
Deep Sky Modeling for Single Image Outdoor Lighting Estimation

Yannick Hold-Geoffroy∗

Adobe Research

holdgeof@adobe.com

Akshaya Athawale*

Indian Institute of Tech. Dhanbad

akshaya.15je001564@am.ism.ac.in

Jean-François Lalonde

Université Laval
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Abstract

We propose a data-driven learned sky model, which we

use for outdoor lighting estimation from a single image. As

no large-scale dataset of images and their corresponding

ground truth illumination is readily available, we use comple-

mentary datasets to train our approach, combining the vast

diversity of illumination conditions of SUN360 with the ra-

diometrically calibrated and physically accurate Laval HDR

sky database. Our key contribution is to provide a holistic

view of both lighting modeling and estimation, solving both

problems end-to-end. From a test image, our method can di-

rectly estimate an HDR environment map of the lighting with-

out relying on analytical lighting models. We demonstrate

the versatility and expressivity of our learned sky model and

show that it can be used to recover plausible illumination,

leading to visually pleasant virtual object insertions. To

further evaluate our method, we capture a dataset of HDR

360◦ panoramas and show through extensive validation that

we significantly outperform previous state-of-the-art.

1. Introduction

The lighting conditions of outdoor scenes can create sig-

nificant differences in the scene appearance depending on the

weather and the time of day. Indeed, one need only consider

the striking contrast created by bright highlights and dark

shadows at noon, the warm, orange hues of the golden hour,

or the gray ominous look of overcast conditions. This wide

variety of effects is challenging for approaches that attempt

to estimate the lighting conditions from outdoor images.

A popular solution to this problem involves capturing ob-

jects of known geometry and reflectance properties (notably,

a chrome sphere [6]). Another solution, which does not

require access to the scene, is to approximate outdoor light-

ing with low-dimensional, parametric models. This has the

advantage of drastically reducing the dimensionality of the

problem down to just a handful of variables, which can more

easily be estimated from an image. This insight has recently

been exploited to successfully learn to predict lighting from

a single outdoor image [12]. In particular, they propose to

represent outdoor lighting using the Hošek-Wilkie (HW) sky

*Parts of this work were completed while Y. Hold-Geoffroy and A.

Athawale were at U. Laval.

Figure 1. Our method can estimate HDR outdoor lighting conditions

from a single image (left). This estimation can be used “as-is” to

relight virtual objects that match the input image in both sunny (top-

right) and overcast (bottom-right) weather. Our key contribution is

to train both our sky model and lighting estimation end-to-end by

exploiting multiple complementary datasets during training.

model [13, 14], which can model high dynamic range (HDR)

sky domes using as few as 4 parameters. They learn to pre-

dict lighting by fitting the HW model to a large database of

outdoor, low dynamic range (LDR) panoramas and training

a CNN to regress the HW parameters from limited field of

view crops extracted from those panoramas.

Unfortunately, approximating outdoor lighting analyti-

cally comes at a cost. Popular sky models (e.g. [13, 25,

24]) were developed to model clear skies with smoothly-

varying amounts of atmospheric aerosols (represented by the

commonly-used turbidity parameter). Therefore, they do not

yield accurate representations for other types of common

weather conditions such as partially cloudy or completely

overcast skies. For example, consider the different lighting

conditions in fig. 2, which we represent with the HW para-

metric model using the non-linear fitting approach of [12].

Note how the HW approximation works well in clear skies

(top) but degrades as the cloud cover increases (bottom).

Can we obtain a lighting model that is low-dimensional, that

can accurately describe the wide variety of outdoor lighting

conditions, and that can be estimated from a single image?

In this paper, we propose an answer to this question by

learning an HDR sky model directly from data. Our non-

analytical data-driven sky model can be estimated directly

from a single image captured outdoors. Our approach suc-
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cessfully models a much larger set of lighting conditions

than previous approaches (see fig. 2).

To learn to estimate a non-parametric lighting model

from a single photograph, we propose a three-step approach

which bears resemblance to the “T-network” architecture

proposed by [9], and rely on a variety of existing com-

plementary datasets. First, we train a deep sky autoen-

coder that learns a data-driven, deep HDR sky model. To

train this sky autoencoder, we rely on the Laval HDR sky

database [20, 22], a large dataset of unsaturated HDR hemi-

spherical sky images. Second, we project the SUN360

LDR outdoor panorama dataset [28] to HDR, using the

“LDR2HDR” network of Zhang and Lalonde [30], and sub-

sequently map each panorama to the latent space of HDR

skies from our sky autoencoder. This effectively provides

non-parametric sky labels for each panorama. Third, we

train an image encoder that learns to estimate these labels

from a crop, similarly to [12].

In short, our main contributions are the following:

• we propose a novel sky autoencoder, dubbed “SkyNet”1,

that can accurately represent outdoor HDR lighting in

a variety of illumination conditions;

• we show how HDR lighting can be estimated from a

single image, modeling a much wider range of illumi-

nation conditions than previous work;

• we capture a new dataset of 206 radiometrically cali-

brated outdoor HDR 360° panoramas;

• we demonstrate, through a series of experiments and a

user study, that our approach outperforms the state-of-

the-art both qualitatively and quantitatively;

• we offer a technique to bridge the gap between our

implicit parameters representation and the versatility of

low-dimensional parametric sky models.

2. Related work

Outdoor lighting modeling and estimation have been stud-

ied extensively over the past decades. For conciseness, we

will focus on outdoor lighting modeling and estimation that

is most related to this work.

Outdoor lighting modeling Modeling the sky is a chal-

lenging research problem that has been well studied across

many disciplines such as atmospheric science, physics, and

computer graphics. The Perez All-Weather model [24] was

first introduced as an improvement over the previous CIE

Standard Clear Sky model, and modeled weather variations

using 5 parameters. Preetham et al. [25] later present a sim-

plified model, which relies on a single physically grounded

parameter, the atmospheric turbidity. Hošek and Wilkie

subsequently proposed an improvement over the Preetham

model, which is comprised of both a sky dome [13] and solar

1Luckily, it has not (yet) gained artificial consciousness [5].

Ground truth Ours [13, 14]

Figure 2. Examples of our 360° unsaturated HDR database (left),

our reconstruction using our learned sky model (center) and the

Hošek-Wilkie sun and sky models [13, 14] fit using the optimization

described in [12] (right). Renders of each method are shown below

the panorama. Note how our sky model can accurately produce

a wide variety of lighting conditions from sunny (top) to overcast

(bottom) and their corresponding shadow contrast and smoothness.

disc [14] analytical models. See [17] for a comparison of

these analytic sky models.

Outdoor lighting estimation Lighting estimation from

a single, generic outdoor scene has first been proposed by

Lalonde et al. [21]. Their approach relies on the probabilistic

combination of multiple cues (such as cast shadows, shading,

and sky appearance variation) extracted individually from the

image. Karsch et al. [16] propose to match the background

image to a large dataset of panoramas [28] and transfer the

panorama lighting (obtained through a specially-designed

light classifier) to the image. However, the matching metric

may yield results that have inconsistent lighting. Other ap-

proaches rely on known geometry [23] and/or strong priors

on geometry and surface reflectance [1].
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Figure 3. Overview of our proposed three-step approach. First, we train an autoencoder to learn a 64-parameters latent space of skies z from

a large dataset of calibrated skies [20], while enforcing its encoder to be robust to distortions in white balance, exposure and occlusions.

Second, we convert the SUN360 LDR panorama dataset to HDR using [30] and obtain their z vectors with the trained autoencoder. Finally,

we train two image encoders to learn the mapping between crops from SUN360, the sun azimuth and their corresponding z. Please see text

for the definitions of the loss functions L∗.

Deep learning for lighting estimation Deep learning has

also been recently used for lighting estimation. For example,

Georgoulis et al. [8] learn to estimate lighting and reflectance

from an object of known geometry, by first estimating its

reflectance map (i.e., its “orientation-dependent” appear-

ance) [26] and subsequently factoring it into lighting and

material properties [7]. Closer to our work, Hold-Geoffroy et

al. [12] model outdoor lighting with the parametric, Hošek-

Wilkie sky model, and learn to estimate its parameters from

a single image. As mentioned above, we take inspiration

from this work and significantly improve upon it by propos-

ing to instead use a learned, data-driven outdoor lighting

model. Concurrent to this work, Zhang et al. [31] extend

[12] with a more flexible parametric sky model. In another

closely-related paper, Calian et al. [2] estimate HDR out-

door lighting from a single face image. While they employ

a similar deep autoencoder to learn a data-driven model,

they rely on a multi-step non-linear optimization approach

over the space of face albedo and sky parameters, which is

time-consuming and prone to local minima. In contrast, we

learn to estimate lighting from a single image of a generic

outdoor scene in an end-to-end framework. In addition, our

training procedure is more robust to sky occluders (such as

buildings and trees) and non-linear radiometric distortions.

Cheng et al. [3] estimate lighting from the front and back

camera of a mobile phone. However, they represent lighting

using low-frequency spherical harmonics, which, as shown

in [2], does not appropriately model outdoor lighting.

3. Overview

The goal of our technique is to estimate the illumination

conditions from an outdoor image. Directly training such a

method in a supervised manner is currently impossible as no

large-scale dataset of images and their corresponding illumi-

nation conditions is yet available. We therefore propose the

following 3-step approach, which is also illustrated in fig. 3.

1. Train the SkyNet autoencoder on HDR skies The

first step (fig. 3, top row) is to learn a data-driven sky model

from the 33,420 hemispherical sky images in the Laval HDR

sky database [20] using a deep autoencoder. The autoen-

coder, dubbed “SkyNet”, learns the space of outdoor lighting

by compressing an HDR sky image to a 64-dimensional

latent vector z, and reconstructing it at the original resolu-

tion. Robustness to white balance, exposure, and occlusions

is enforced during training. More details on this step are

presented in sec. 4.

2. Label LDR panoramas with SkyNet The second step

(fig. 3, middle row) is to use the learned SkyNet autoencoder

to obtain z vectors for a large dataset of panoramas. For

this, the Laval HDR sky database cannot be reused as it only

contains sky hemispheres. Instead, we take advantage of

the wide variety of scenes and lighting conditions captured

by the SUN360 panorama dataset [28]. Each panorama is

first converted to HDR with the approach of [30] that has

been trained specifically for this purpose. Then, sky masks

are estimated using the sky segmentation approach of [12]

based on a dense CRF [19]. The resulting HDR panoramas,

which we dub SUN360-HDR, along with their sky masks are

forwarded to the SkyNet encoder to recover z. This has the

effect of labeling each panorama in SUN360 with a compact,

data-driven representation for outdoor illumination.

3. Train image encoders to predict illumination Finally,

the last step (fig. 3, bottom row) is to train an image encoder

on limited field of view images extracted from the SUN360
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Figure 4. Architecture of our SkyNet deep autoencoder showing

the parameters of each layer. ELU [4] activation functions are used

after the convolutional layers (blue). Residual blocks (red) [11]

have the ReLU activation functions.

dataset, by employing the methodology proposed in [12].

The main difference here is that we train the neural network

to predict the z vector from the previous step corresponding

to each crop, instead of the analytical sky parameters as in

the previous work. The full HDR sky image can be recovered

using the SkyNet decoder. The resulting sky image can be

used “as is” as image-based lighting to photorealistically

render 3D objects into images with a variety of illumination

conditions. We detail this step in sec. 5.

4. Training the SkyNet deep sky model

In this section, we describe SkyNet, our deep autoencoder

acting as our sky model, its architecture and training steps.

4.1. Deep autoencoder

To learn our sky model, we adopt an autoencoder archi-

tecture which projects a full HDR sky down to 64 parameters

(encoder), and subsequently reconstructs it (decoder). This is

conceptually similar to [2], with the key differences that we

employ a more robust training scheme which includes occlu-

sions and radiometric distortions, making it amenable to full

end-to-end learning rather than the non-linear inverse ren-

dering framework of [2]. In addition, we employ a different

architecture based on residual layers [11] (see fig. 4).

To represent the sky, we use the equirectangular (latitude-

longitude) projection at a resolution of 32×128 in RGB of

the up hemisphere. This representation has the advantage of

being easy to rotate along the azimuth with a horizontal shift

of the image. Similarly to [2, 30], we rotate the panoramas

along their azimuth so that the sun is in the center of the

image, as we empirically found that training the sky model

is simpler and more well-behaved this way. However, unlike

its azimuth, we cannot decouple the sun elevation from the

sky reconstruction as it influences the sun intensity, color,

and overall sky luminance distribution [24].

The SkyNet autoencoder training is mostly performed on

the 33,420 panoramas of the Laval HDR sky database [20,

22], which we augment with 7000 panoramas from SUN360-

HDR [28, 30] (see sec. 3), both of which include the full

dynamic range of the sun. We resize each panorama down

to a resolution of 32 × 128, ensuring that the sky integral

remains constant by taking the solid angles into account.

Parameter Equation Distribution Bounds

Exposure (e) Pd = eP O(0.2,
√
0.2) [0.1, 10]

White bal. (w) Pd,c = wcPc N (0, 0.06) [0.8, 1.2]

Gamma (γ) Pd = P
1/γ O(0.0035,

√
0.2) [0.85, 1.2]

Table 1. Parameters used to generate radiometrically distorted ver-

sions Pd of the panoramas P. Here, c denotes the color channel,

N (µ, σ2)/O(µ, σ2) indicate a normal/lognormal distribution.

While the Laval sky database contains unoccluded sky

images, panoramas in the SUN360-HDR may contain multi-

ple buildings and other sky occluders which we do not want

to learn in our sky model. To prevent SkyNet from learn-

ing non-sky features, we reuse the sky segmentation of [12]

(based on a CRF refinement [19]) to mask non-sky regions of

SUN360-HDR with black pixels. To enforce SkyNet to esti-

mate plausible sky appearance in those regions, we randomly

apply black regions to the training images from the Laval

sky database and ask the network to recover the original, un-

occluded sky appearance. Specifically, we apply, with 50%

chance, the non-sky mask from a random SUN360-HDR

panorama. This is only done on the Laval sky panoramas,

as SUN360-HDR already contains buildings occluding the

sky. This requires the neural network to fill in the holes and

predict the sky energy distribution under occluded regions.

4.2. Training losses

To obtain robustness to occlusions and radiometric distor-

tions, we train SkyNet using a combination of two losses, as

illustrated in the top part of fig. 3. First, two versions of the

panorama are fed through the network, one after the other:

the original P and a second one to which we applied ran-

dom radiometric distortions Pd. These random distortions

consist of variations in exposure, white balance and camera

response function as described in table 1.

Denoting enc(·) as the encoder, the first loss used to train

the sky autoencoder enforces both the undistorted z=enc(P)
and distorted zd = enc(Pd) to be as close as possible by

minimizing the L1 norm between them:

Ld = ‖zd − z‖1 . (1)

This loss encourages the sky encoder to be robust to radio-

metric distortions that may be present in the input panoramas.

Our second loss is the typical autoencoder reconstruction

loss, with the difference that both the undistorted and dis-

torted inputs must reconstruct the original panorama using

an L1 loss:

Lr = ‖P̂−P‖1 + ‖P̂d −P‖1 , (2)

where P̂= dec(z) and P̂d= dec(zd) are the panoramas re-

constructed by the decoder dec(·). The reconstruction loss

Lr is only computed on sky pixels in the original panorama

P. For example, this loss is not active for regions masked by

buildings in panoramas from SUN360-HDR, as no ground
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truth sky appearance is known for this region. The autoen-

coder is never penalized for any output in these regions.

On the Laval HDR sky panoramas, this loss is active ev-

erywhere, even for randomly masked (black) regions. The

target appearance for those regions is the original sky pixels

of the panorama before the sky was masked, effectively ask-

ing the autoencoder to extrapolate—or fill—the region with

plausible sky appearance.

Our sky autoencoder is trained with:

Ls = Lr + λdLd , (3)

where we empirically set λd =100 in order to balance the

gradient magnitude between Lr and Ld during training.

Example sky reconstructions on test panoramas are shown

in the middle column of fig. 2. While LDR content such

as clouds is lost, the reconstructed panoramas P̂ properly

model the energy distribution of the sky and are thus able to

faithfully reproduce shadow characteristics like contrast and

sharpness. In contrast, while the Hošek-Wilkie sky model

properly approximates clear skies, it does not generalize to

non-clear skies (right-most column in fig. 2).

4.3. Implementation details

Our sky model holds approximately 1 million parameters

which are learned using the Adam [18] optimizer with a

learning rate of 10−3 and β = (0.5, 0.999). We addition-

ally reduce the learning rate by a factor of 10 whenever the

minimum error on the validation set has not decreased over

the last 10 epochs. Convergence is monitored on the valida-

tion set, which is comprised of 14 days (3999 panoramas)

from the Laval HDR sky database that we removed from

the training set and 2000 panoramas from SUN360-HDR

(sec. 3), different from the ones chosen to augment the train-

ing set. Training convergence was obtained after 127 epochs

in our case, taking roughly 4 hours on a Titan Xp GPU. Sky

inference takes approximately 10ms on the same machine.

We (un)normalize the input (output) panoramas using the

training set mean and standard deviation.

5. Learning to estimate illumination from a sin-

gle image

In this section, we describe the third step of our approach

(c.f. sec. 3 and fig. 3), that is, how we learn to estimate both

the sun azimuth ϕ and the sky parameters z of our learned

sky model from a single, limited field of view image.

5.1. Image lighting estimation

To estimate the sky parameters z from a limited field of

view image, we use a pretrained DenseNet-161 [15] architec-

ture where the last layer was replaced by a fully connected

layer of 64 outputs. We finetune this image-to-sky model on

sky parameters z using an L2 loss:

Lz = ‖ẑ− z‖2 . (4)
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Figure 5. Comparison of sun position estimations between our

proposed model (blue) and Hold-Geoffroy et al. [12] showing the

cumulative sun position estimation error on (a) their SUN360 test

set and (b) our HDR 360◦ captures. Using a recent network archi-

tecture (DenseNet-161 [15]) grants our technique a slight improve-

ment over the network used by [12].

We observed that this loss on the space of z alone failed to

capture the details in the sky energy distribution and tended

to produce average skies without strong sun intensities. To

solve this issue, we added an L1 loss on the sky panoramas

reconstructed from ẑ and z by the SkyNet decoder:

Lc = ‖(dec(ẑ)− dec(z))⊙ dΩ‖1 , (5)

where dec(·) denotes the SkyNet decoder, dΩ the matrix of

solid angles spanned by each pixel in the sky panorama, and

⊙ the element-wise multiplication operator.

The image-to-sky encoder is trained by summing those

two losses: Li = Lz + λcLc. Due to the large difference

in magnitude between Lz and Lc, we empirically set λc =
3× 10−10 to prevent gradient imbalance during training.

5.2. Sun azimuth estimation

Due to our sky model training (sec. 4.1), the sun will in-

variably be located in the center column of the estimated sky

panorama. We therefore need to estimate the sun azimuth ϕ

to rotate the lighting according to the sun position in the im-

age. Both tasks seem to be closely related, hinting that both

could benefit from joint training [12, 29]. However, training

a single model to estimate both the sky parameters z and sun

azimuth ϕ proved difficult. In our experiments, balancing

both tasks using a fixed ratio between the losses failed to

obtain good generalization performance for both tasks si-

multaneously. To circumvent this issue, we train a different

image-to-azimuth model to estimate a probability distribu-

tion of the sun azimuth ϕ. This sun azimuth distribution is

obtained by discretizing the [−π, π] range into 32 bins, sim-

ilar to [12]. We use once again a pretrained DenseNet-161

where the last layer is replaced by a fully connected layer of

32 outputs. A Kullback-Leibler divergence loss Lϕ with a

one-hot target vector is used to train this neural network.

5.3. Implementation details

To train both the image-to-sky and image-to-azimuth en-

coders, we use the SUN360-HDR dataset which we augment
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Figure 6. Quantitative relighting error

on the bunny scene (see fig. 7). We

compute two metrics comparing renders

against ground truth lighting: (a) RMSE

and (b) scale-invariant (si-)RMSE [10].

The lighting has been rotated for both

methods so the sun is always at the same

azimuth. The global intensity of our es-

timated environment map is generally

closer to the ground truth most of the

time, leading to an almost 10× improve-

ment in RMSE over [12]. Additionally,

our flexible learned sky model allows

for increased shadow expressiveness and

can handle completely overcast skies,

enhancing the si-RMSE by over 60%

over the previous state-of-the-art.

with 100 images extracted from 15 captured HDR panora-

mas (see sec. 6.1 for more details). To counter the severe

imbalance between both data sources, we penalize errors

committed on captured panoramas by a factor of 4.

To provide more stability to the training, the image-to-

sky encoder is first trained for 5 epochs using a learning

rate of 3×10−4 using only the loss on sky parameters Lz .

Afterward, both losses Lc and Lz are combined and the

learning rate is set to 2×10−6. The image-to-azimuth model

was trained with a fixed learning rate of 3×10−4. The Adam

optimizer is used with β=(0.4, 0.999) and a weight decay

of 10−7 throughout the training for both the image-to-sky

and sun azimuth estimator. Convergence of the image-to-sky

and image-to-azimuth models were obtained after 55 and 3

epochs (roughly 5 hours of training each on a Titan Xp GPU),

and inference takes roughly 30ms and 24ms, respectively.

6. Experimental validation

This section first presents the dataset used for evaluating

and comparing our method to the state-of-the-art method

of Hold-Geoffroy et al. [12]. Then, the performance of our

proposed method is assessed with qualitative and quantitative

results as well as a user study.

6.1. A dataset of outdoor HDR panoramas

The previous state-of-the-art on outdoor illumination esti-

mation [12] proposed an evaluation based solely on SUN360,

where the ground truth was obtained using their non-linear

optimization on sky pixels to estimate sun intensity. We ar-

gue that evaluating on SUN360 does not provide an accurate

quantitative relighting performance since it assumes that the

non-linear fit accurately models all types of skies present in

the panoramas, which is not the case (fig. 2).

To provide a more accurate assessment of the perfor-

mance of our technique, we captured a new dataset of 206

input image GT ours [12]

0.08 0.08 2.58 0.18

0.13 0.06 1.50 0.06

0.44 0.830.11 0.20

0.10 0.06 1.70 0.12

0.21 0.03 3.24 0.08

0.16 0.15 1.78 0.14

Figure 7. Qualitative relighting comparison between ground truth

lighting (GT), our method, and Hold-Geoffroy et al. [12]. RMSE

(SI-RMSE) are shown on the bottom left (right). Images from

our HDR outdoor panorama dataset were cropped to obtain the

input image. The renders using our estimated lighting display a

wide variety of cast shadow characteristics such as sharp (sunny),

smooth (lightly overcast) and absent (mostly overcast), which the

parametric sky model of [12] cannot reproduce.

HDR outdoor panoramas2. Following the recommendations

of [27], each panorama captures the full 22 f-stops required

to record the full unsaturated dynamic range of outdoor

scenes. Using a Canon 5D Mark iii camera with an 8mm

Sigma fisheye lens, a ND3.0 filter, and mounted on a Gi-

gaPan tripod head, we captured 6 sets (at 60° azimuthal

increments) of 7 exposures (from 1/8000s to 8s shutter speed

at f/14 aperture) in RAW mode. We then automatically

stitched the results into a 360° HDR panorama using the

2Available at http://outdoor.hdrdb.com.
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ours [12]

total votes 536 (69%) 244 (31%)

Table 2. Results of our user study (N = 39), which show that users

overwhelmingly prefer results obtained with our technique over

that of Hold-Geoffroy et al [12].

PTGui commercial software. Since capturing the necessary

42 photos required approximately 3 minutes, care was taken

to select scenes with no motion. We repeated this process

over 9 different days to capture a diverse set of scenes, result-

ing in a mix of urban and natural scenes with illumination

conditions ranging from overcast to sunny. We select 191

panoramas from this set (non-overlapping in both location

and illumination conditions with the 15 used for training in

the image-to-sky encoder, see sec. 5.3) and extract 7 crops

per panorama for a total of 1,337 images, which we use for

evaluation below.

6.2. Quantitative sun position evaluation

We begin by evaluating the performance of our models in

estimating the relative position of the sun with respect to the

camera from a single limited field of view image. Results on

both the SUN360 test set from [12] (left) and our panorama

dataset (right) are shown in fig. 5. In both cases, the ground

truth is obtained by detecting the center of mass of the bright-

est region in the panorama, following [12] (who reported

a median error of 4.59◦). Since our method only estimates

explicitly the sun azimuth, the elevation angle is estimated

as the brightest pixel of the reconstructed lighting panorama.

Due to the more advanced network architecture employed,

we systematically improve sun position estimation over the

previous state-of-the-art on both datasets.

6.3. Lighting evaluation on HDR panoramas

The relighting error is compared between [12] and our

method using the bunny scene on the 1,337 images from our

dataset with ground truth illumination (sec. 6.1). Both the

RMSE and the scale-invariant (si-)RMSE [10] are computed,

and results are shown in fig. 6. Our technique yields signifi-

cant improvement in both the RMSE and si-RMSE. For the

RMSE, the improvement is mostly due to the fact that the

exposure estimation of [12] that seems biased toward bright

skies. The render intensity using our estimated lighting is

generally much closer to the ground truth. Additionally, the

increased versatility of our sky model confers an additional

60% improvement on scale-invariant RMSE.

Qualitative examples of recovered illumination and ren-

ders are shown for test images in our HDR panorama dataset

in fig. 7 and SUN360 dataset in fig. 8. Both techniques pro-

vide plausible estimates yielding strong shadows on sunny

days. For both datasets, we observe that lighting from [12]

is consistently brighter than the ground truth, resulting in

(b)

(d)

(e)

(c)

(f )

(b)

(d)

(e)

(c)

(f )

(c)

(d)

(e)

(c)

(f )

(b)

(d)

(e)

(c)

(f )

(a)

(a)

(a)

(a)

Figure 8. Qualitative relighting evaluation. From (a) an input image,

we show the lighting estimation and render from Hold-Geoffroy

et al. [12] (b-c) and our method (e-f) on SUN360. Note that no

ground truth illumination exists for this dataset, only (d) a saturated

LDR panorama. Our method confers a wider variety of shadow

characteristics (f) over that of [12].

strong cast shadows even on partially cloudy and overcast

skies. Our sky model captures the subtle lighting distribution

in these conditions more accurately.

We further compare our method by performing virtual

object insertions using the Cycles renderer. As fig. 9 shows,

our estimated overall lighting intensity is closer to the ground

truth than [12] while still providing plausible shading.

6.4. User study on SUN360 LDR panoramas

As no accurate ground truth illumination is available for

SUN360, no quantitative relighting evaluation can faithfully

be performed on this dataset. Instead, we evaluate perfor-

mance with a user study where we showed (N = 39) partic-

ipants 20 pairs of images with a virtual object (a bird statue

model) composited into the image and lit by the estimates

provided by our method and [12]. For each pair, users were

asked to select the image where the object looked most re-

alistic. As shown in tab. 2, our method obtained slightly

more than 68% of the total votes. Furthermore, our lighting

estimations were preferred (more than 50% votes) on 16 of

the 20 images.
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Ground Truth [12] ours

Figure 9. Examples of virtual object insertion comparing our

method to [12] on backgrounds extracted from our evaluation

dataset (see sec. 6.1).

7. User-guided edits on the sky model

Low-dimensional analytical sky models such as [14, 22]

provide explicit parameters for users to interact with, such as

sun position and atmospheric turbidity. The main drawback

of our implicit sky parameters z is that they cannot be directly

hand-tuned. One could think of generating new skies by

interpolating between two sky parameters z. However, doing

so yields abrupt transitions that often contain undesirable

artifacts such as multiple suns (fig. 10-a).

We propose a new method to browse the parameter space

spanned by z while producing smooth transitions and plausi-

ble skies. Our intuition is to start from a known sky parame-

ter z and iteratively morph this sky toward a desired target

using the sky decoder gradient. To generate this gradient,

a sky is first forwarded through the sky autoencoder. Then,

edits are applied to the reconstructed sky and the resulting

gradients on z are computed. We experiment on two types

of edits: the sun elevation and intensity. To change the sun

elevation, we move the 5×5 region around the sun either

up or down and compute the gradient using the difference

between the reconstruction and this modified sky. A similar

scheme is used for sun intensity, where the region is multi-

plied such that its maximum value is the desired sun intensity.

Iterating on this scheme using zn+1 = 4×10−10 · ∂Lr

∂z
· zn

for a maximum of 300 iterations automatically re-projects

this modified sky back to a plausible sky and successfully

removes the manually-induced artifacts. The multiplying

factor was empirically set as a good balance between stabil-

ity and convergence speed. Visually smooth transitions are

shown in fig. 10.

(c)

(b)

(d)

(a)

Figure 10. Examples of user-guided edits on the sky model. (a)

Interpolating between two sky parameters z does not produce a

smooth and plausible lighting transition. To solve this, we propose

a method to enable smooth user-guided lighting edits and show

results on changing the sun position on (b) a cloudy and (c) a

clear day. Note how the generated skies stay plausible throughout

the transition. We further show an example of changing the sun

intensity (d), from fully visible to mostly occluded.

8. Discussion

In this paper, we propose what we believe is the first

learned sky model trained end-to-end and show how to use

it to estimate outdoor lighting from a single limited field of

view images. Our key idea is to use three different datasets

in synergy: SUN360 [28], Laval HDR sky database [20],

and our own HDR 360◦ captures. Through quantitative

and qualitative experiments, we show that our technique

significantly outperforms the previous state-of-the-art on

both lighting reconstruction and estimation.

While our method proposes state-of-the-art performance,

it suffers from some limitations. Notably, the Hošek-Wilkie

model employed by [12] tends to produce stronger lighting

and sharper shadows than our model, which users seemed

to prefer sometimes in our study. Additionally, while our

model accurately captures the sky energy, its texture recovery

quality is still limited. We hope these limitations can be soon

lifted by the current rapid development of deep learning.
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