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Abstract

Unconditional image generation has recently been dom-

inated by generative adversarial networks (GANs). GAN

methods train a generator which regresses images from ran-

dom noise vectors, as well as a discriminator that attempts

to differentiate between the generated images and a train-

ing set of real images. GANs have shown amazing results at

generating realistic looking images. Despite their success,

GANs suffer from critical drawbacks including: unstable

training and mode-dropping. The weaknesses in GANs have

motivated research into alternatives including: variational

auto-encoders (VAEs), latent embedding learning methods

(e.g. GLO) and nearest-neighbor based implicit maximum

likelihood estimation (IMLE). Unfortunately at the moment,

GANs still significantly outperform the alternative methods

for image generation. In this work, we present a novel

method - Generative Latent Nearest Neighbors (GLANN)

- for training generative models without adversarial train-

ing. GLANN combines the strengths of IMLE and GLO in

a way that overcomes the main drawbacks of each method.

Consequently, GLANN generates images that are far better

than GLO and IMLE. Our method does not suffer from mode

collapse which plagues GAN training and is much more sta-

ble. Qualitative results show that GLANN outperforms a

baseline consisting of 800 GANs and VAEs on commonly

used datasets. Our models are also shown to be effective for

training truly non-adversarial unsupervised image transla-

tion.

1. Introduction

Generative image modeling is a long-standing goal for

computer vision. Unconditional generative models attempt

to learn functions that generate the entire image distribu-

tion given a finite number of training samples. Generative

Adversarial Networks (GANs) [9] are a recently introduced

technique for image generative modeling. They are used

extensively for image generation owing to: i) training ef-

fective unconditional image generators ii) being almost the

only method for unsupervised image translation between

domains (but see NAM [15]) iii) being an effective percep-

tual image loss function (e.g. Pix2Pix [16]).

Along with their obvious advantages, GANs have criti-

cal disadvantages: i) GANs are very hard to train, this is

expressed by a very erratic progression of training, sudden

run collapses, and extreme sensitivity to hyper-parameters.

ii) GANs suffer from mode-dropping - the modeling of only

some but not all the modes of the target distribution. The

birthday paradox can be used to measure the extent of mode

dropping [2]: The number of modes modeled by a genera-

tor can be estimated by generating a fixed number of im-

ages and counting the number of repeated images. Empiri-

cal evaluation of GANs found that the number of modes is

significantly lower than the number in the training distribu-

tion.

The disadvantages of GANs gave rise to research into

non-adversarial alternatives for training generative models.

GLO [4] and IMLE [23] are two such methods. GLO, intro-

duced by Bojanowski et al., embeds the training images in a

low dimensional space, so that they are reconstructed when

the embedding is passed through a jointly trained deep gen-

erator. The advantages of GLO are i) encoding the entire

distribution without mode dropping ii) the learned latent

space corresponds to semantic image properties i.e. Eu-

clidean distances between latent codes correspond to se-

mantically meaningful differences. A critical disadvantage

of GLO is that there is not a principled way to sample new

images from it. Although the authors recommended fitting

a Gaussian to the latent codes of the training images, this

does not result in high-quality image synthesis.

IMLE was proposed by Li and Malik [23] for train-

ing generative models by sampling a large number of la-

tent codes from an arbitrary distribution, mapping each to

the image domain using a trained generator and ensuring
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Figure 1. An illustration of our architecture: a random noise vector e is sampled and mapped to the latent space to yield latent code

z = T (e). The latent code is projected by the generator to yield image I = G(z).

that for every training image there exists a generated image

which is near to it. IMLE is trivial to sample from and does

not suffer from mode-dropping. Like other nearest neighbor

methods, IMLE is sensitive to the exact metric used, partic-

ularly given that the training set is finite. Recall that while

the classic Cover-Hart result [7] tells us that asymptotically

the error rate of the nearest neighbor classifier is within a

factor of 2 of the Bayes risk, when we use a finite set of

exemplars better choices of metrics give us better classifier

performance. When trained directly on image pixels using

an L2 loss, IMLE synthesizes blurry images.

In this work, we present a new technique, Generative

Latent Nearest Neighbors (GLANN), which is able to train

generative models of comparable or better quality to GANs.

Our method overcomes the metric problem of IMLE by first

embedding the training images using GLO. The attractive

linear properties of the latent space induced by GLO, allow

the Euclidean metric to be semantically meaningful in the

latent space Z . We train an IMLE-based model to map be-

tween an arbitrary noise distribution E , and the GLO latent

space Z . The GLO generator can then map the generated

latent codes to pixel space, thus generating an image. Our

method GLANN enjoys the best of both IMLE and GLO:

easy sampling, modeling the entire distribution, stable train-

ing and sharp image synthesis. A schema of our approach

is presented in Fig. 1.

We quantitatively evaluate our method using established

protocols and find that it significantly outperforms other

non-adversarial methods, while being usually better or com-

petitive with current GAN based models. GLANN is also

able to achieve promising results on high-resolution im-

age generation and 3D generation. Finally, we show that

GLANN-trained models are the first to perform truly non-

adversarial unsupervised image translation.

2. Previous Work

Generative Modeling: Generative modeling of images

is a long-standing problem of wide applicability. Early ap-

proaches included mixtures of Gaussian models (GMM)

[39]. Such methods were very limited in image resolu-

tion and quality. Deep learning methods have continually

been used for image generative models. Variational Autoen-

coders (VAEs) [20] were a significant breakthrough in deep

generative modeling, introduced by Kingma and Welling.

VAEs are able to generate images from the Gaussian dis-

tribution by making a variational approximation. Although

VAEs are relatively simple to train and have solid theoret-

ical foundations, they generally do not generate sharp im-

ages.

Several other non-adversarial training paradigms exist:

Generative invertible flows [8], that were recently extended

to high resolution [19] but at prohibitive computational

costs. Another training paradigm is autoregressive image

models e.g. PixelRNN/PixelCNN [29], where pixels are

modeled sequentially. Autoregressive models are compu-

tationally expensive and underperform adversarial methods

although they are the state of the art in audio generation

(e.g. WaveNet [28]).

Adversarial Generative Models: Generative Adversar-

ial Networks (GANs) were first introduced by Goodfellow

et al. [9] and are the state-of-the-art method for training

generative models. A basic discussion on GANs was given

in Sec. 1. GANs have shown a remarkable ability for image

generation, but suffer from difficult training and mode drop-

ping. Many methods were proposed for improving GANs

e.g. changing the loss function (e.g. Wasserstein GAN [1])
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or regularizing the discriminator to be Lipschitz by: clip-

ping [1], gradient regularization [10, 25] or spectral nor-

malization [26]. GAN training was shown to scale to high

resolutions [37] using engineering tricks and careful hyper-

parameter selection.

Evaluation of Generative Models: Evaluation of gen-

erative models is challenging. Early works evaluated gen-

erative models using probabilistic criteria (e.g. [39]).

More recent generative models (particularly GANs) are not

amenable to such evaluation. GAN generations have tradi-

tionally been evaluated using visual inspection of a handful

of examples or by a user study. More recently, more prin-

cipled evaluation protocols have emerged. Inception Scores

(IS) which take into account both diversity and quality were

first introduced by [31]. FID scores [11] were more recently

introduced to overcome major flaws of the IS protocol [3].

Very recently, a method for generative evaluation which is

able to capture both precision and recall was introduced by

Sajjadi et al. [30]. Due to the hyperparameters sensitivity

of GANs, a large scale study of the performance of 7 dif-

ferent GANs and VAE was carried out by Lucic et al. [24]

over a large search space of 100 different hyperparameters,

establishing a common baseline for evaluation.

Non-Adversarial Methods: The disadvantages of

GANs motivated research into GAN alternatives. GLO [4],

a recently introduced encoderless generative model which

uses a non-adversarial loss function, achieves better results

than VAEs. Due to the lack of a good sampling procedure,

it does not outperform GANs (see Sec. 3.1). IMLE [23],

a method related to ICP was also introduced for training

unconditional generative models, however due to computa-

tional challenges and the choice of metric, it also does not

outperform GANs. Chen and Koltun [5] presented a non-

adversarial method for supervised image mapping, which

in some cases was found to be competitive with adversar-

ial methods. Hoshen and Wolf introduced an ICP-based

method [13] for unsupervised word translation which con-

tains no adversarial training. They also presented non-

adversarial method, NAM [14, 15, 12], for unsupervised

image mapping. The method relies on having access to a

strong unconditional model of the target domain, which is

typically trained using GANs.

3. Our method

In this section we present a method - GLANN - for syn-

thesizing high-quality images without using GANs.

3.1. GLO

Classical methods often factorize a set of data points

{x1, x2, .., xT } via the following decomposition:

xi = Wzi ∀i (1)

Where zi is a latent code describing xi, and W is a set

of weights. Such factorization is poorly constrained and

is typically accompanied by other constraints such as low-

rank, positivity (NMF), sparsity etc. Both W and zi are

optimized directly e.g. by alternating least squares or SVD.

The resulting zi are latent vectors that embed the data in a

lower dimension and typically better behaved space. It is

often found that attributes become linear operations in the

latent space.

GLO [4] is a recently introduced deep method, which is

different from the above in three aspects: i) Constraining

all latent vectors to lie on a unit sphere or a unit ball. ii)

Replacing the linear matrix W , by a deep CNN generator

G() which is more suitable for modeling images. iii) Using

a Laplacian pyramid loss function (but we find that a VGG

[32] perceptual loss works better).

The GLO optimization objective is written in Eq. 2:

arg min
G,{zi}

∑

i

ℓ(G(zi), xi) s.t. ‖zi‖ = 1 (2)

Bojanowski et al [4], implement ℓ as a Laplacian pyra-

mid. All weights are trained by SGD (including the gen-

erator weights G() and a latent vector zi per each training

image xi). After training, the result is a generator G() and

a latent embedding zi of each training image xi.

3.2. IMLE

IMLE [23] is a recent non-adversarial technique that

maps between distributions using a maximum likelihood

criterion. Each epoch of IMLE consists of the following

stages: i) M random latent codes ej are sampled from

a normal distribution ii) The latent codes are mapped by

the generator resulting in images G(ej) iii) For each train-

ing example xi, the nearest generated image is found such

that: ei = argminej ‖G(ej), xi|
2
2 iv) G() is optimized

using nearest neighbors as approximate correspondences

G = argminG̃
∑

i ‖G̃(ei), xi‖
2
2 This procedure is repeated

until the convergence of G().

3.3. Limitations of GLO and IMLE

The main limitation of GLO is that the generator is not

trained to sample from any known distribution i.e. the dis-

tribution of zi is unknown and we cannot directly sample

from it. When sampling latent variables from a normal dis-

tribution or when fitting a Gaussian to the training set latent

codes (as advocated in [4]), generations that are of much

lower quality than GANs are usually obtained. This pre-

vents GLO from being competitive with GANs.

Although sampling from an IMLE trained generator is

trivial, the training is not, a good metric might not be

known, the nearest neighbor computation and feature ex-

traction for each random noise generation is costly. IMLE

typically results in blurry image synthesis.

5813



3.4. GLANN: Generative Latent Nearest Neighbor

We present a method - GLANN - that overcomes the

weaknesses of both GLO and IMLE. GLANN consists of

two stages: i) embedding the high-dimensional image space

into a ”well-behaved” latent space using GLO. ii) Map-

ping between an arbitrary distribution (typically a multi-

dimensional normal distribution) and the low-dimensional

latent space using IMLE.

3.4.1 Stage 1: Latent embedding

Images are high-dimensional and distances between them

in pixel space might not be meaningful. This makes IMLE

and the use of simple metric functions such as L1 or L2 less

effective in pixel space. In some cases perceptual features

may be found under which distances make sense, however

they are high dimensional and expensive to compute.

Instead our method first embeds the training images in

a low dimensional space using GLO. Differently from the

GLO algorithm, we use a VGG perceptual loss function.

The optimization objective is written in Eq, 5:

arg min
G̃,{zi}

∑

i

ℓperceptual(G̃(zi), xi) s.t. ‖zi‖ = 1 (3)

All parameters are optimized directly by SGD. By the

end of training, the training images are embedded by the

low dimensional latent codes {zi}. The latent space Z en-

joys convenient properties such as linearity. A significant

benefit of this space is that a Euclidean metric in the Z space

can typically yield more more semantically meaningful re-

sults than raw image pixels.

3.4.2 Stage 2: Sampling from the latent space

GLO replaced the problem of sampling from image pixels

X by the problem of sampling from Z without offering an

effective sampling algorithm. Although the original paper

suggests fitting a Gaussian to the training latent vectors zi,

this typically does not result in good generations. Instead

we propose learning a mapping from a distribution from

which sampling is trivial (e.g. multivariate normal) to the

empirical latent code distribution using IMLE.

At the beginning of each epoch, we sample a set of ran-

dom noise codes e1..em..eM from the noise distribution.

Each one of the codes is mapped using mapping function

T to the latent space - z̃m = T (em).

During the epoch, our method iteratively samples a mini-

batch of latent codes from the set {z1..zt..zT } computed

in the previous stage. For each latent code zt, we find the

nearest neighbor mapped noise vector (using a Euclidean

distance metric):

et = argmin
em

‖zt − T (em)‖22 (4)

The approximate matches can now be used for finetuning

the mapping function T :

T = argmin
T̃

∑

t

‖zt − T̃ (et)‖
2

2 (5)

This procedure is repeated until the convergence of T ().
It was shown theoretically by Li and Malik [23], that the

method achieves a form of maximum likelihood estimate.

3.4.3 Sampling new images

Synthesizing new images is now a simple task: We first

sample a noise vector from the multivariate normal distribu-

tion e ∼ N(0, I). The new sample is mapped to the latent

code space - ze = T (e).
By our previous optimization, T () was trained such that

latent code ze lies close to the data manifold. We can there-

fore use the generator to project the latent code to image

space by our GLO trained generator Ie = G(ze). Ie will

appear to come from the distribution of the input images x.

It is also possible to invert this transformation by opti-

mizing for the noise vector e given an image I:

e = argmin
ẽ

ℓ(G(T (ẽ)), I) (6)

4. Experiments

To evaluate the performance of our proposed method, we

perform quantitative and qualitative experiments comparing

our method against established baselines.

4.1. Quantitative Image Generation Results

In order to compare the quality of our results against

representative adversarial methods, we evaluate our method

using the protocol established by Lucic et al. [24]. This

protocol fixes the architecture of all generative models to

be InfoGAN [6]. They evaluate 7 representative adver-

sarial models (DCGAN, LSGAN, NSGAN, W-GAN, W-

GAN GP, DRAGAN, BEGAN) and a single non-adversarial

model (VAE). In [24], significant computational resources

are used to evaluate the performance of each method over

a set of 100 hyper-parameter settings, e.g.: learning rate,

regularization, presence of batch norm etc.

Finding good evaluation metrics for generative models

is an active research area. Lucic et al. argue that the pre-

viously used Inception Score (IS) is not a good evaluation

metric, as the maximal IS score is obtained by synthesizing

a single image from every class. Instead, they advocate us-

ing Frechet Inception Distance (FID) [11]. FID measures
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Table 1. Quality of Generation (FID)

Adversarial Non-Adversarial

Dataset MM GAN NS GAN LSGAN WGAN BEGAN VAE GLO Ours

MNIST 9.8± 0.9 6.8± 0.5 7.8± 0.6 6.7 ± 0.4 13.1± 1.0 23.8± 0.6 49.6± 0.3 8.6± 0.1
Fashion 29.6± 1.6 26.5± 1.6 30.7± 2.2 21.5± 1.6 22.9± 0.9 58.7± 1.2 57.7± 0.4 13.0 ± 0.1
Cifar10 72.7± 3.6 58.5± 1.9 87.1± 47.5 55.2± 2.3 71.4± 1.6 155.7± 11.6 65.4± 0.2 46.5 ± 0.2
CelebA 65.6± 4.2 55.0± 3.3 53.9± 2.8 41.3± 2.0 38.9 ± 0.9 85.7± 3.8 52.4± 0.5 46.3± 0.1

the similarity of the distributions of real and generated im-

ages by two steps: i) Running the Inception network as a

feature extractor to embed each of the real and generated

images ii) Fitting a multi-variate Gaussian to the real and

generated embeddings separately, to yield means µr, µg and

variances Σr, Σg for the real and generated distributions re-

spectively. The FID score is then computed as in Eq. 7:

FID = ‖µr − µg‖
2

2 + Tr(Σr +Σg − 2(ΣrΣg)
1

2 ) (7)

Lucic et al. evaluate the 8 baselines on 4 standard pub-

lic datasets: MNIST [22], Fashion MNIST [35], CIFAR10

[21] and CelebA [36]. MNIST, Fashion-MNIST and CI-

FAR10 contain 50k color images and 10k validation im-

ages. MNIST and Fashion are 28 × 28 while CIFAR is

32× 32.

For a fair comparison of our method, we use the same

generator architecture used by Lucic et al. for our GLO

model. We do not have a discriminator, instead, we use a

VGG perceptual loss. Also differently from the methods

tested by Lucic et al. we train an additional network T ()
for IMLE sampling from the noise space to the latent space.

In our implementation, T () has two dense layers with 128
hidden nodes, with RelU and BatchNorm. GLANN actu-

ally uses fewer parameters than the baseline by not using a

discriminator. Our method was trained with ADAM [18].

We used the highest learning rate that allowed convergence:

0.001 for the mapping network, 0.01 for the latent codes

(0.003 for CelebA), generator learning rate was 0.1× the

latent code rate. 500 epochs were used for GLO training

decayed by 0.5 every 50 epochs. 50 epochs were used for

mapping network training.

Tab. 1 presents a comparison of the FID achieved by our

method and those reported by Lucic et al. We removed

DRAGAN and WGAN-GP for space consideration (and as

other methods represented similar performance). The re-

sults for GLO were obtained by fitting a Gaussian to the

learned latent codes (as suggested in [4]).

All GLO experiments used precisely the same perceptual

loss as GLANN. The numbers for VAE were taken from

[24] and used an L1 loss. We run additional VAE exper-

iments with the same perceptual loss as used by us. We

obtained: MNIST 23.7 Fashion 41.2 Cifar10 86.0 CelebA

60.8. These results are competitive with GLO, but are much

worse than ours.

On Fashion and CIFAR10, our method significantly out-

performs all baselines - despite just using a single hyper-

parameter setting. Our method is competitive on MNIST,

but as all methods performed well, it is hard to draw con-

clusions from it. A few other methods outperformed ours

in terms of FID on CelebA, due to checkerboard patterns in

our generated images. This is a well known phenomenon of

deconvolutional architectures [27], which are now consid-

ered outdated. In Sec. 4.3, we show high-quality CelebA-

HQ facial images generated by our method when trained

using modern architectures.

Our method always significantly outperforms the VAE

and GLO baselines (with the same perceptual loss), which

are strong representatives of non-adversarial methods. One

of the main messages in [24] was that GAN methods re-

quire a significant hyperparameter search to achieve good

performance. Our method was shown to be very stable and

achieved strong performance (top on two datasets) with a

fixed hyperparameter setting. An extensive hyperparameter

search can potentially further increase the performance our

method, we leave it to future work.

To address the question of whether the fact that the per-

ceptual loss uses VGG features trained on the ImageNet

dataset is unfair, as the inception network used by FID was

trained on ImageNet, we rerun GLANN with a perceptual

loss based on a VGG network trained on the Place365 scene

recognition dataset (which is significantly different from

ImageNet). The FID scores were: MNIST 9.5 Fashion 13.5
Cifar10 56.7 CelebA 34.8. This is competitive and some-

times much better than the ImageNet VGG loss results. We

can therefore conclude that the good performance of our

method is not due to overfitting to the test metric.

4.2. Evaluation of Precision and Recall

FID is effective at measuring precision, but not recall.

We therefore also opt for the evaluation metric recently pre-

sented by Sajjadi et al. [30] which they name PRD. PRD

first embeds an equal number of generated and real images

using the inception network. All image embeddings (real

and generated) are concatenated and clustered into B bins

(B = 20). Histograms P (ω), Q(ω) are computed for the
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MNIST Fashion CIFAR10 CelebA

Figure 2. Precision-Recall measured by (F8, F 1

8

) for 4 datasets. The plots were reported by [30]. We marked the results of our model for

each dataset by a star on the relevant plot.

number of images in each cluster from the real, generated

data respectively. The precision (α) and recall (β) are de-

fined:

α(λ) =
∑

ω∈Ω

min(λP (ω), Q(ω)) (8)

β(λ) =
∑

ω∈Ω

min(P (ω),
Q(ω)

λ
) (9)

The set of pairs PRD = {(α(λi), β(λi))} forms the

precision-recall curve (threshold λ is sampled from an

equiangular grid). The precision-recall curve is summa-

rized by a variation of the F1 score: Fβ which is able to

assign greater importance to precision or recall. Specifi-

cally (F8, F 1

8

) are used for capturing (recall, precision).

The exact numerical precision-recall values are not avail-

able in [30], they do provide scatter plots with the (F8, F 1

8

)
pairs of all 800 models trained in [24]. We computed

(F8, F 1

8

) for the models trained using our method as de-

scribed in the previous section. The scores were computed

using the authors’ code. For ease of comparison, we overlay

our scores over the scatter plots provided in [30]. Our nu-

merical (F8, F 1

8

) scores are: MNIST (0.971, 0.979), Fash-

ion (0.985, 0.963), CIFAR10 (0.860, 0.825) and CelebA

(0.574, 0.681). The results for GLO with sampling by

fitting a Gaussian to the learned latent codes (as sug-

gested in [4]) were much worse: MNIST (0.845, 0.616),
Fashion (0.888, 0.594), CIFAR10 (0.693, 0.680), CelebA

(0.509, 0.404).
From Fig. 2 we can observe that our method generally

performs better or competitively to GANs on both preci-

sion and recall. On MNIST our method and the best GAN

method achieved near-perfect precision-recall. On Fashion

our method achieved near perfect precision-recall while the

best GAN method lagged behind. On CIFAR10 the perfor-

mance of our method was also convincingly better than the

best GAN model. On CelebA, our method performed well

but did not achieve the top performance due to the checker-

board issue described in Sec. 4.2. Overall the performance

of our method is typically better or equal to the baselines

examined, this is even more impressive in view of the base-

lines being exhaustively tested over 100 hyperparameter

configurations. We also note that our method outperformed

VAEs and GLOs very convincingly. This provides evidence

that our method is far superior to other generator-based non-

adversarial models.

4.3. Qualitative Image Generation Results

We provide qualitative comparisons between our method

and the GAN models evaluated by Sajjadi et al. [30] and

also show promising results on high-resolution images.

As mentioned above, Sajjadi et al. [30] evaluated 800
different generative models in terms of precision and re-

call. They provided visual examples of their best perform-

ing model (marked as B) for each of the 4 datasets evalu-

ated. In Fig. 3, we provide a visual comparison between

random samples generated by our model (without cherry

picking) vs. their reported results.

Our method and the best GAN method performed very

well on MNIST and Fashion-MNIST. The visual examples

are diverse and of high visual quality. On the CIFAR10

dataset, our examples are more realistic than those gener-

ated by the best GAN model trained by [24]. On CelebA

our generated images are very realistic and with many fewer

failed generations, but do suffer from some pixelization

(discussed in Sec. 4.1). We note that GANs can gener-

ate very high quality faces (e.g. PGGAN [17]), however

it appears that for the small architecture used by Lucic et

al. and Sajjadi et al., GANs do not generate particularly

high-quality facial images.

As a high resolution experiment, we trained GLANN on

the CelebA-HQ dataset at 256 × 256 resolution. We used

the network architecture from Mescheder et al [25], with 64
channels, latent code dimensionality of 256 and noise di-

mension of 100, learning rates of 0.003 for the latent codes

and the noise to latent code mapping function, and 0.001
for the generator. We trained for 250 epochs, decayed by

0.5 every 10 epochs.
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IMLE GLO GAN Ours

Figure 3. Comparison of synthesis by IMLE [23], GLO [4], GAN [24], Ours. First row: MNIST, Second row: Fashion, Third row:

CIFAR10, Last row: CelebA64. The missing IMLE images were not reported in [23]. The GAN results are taken from [24], corresponding

to the best generative model out of 800 as evaluated by the precision-recall metric.

Interpolation examples between two randomly sampled

noises are presented in Fig. 4. Our model is able to generate

high resolution images. The smooth interpolations illustrate

that our model generalizes well to unseen images.

To show the ability of our method to scale to 1024 ×
1024, we present two interpolations at this high resolution

in Fig. 5. Note that not all interpolations at such high reso-

lution were successful.

4.4. ModelNet Chair 3D Generation

We present preliminary results for 3D generation on the

Chairs category of ModelNet [34]. The generator follows

the 3DGAN architecture from [33]. GLANN was trained

with ADAM and an L1 loss. Some GLANN generated 3D

samples are presented in Fig. 6.

4.5. NonAdversarial Unsupervised Image Transla
tion

As generative models are trained in order to be used in

downstream tasks, we propose to evaluate generative mod-

els by the downstream task of cross domain unsupervised

mapping. NAM [15] was proposed by Hoshen and Wolf

for unsupervised domain mapping. The method relies on

having a strong unconditional generative model of the out-

put image domain. Stronger generative models perform

better at this task. This required [15, 12] to use GAN-
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Figure 4. Interpolation on CelebA-HQ at 256 × 256 resolution. The rightmost and leftmost images are randomly sampled from random

noise. The interpolation are smooth and of high visual quality.

Figure 5. Interpolation on CelebA-HQ at 1024× 1024 resolution.

Figure 6. Examples of 3D chairs generated by GLANN

based unconditional generators. We evaluated our model

using the 3 quantitative benchmarks presented in [15] -

namely: MNIST → SV HN , SV HN → MNIST and

Car → Car. Our model achieved scores of 31.3%, 25.0%
and 1.45 on the three tasks respectively. The results are sim-

ilar to those obtained using the GAN-based unconditional

models (although SVHN is a bit lower here). GLANN is

therefore the first model able to achieve fully unsupervised

image translation without the use of GANs.

5. Discussion

Loss function: In this work, we replaced the standard

adversarial loss function by a perceptual loss. In prac-

tice we use ImageNet-trained VGG features. Zhang et al.

[38] claimed that self-supervised perceptual losses work no

worse than the ImageNet-trained features. It is therefore

likely that our method will have similar performance with

self-supervised perceptual losses.

Higher resolution: The increase in resolution between

64×64 to 256×256 or 1024×1024 was enabled by a sim-

ple modification of the loss function: the perceptual loss

was calculated both on the original images, as well as on a

bi-linearly subsampled version of the image. Going up to

higher resolutions simply requires more sub-sampling lev-

els. Research into more sophisticated perceptual loss will

probably yield further improvements in synthesis quality.

Other modalities: In this work we focuses on image

synthesis. We believe that our method can extend to many

other modalities, particularly 3D and video. The simplicity

of the procedure and robustness to hyperparameters makes

application to other modalities much simpler than GANs.

We showed some evidence for this assertion in Sec. 4.4.

One research task for future work is finding good perceptual

loss functions for domains outside 2D images.

6. Conclusions

In this paper we introduced a novel non-adversarial

method for training generative models. Our method com-

bines ideas from GLO and IMLE and overcomes the weak-

nesses of both methods. When compared on established

benchmarks, our method outperformed the the most com-

mon GAN models that underwent exhaustive hyperparam-

eter tuning. Our method is robust and simple to train and

achieves excellent results. As future work, we plan to ex-

tend this work to higher resolutions and new modalities

such as video and 3D.
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