], synthesizing classifiers [4], Kernel methods [32] are

also among the machine learning tools that have been re-

cently proposed for learning complex relationships between

semantic descriptors and instance features.

In a different direction, Xian et al. [30] propose feature

generation GANs for ZSL. Their objective is to first train

a model that can generate features for seen classes given

attribute vectors as inputs. Thereafter, it is assumed that

this generator is generalizable for generating features for

unseen classes. Our two-stage ZSL framework is inspired

by this solution. However, in contrast we propose to use

statistical alignment to learn the generative model. This is

an unexplored path for ZSL. Furthermore, we explore the

capacity of min-max alignment in this context.

Min-Max Learning: The Maximum-Mean Discrep-

ancy [12] has been widely used to learn from distributions.

Naturally, minimization of MMD will create a min-max

problem. As such, Dziugaite et al. [6] propose to train a

generative model by minimizing an MMD loss. However,

the kernel used in MMD enabled the authors to avoid an ex-
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plicit maximization step. The MMD-GAN formulation of

Li et al. [20] takes the idea further by learning the kernel

for MMD along the way. Our proposal is different from the

aforementioned MMD solutions in the sense that the con-

fusion network by itself is a feature mapping. Furthermore

and in contrast to MMD, our maximization is not a compo-

nent of the statistical disparity computations.

We conclude this part by acknowledging the recent work

of Shalev-Shwartz and Wexler [23]. There, the authors

study the min-max framework in optimizing various forms

of loss functions with a stress on classification problems.

For example, the authors show that the min-max solution

for binary classification problems with 0-1 loss enjoys a

strong form of guarantee while the min counterpart does

not. We believe that the theoretical insights provided in [23]

strengthen our idea of developing the min-max alignment.

5. Experiments

In this section, we empirically contrast our min-max

solution against various baselines on UDA and ZSL. Our

Deep Neural Network (DNN) models are trained end-to-end

with RMSProps optimizer with a batch size of 256. Ran-

domly initialized models are trained with a learning rate of

0.001 and pre-trained AlexNet [18] models with a learning

rate of 0.0001. To obtain stable covariance matrices, we use

an additional dimensionality reduction layer between fc7
and fc8 layers of the AlexNet where the dimensionality is

reduced to 256. Similar dimensionality reduction layers are

used in prior work [9]. We fix the value of λu to 0.001 (see

Eq. (8)) unless stated otherwise. Furthermore, we use an

accumulation momentum of 0.5 (i.e., m = 0.5 in Eq. (6)).

Our confusion model consists of a single convolution (if the

input is a 2D-feature map) or fully connected layer with a

residual skip connection. We also use a leaky-ReLU acti-

vation layer at the output of confusion network. More de-

tails of our DNN structures, training hyper-parameters, and

impact of various confusion structures can be found in the

supplementary material.

5.1. Experiments on UDA

We evaluate and assess our min-max solution on UDA

with two sets of experiments. The first experiment is

done with Office31 dataset using pre-trained AlexNet ar-

chitecture. The second set of experiments is performed

on MNIST, SVHN, SYN. DIGITS, GTSRB, SYN. SIGNS,

STL and CIFAR datasets , where the CNN model is trained

from scratch. We share model parameters between source

and target domain networks during training (see Fig. 3(a)).

Focusing on the baselines, we denote the model trained

from the source data (i.e., no adaptation is considered)

as CNN. Other baselines include several state-of-the-art

UDA methods such as D-CORAL [26], DANN [9] and

VADA [24]4. These baselines are the most relevant ones,

idea-wise to our work. We also report results for the model

that only minimizes the KL divergence between source and

target domains (denoted by Min). We denote the proposed

min-max solution by Min-Max when λt = 0.0 in Eq. (8).

We also denote our min-max solution as Min-Max+ when

λt = 0.1.

In addition to Office31, we also experimented

with six more domain adaptation tasks, namely,

SVHN ←→ MNIST, SYN. DIGITS −→ SVHN, SYN.

SIGNS −→ GTSRB and STL ←→ CIFAR5, where we

used the same protocol, data setup and network architecture

as in [24] (see supplemantary of this paper for the details).

For the two experiment sets STL ←→ CIFAR, we used

λu = 0.0001. The value of λu is 0.01 for all the remaining

experiments (i.e., experiments with MNIST, SVHN, SYN.

DIGITS, SYN. SIGNS, GTSRB).

In Table 1, we report the performance of both Min-

Max and Min.. We observe that in all cases, the Min-

Max method outperforms the Min. method. For instance,

in MNIST→SVHN, the Min-Max outperforms the Min.

alignment by 36.1%. Interestingly, in some cases the Min.

alignment is not able to improve upon the CNN baseline

that does not benefit from any adaptations (e.g., D → W
of Office31 dataset). However, our Min-Max method im-

proves the results in all cases. Our method obtains an av-

erage improvement of 12.2% over baseline CNN and 5.4%
over the baseline Min.. The improvement is a clear indica-

tion of a better statistical alignment, reinforcing our claim

that the min-max solution (Min-Max) is a better alternative

compared to aligning by minimizing the statistical dispari-

ties.

In Table 2, we compare our min-max solution with D-

CORAL [26] and the adversarial methods DANN [9] and

VADA [24]). For the Office31 experiments, we use reported

results in [9], [10] and [26]. Results for remaining domain

sets (i.e., MNIST, SVHN, SYN. DIGITS, SYN. SIGNS,

GTSRB, STL, CIFAR) are obtained from Shu et al. [24] for

DANN and VADA. For Office31 dataset, we do not observe

a significant performance difference between Min-Max and

Min-Max+. Hence, we use only Min-Max (i.e., λt = 0.0).

However, for the remaining domain adaptation tasks, the

discriminative loss on the target domain is helpful and Min-

Max+ method outperforms Min-Max.

In Office31 dataset, our solution is ranked among the top

two performers in four instances out of six and the top per-

former in two instances. Furthermore, our solution outper-

4We acknowledge that Shu et al. [24] also propose a more involved

algorithm, dirt-t as an improved version of VADA. Since our goal is to

mainly contrast min-max alignment against the min solution, we did not

benefit from advanced learning techniques for UDA. Hence, we believe

VADA is a more appropriate baseline here.
5For the CIFAR and STL data, we consider the 9 shared classes (omit-

ing “monkey” and “frog”) as in [24].
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Sol.
s A A D D W W MNIST SVHN DIGITS SIGNS STL CIFAR

t D W A W A D SVHN MNIST SVHN GTSRB CIFAR STL

CNN 60.8 58.5 42.6 94.1 38.6 98.1 37.5 63.1 84.0 77.8 59.1 75.9

Min 66.1 70.5 47.2 93.5 47.6 98.6 49.8 70.6 85.4 78.7 57.7 74.4

Min-Max 69.1 71.7 51.3 95.0 52.1 99.3 67.8 72.0 88.5 83.2 60.6 76.1
Table 1. Comparison of the Min-Max UDA solution with CNN and Min baselines. For Office31 we use the “fully transductive protocol”

as in [9, 26]. We use the acronyms A:Amazon, W:Webcam, and D: DSLR. For the remain domain sets ( MNIST, SVHN, SYN. DIGTS,

GTSRB, SYN. SIGNS, CIFAR, STL ) we follow the training protocol and network models used in [24].The best performance is in Bold.

Sol.
s A A D D W W MNIST SVHN DIGITS SIGNS STL CIFAR

t D W A W A D SVHN MNIST SVHN GTSRB CIFAR STL

DANN [9] 67.1 73.0 54.5 96.4 52.7 99.2 60.6 68.3 90.1 97.5 62.7 78.1

VADA [24] - - - - - - 73.3 94.5 94.9 99.2 71.4 78.3

D-CORAL [26] 66.8 66.4 52.8 95.7 51.5 99.2 72.7 87.8 71.8 59.9 60.5 76.2

Min-Max+ 69.1 71.7 51.3 95.0 52.1 99.3 79.3 97.0 94.6 97.3 67.7 79.9
Table 2. Comparison of the Min-Max+ UDA solution with related UDA solutions. For Office31 we use the “fully transductive protocol”

as in [9, 26]. We use the acronyms A:Amazon, W:Webcam, and D: DSLR. For the remain domain sets ( MNIST, SVHN, SYN. DIGTS,

GTSRB, SYN. SIGNS, CIFAR, STL ) we follow the training protocol and network models used in [24]. The best performance is in Bold

and second best is in Blue.

forms D-CORAL [26] in four instances on Office31 dataset.

On the remaining domain adaptation tasks, our method out-

performs D-CORAL by a considerable margin. Our Min-

Max+ method performs better than state-of-the-art adver-

sarial methods such as DANN and VADA in three instances

out of six (i.e., MNIST↔SVHN and CIFAR→ STL).

Out of all the domain transformation tasks, the

MNIST→SVHN task is the most difficult one to adapt. This

is evident by the low performance in our baseline evalua-

tions. However, our proposed solution shows a significant

improvement for this particular UDA task.

5.2. Experiments on Zero­Shot Learning

We compare our method with recent ZSL methods

on two fine-grained image classification datasets, namely

Caltech-UCSD-Birds [29] (CUB) and SUN dataset [21] and

two coarse grained datasets (Awa1 and Awa2 [19]) follow-

ing the Generalized ZSL (GZSL) protocol of [31]. We com-

pute average per-class accuracy for the seen and unseen

classes on the test instances which are denoted by S and U ,

respectively. The model performance is obtained through

harmonic mean (denoted by HM ) between U and S (i.e.

HM = 2× (S ×U)/(S +U)). The GZSL protocol evalu-

ates the performance on both seen and unseen samples with

the same classifier (i.e., the search space includes both seen

and unseen classes). However, low performance either in

seen classes or the unseen classes will eventually tend to

give a low value for HM . We use the Resnet-101 [13] net-

work, pre-trained on ImageNet dataset [5], to extract fea-

tures. We use the train-test splits provided by [31] for all

these datasets. These splits are suitable for this experiment

as all unseen classes do not contain any overlap with the

ImageNet classes.

We implement our ZSL model components using fully-

connected neural networks, fs : in → fc(n) → out,

fatt. : in → fc(n) → noise → fc(512) → noise →
fc(n) → noise → fc(n) → out. The confusion network,

g is a single layer network, fc(n) with a residual skip con-

nection from the input to the output. Here, fc(n) represents

a fully-connected layer with n outputs and “noise” repre-

sents a dropout layer followed by an additive Gaussian noise

layer. We use n = 1024 for the Sun dataset experiments and

n = 512 for the remaining sets6. We set the value of λu and

m to 0.1. Furthermore, we start training the models fs and

h earlier than fatt.. This is to make sure that fatt. receives

an informative gradient from the classifier, h.

Mini-batch creation for GZSL. We trained the classifier

(see section 3.2.1) with mini-batches containing a mixture

of real seen classes and generated unseen classes. To im-

prove our classifier’s robustness to unseen classes, every

mini-batch used 2× more generated samples per-class as

that of the real instances except for the case Awa1 for which

we report on 20×. For Awa1 we observe a significant im-

provement can be achieved by using higher generated sam-

ple proportions. Further analysis on this can be found in our

supplementary.

Results for zero-shot-learning using our method in

shown in Table. 3. As a baseline, we also report results for

statistical alignment by minimization (Min.) All the base-

line methods use Resnet-101 features provided in [31]. We

observe that our proposed min-max alignment outperforms

the Min. baseline in all four experiments. For complete-

ness, we also performed an experiment where a correla-

6More details about model structure can be found in supplementary

material
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Data. Awa1 Awa2 Cubs Sun

Sol. U S HM U S HM U S HM U S HM

SAE [17] 1.8 77.1 3.5 1.1 82.2 2.2 7.8 54.0 13.6 8.8 18.0 11.8

ZKL [32] 18.3 79.3 29.7 18.9 82.7 30.8 24.2 63.9 35.1 21.0 31.0 25.1

Cls. Prot. [15] 28.1 73.5 40.6 - - - 23.5 55.2 32.9 21.5 34.7 26.5

CLSW [30] 57.9 61.4 59.6 - - - 43.7 57.7 49.7 42.6 36.6 39.4

Min 46.0 83.3 59.3 32.9 89.7 48.1 46.1 50.8 48.3 38.8 35.0 36.8

Min-Max 46.6 84.2 60.0 37.8 88.8 53.0 47.1 53.8 50.2 37.9 36.5 37.2
Table 3. Comparison of the proposed ZSL solution (Min-Max) on GZSL protocol [31]. We report the average per-class accuracy on

seen class test instance as “S”. The unseen class performance is reported as “U”. The harmonic mean of “U” and “S” are reported as “HM”.

The best performance is in Bold and second best is in Blue.

tion loss [26] is used instead of the KL divergence in Min.

However, this model did not show competitive performance

(e.g., the HM results for Awa1:26.1%, Awa2:19.6%).

We also compare our solution with the reported results

on the recent ZSL solutions. The proposed min-max align-

ment outperforms the CLSW [30], which uses a power-

ful Wasserstein GAN [2]) in the Cubs dataset by a large

margin. Overall, the proposed min-max alignment method

reaches competitive performances with state-of-the-art ZSL

methods, yet again indicating the effectiveness of proposed

alignment method.

Further Improvement by End-to-end Fine-tuning. We

followed the two-staged framework of CLSW [30] closely

but our model can be fine-tuned in an end-to-end manner.

With end-to-end fine-tuning, we observed a consistent im-

provement < 1% over the results reported in Table 3. How-

ever and interestingly for Awa1 we observe our min-max

solution achieves a HM of 61.3% through this.

5.3. Effect of Moment Accumulation

Lastly, we discuss the effect of momentum accumulation

(see § 2.2) for our solution. In Fig. 4, we report the per-

formance of the proposed min-max (denoted as Min-Max)

and minimization (Min) methods for various values of the

momentum, m (see Eq. (6)). Here, we consider one UDA

(Webcam→ Amazon) dataset and one ZSL dataset (Cub).

Studying Fig. 4 shows that the accumulation helps in both

cases. Overall and inline with previous results, we observe

that the min-max solution performs better than the min one.

For the ZSL experiment, we find out that the accumulation

is essential. We conjecture that this is due to the stability,

accumulation can bring in to the min-max learning.

6. Conclusion

In this paper, we proposed min-max statistical alignment

for learning domain invariant features. To realize our min-

max solution as an end-to-end trainable deep model, we

proposed a novel structure, “the confusion network”. Our

confusion network behaves similarly, in spirit, to the dis-

criminator of GANs. However, the proposed confusion net-

work attempts to learn a function that maximizes the statisti-

cal disparity between the two domains. We showed that the

performance of the proposed min-max statistical alignment

can be improved by accumulation of mini-batch statistics.

Furthermore, an important theoretical property of the min-

max solution is established in Theorem 1.

We evaluated our proposed min-max solution on two

transfer learning case- studies, namely, Unsupervised Do-

main Adaptation (UDA) and Zero-Shot Learning (ZSL).

Our UDA model used statistical alignment to train an in-

variant feature extractor for source and target domains. For

ZSL, we used the statistical alignment to train a feature gen-

erator for unseen classes. In our evaluations, the min-max

solution consistently outperformed statistical alignment by

minimization. Interestingly, we also showed that with the

proposed min-max solution we could even reach compara-

ble results with the state-of-the-art solutions using GAN’s

principles.

Extending the proposed min-max learning to other statis-

tical disparities (e.g., Wasserstein alignment) is our future

plan. Furthermore, we intend to explore various forms of

confusion networks to design generative models for com-

plex data (e.g., images) and present a dedicated theoretical

study about confusion network properties in future.

Figure 4. Effect of moment accumulation (see § 2.2) for the pro-

posed statistical alignment.
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