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Abstract

In recent years, computer vision techniques have made

large advances in image recognition and been applied

to aid radiological diagnosis. Computational pathology

aims to develop similar tools for aiding pathologists in di-

agnosing digitized histopathological slides, which would

improve diagnostic accuracy and productivity amidst in-

creasing workloads. However, there is a lack of publicly-

available databases of (1) localized patch-level images an-

notated with (2) a large range of Histological Tissue Type

(HTT). As a result, computational pathology research is

constrained to diagnosing specific diseases or classifying

tissues from specific organs, and cannot be readily general-

ized to handle unexpected diseases and organs.

In this paper, we propose a new digital pathology

database, the “Atlas of Digital Pathology” (or ADP), which

comprises of 17,668 patch images extracted from 100 slides

annotated with up to 57 hierarchical HTTs. Our data is

generalized to different tissue types across different organs

and aims to provide training data for supervised multi-label

learning of patch-level HTT in a digitized whole slide im-

age. We demonstrate the quality of our image labels through

pathologist consultation and by training three state-of-the-

art neural networks on tissue type classification. Quantita-

tive results support the visually consistency of our data and

we demonstrate a tissue type-based visual attention aid as

a sample tool that could be developed from our database.

1 Introduction
The field of computational pathology aims to develop

computer algorithms to assist the diagnosis of disease from

digital pathology images by pathologists [21]. Leveraging

the impressive advances of computer vision in solving dif-

ficult general image recognition problems (e.g. recognizing

dogs and cats) [9, 32, 16, 33, 12, 38], computational pathol-

ogy promises to improve the diagnostic accuracy and pro-

ductivity of pathologists, who face an increasingly heavy

workload [27, 41, 21, 15]. In fact, the use of computer vi-

sion algorithms in computer-aided diagnosis (CADx) has

already become widely accepted in the sister field of radi-

ology [29, 40, 5]. But as there exist serious shortcomings

in publicly-available digital pathology databases, and most

state-of-the-art computer vision systems are trained by su-

pervised learning, this constrains the development of useful

and generalizable computational pathology tools.

Most databases are either annotated with textual descrip-

tions or annotated at the slide level with minimal local-

ized information provided by drawn outlines [21]. This

is problematic because, unlike general image classification,

digital pathology slide images are very large compared to

the features of interest, where local patch-level (or even

pixel-level) information is essential. Furthermore, existing

databases are specially annotated with an incomplete set of

possible tissue conditions (i.e. healthy, disease #1, disease

#2, ..., disease #N) and hence cannot be generalized to clas-

sify unexpected diseases or unseen organs. Since only a

limited number of possible tissue types are observable, it

makes more sense to annotate tissue types. Some databases

do just that, but use only a few tissue types, which again

limits their application. This lack of (1) localized patch-

level images annotated with (2) a large range of Histological

Tissue Type (HTT) prevents computational pathology from

properly developing generalized clinically useful tools.

Inspired by this shortcoming in publicly available digi-

tal pathology databases, we introduce the Atlas of Digital

Pathology (ADP or Atlas, for short), a database of digi-

tal pathology image patches originating from a variety of

organs acquired by a whole slide imaging (WSI) scanner,

and each annotated with multiple HTTs (both morpholog-
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ical and functional) organized in a hierarchical taxonomy.

To the best of our knowledge, there are no other similar

databases of digital pathology originating from different or-

gans and annotated at the patch level with multiple, hierar-

chical HTTs, and this makes our database singularly well-

suited for training useful computational pathology tools.

Our database annotations are validated by an experi-

enced pathologist which uniquely exploits a priori knowl-

edge of the hierarchical relations between HTTs. As it is

labeled with tissue type at the patch level, it can be used

to develop a computational pathology system for assisting

pathologists in their diagnostic evaluations of whole slide

images with patch-level resolution. Furthermore, we adopt

three existing CNN architectures - VGG16 [33], ResNet18

[12], and Inception-V3 [38] - and validate the quality of

our labeling by training them for tissue type classification

using multi-label hierarchical classification loss. The ex-

cellent predictive performance of these networks not only

further validates the labeling quality, but also suggests the

possibility of applying the data to develop computational

pathology tools for solving more difficult related problems.

An obvious immediate application of the Atlas of Dig-

ital Pathology would be the development of a multi-label

supervised learning algorithm for predicting patch-level tis-

sue type, which could be used to localize tissue types in a

whole slide image as an automated attention aid for pathol-

ogists. For instance, such a tool could highlight glandu-

lar tissue regions for cancer diagnosis or show regions of

tumor-infiltrating lymphocytes for disease prognosis, thus

helping pathologists streamline their visual search proce-

dure. Our Atlas data could be feasibly extended to develop:

(a) pixel-level interpretation of WSI via weakly-supervised

semantic segmentation to obtain instance-level outlines of

individual tissue structures which can assist pathologists in

visually searching for relevant tissues, which is known to be

time consuming and inconsistent [17, 28]; (b) tissue mor-

phometric analysis to automatically measure the shapes of

tissue structure, that is needed for diagnosing certain dis-

eases [11]; (c) abnormality detection that would associate

disease prognosis with the shape and arrangement of tissue

structures [4]; and (d) image retrieval based on HTT en-

coding which would enable more semantically-relevant ap-

proaches than existing unsupervised Content-Based Image

Retrieval (CBIR) approaches [37, 24, 23, 44, 14, 25, 45, 46].

1.1 Related Work

As mentioned above, there exist many publicly avail-

able databases of labeled digital pathology images, which

may be broadly classified into three types: (1) govern-

ment or academic repositories, (2) educational sites, and (3)

grand challenges. The first type is released by governmen-

tal agencies or academic medical research departments for

enabling research into the relationships between diagnos-

tic outcomes and histological image features, including The

Human Protein Atlas [31], The Cancer Genome Atlas [42],

and the Stanford Tissue Microarray Database [26]. These

databases are very large and cataloged with structured slide-

level mixed-format annotations (e.g. patient data, survival

outcomes, pathologist diagnosis). Chang et al. train three-

class tissue classifiers with TCGA in [6] and Sirinukunwat-

tana et al. train four-class nuclei classifiers with STMD in

[35]. The second type is released by medical teaching de-

partments for educating their students in histology, contain

fewer examples, and are annotated with unstructured slide-

level textual descriptions (e.g. labels pointing at diseased

regions) - these are very difficult to apply to computational

pathology. The third type is released by academic research

departments and teaching hospitals for evaluating compu-

tational algorithms applied to a chosen clinically-relevant

problem, known as Grand Challenges, and include the MIC-

CAI Nuclei Segmentation [18], MICCAI Gland Segmenta-

tion [34], and CAMELYON [20] contests. These databases

tend to be moderately large in size, focused on particular

tissues or conditions, and cataloged with patch-level cate-

gorical or positional annotations relevant to the problem at

hand (e.g. cancerous or non-cancerous, locations of mitotic

figures). These databases are commonly used for computa-

tional pathology: Chen et al. won MICCAI Gland Segmen-

tation 2015 with their DCAN [7], while Lee and Baeng won

CAMELYON17 with their multi-stage framework [19].

1.2 What is Missing?

As stated above, the existing databases are focused on

slides exhibiting particular organs (e.g. breast tissue) either

annotated at the slide level with particular diagnostic condi-

tions (e.g. cancer grades) or at the local patch level with

particular tissue structures (e.g. glands) to the exclusion

of other conditions and structures. Therefore, the current

compilation format of annotated database limits the proper

means of developing tissue recognition tasks for computa-

tion pathology in the first place. In fact, a meaningful recog-

nition tool should be capable of identifying a wide range of

tissue spectrum, so one can narrow down to certain tissue(s)

for diagnostic analysis. Our proposed database, though, in-

cludes histological tissue slides from different organs and

annotated at the patch level with different tissue structures.

2 Construction of Atlas Database

This section explains the construction of Atlas database

from diverse HTTs originating from various organs. First,

we describe the WSI scanning workflow to digitize the glass

slides and divide them into patches. Then, we explain our

proposed hierarchical taxonomy of HTT and patch label-

ing procedure. Finally, we analyze statistical patterns of the

resultant multi-label categorical HTT data through Associ-

ation Rule Learning and visualize the label co-occurrences

as a graph network, and describe the validation of our tissue

type label data by an experienced pathologist.
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2.1 Whole slide imaging (WSI) workflow

A total of 100 glass slides were selected from a larger

size of 500 anonymized glass slides (each sized 1”×3”

and 1.0 mm in thickness) by observing the slides under a

Nikon H550L brightfield microscope using the 20x objec-

tive lens and 0.75 numerical aperture. We selected those

slides with (a) acceptably few focus variations caused by

tissue specimen thickness [13, 10], (b) diverse spectrum of

color variations of tissue stains [3, 8], (c) acceptably few

preparation imperfections such as air bubbles and tissue

folding/crushing/cracks, (d) different organs of origin, such

as brain, kidney, breast, liver, and heart, and (e) different

diagnoses (i.e. disease or non-disease related).

These 100 selected glass slides were then digitized using

a Huron TissueScope LE1.2 WSI scanner at 40X magnifi-

cation (0.25µm/pixel resolution, uncompressed TIFF file)

and each digital slide was then divided into a random-

ized subset of recognizable non-background patches of size

1088 × 1088 pixels with an overlap of 32 pixels - 17,668

patches were collected in total. Background patches - those

with more than 97.5% of pixels exceeding 85% intensity on

all three RGB channels - were excluded. Patches without

any recognizable tissue due to significant focus problems

or non-tissue objects (e.g. dust specks) were also excluded.

On average, each glass slide produced 177 patches (mini-

mum: 12 patches, maximum: 280 patches); most appeared

to be stained with Hematoxylin and Eosin (H&E).

2.2 Hierarchical Taxonomy of Histological Tis-
sues

Given digital pathology slide patches containing visibly-

recognizable tissues, we assume that each patch originates

from an unknown organ and can be classified with one or

more histological types. Here, we elaborate on the chosen

taxonomy of histological tissue types and their organizing

principles. In histology itself, there are two practical ap-

proaches: (1) Basic Histology, which studies tissue struc-

ture (or morphology), and (2) Systematic (or Functional)

Histology, which studies tissue functionality and organiza-

tion into organs. The Basic Histology approach is readily

applicable to the slide patches because even a small visual

field is sufficient to identify the tissue structure. By con-

trast, the Systematic Histology approach is generally not

applicable for labeling the slide patches since the organ of

origin is usually unknown and a larger visual field is needed

to provide the spatial context for understanding the tissue

functionality. Note that this excludes the cases of smaller

functional structures such as glands and transport vessels.

Hence, we consulted standard histology texts [43, 30] and

selectively combined both approaches to tissue type classi-

fication to suit patch-level analysis in our proposed three-

level tissue type taxonomy. The top level contains seven

basic histological (or morphological) tissue types (a super-

set of the five basic types in [43] and four basic types in

[30]) and two systematic histological (or functional) tissue

types (“Glandular” and “Transport Vessel”). We organized

the taxonomy to further divide each top-level tissue type

into more specific sub-types, each of which corresponds

to a visually identifiable tissue type and not, for example,

to an abstract grouping or organ of origin such as epithe-

lium/endothelium/mesothelium. For cases where a more

specific child node type cannot be identified, we associated

a “Undifferentiated” child node type to the parent but did

not consider such nodes as belonging to that level (due to

its insufficient specificity). Table 1 details the full hierar-

chical tissue type taxonomy, the associated letter codes of

each type, and provides the number of occurrences of each

tissue type label.

Table 1. Hierarchical taxonomy of histological tissue type used for

supervised labeling of the proposed Atlas database. The tissue hi-

erarchy consists of three layers, starting from the least specific top

level to the most specific bottom level. The bracketed numbers in

the first row correspond to the number of non-“Undifferentiated”

types falling in the corresponding level.
# level-1

(9)

level-2

(23)

level-3

(36)

#patch

1

Epithelial

(E)

Simple

Epithelial

(E.M)

Simple Squamous Epithelial (E.M.S) 3341

2 Simple Cuboidal Epithelial (E.M.U) 5240

3 Simple Columnar Epithelial (E.M.O) 2533

4
Stratified

Epithelial

(E.T)

Stratified Squamous Epithelial (E.T.S) 355

5 Stratified Cuboidal Epithelial (E.T.U) 3662

6 Stratified Columnar Epithelial (E.T.O) 783

7 Stratified Epithelial Undifferentiated

(E.T.X)

22

8 Pseudostratified Epithelial (E.P) 50

9

Connective

Proper (C)

Dense

Connective

(C.D)

Dense Irregular Connective (C.D.I) 4481

10
Dense Regular Connective (C.D.R) 68

11 Loose Connective (C.L) 8768

12 Connective Proper Undifferentiated (C.X) 291

13

Blood (H)

Erythrocytes (H.E) 7504

14 Leukocytes (H.K) 1739

15 Lymphocytes (H.Y) 5232

16 Blood Undifferentiated (H.X) 126

17

Skeletal

(S)

Mature

Bone (S.M)

Compact Bone (S.M.C) 298

18 Spongy Bone (S.M.S) 233

19 Endochondral Bone (S.E) 38

20 Cartilage

(S.C)

Hyaline Cartilage (S.C.H) 10

21 Cartilage Undifferentiated (S.C.X) 35

22 Marrow (S.R) 157

23
Adipose

(A)

White Adipose (A.W) 536

24 Brown Adipose (A.B) 2

25 Marrow Adipose (A.M) 137

26 Muscular

(M)

Smooth Muscle (M.M) 4213

27 Skeletal Muscle (M.K) 783

28

Nervous

(N)

Neuropil (N.P) 2198

29 Neurons

(N.R)

Nerve Cell Bodies (N.R.B) 1840

30 Nerve Axons (N.R.A) 59

31

Neuroglial

Cells (N.G)

Microglial Cells (N.G.M) 593

32 Astrocytes (N.G.A) N/A

33 Oligodendrocytes (N.G.O) N/A

34 Ependymal Cells (N.G.E) N/A

35 Radial Glial Cells (N.G.R) N/A

36 Schwann Cells (N.G.W) 22

37 Satellite Cells (N.G.T) N/A

38 Neuroglial Cells Undifferentiated

(N.G.X)

1856

39
Glandular

(G)

Exocrine Gland (G.O) 6976

40 Endocrine Gland (G.N) 1115

41 Gland Undifferentiated (G.X) 66

42 Transport Vessel (T) 6045

- TOTAL 17668
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2.3 Tissue Type Labeling Workflow

A total of five labelers were assigned to perform the tis-

sue type labeling of the slide patches. All labelers were first

trained to recognize the tissue types (as proposed above) us-

ing annotated exemplar images sourced from standard his-

tology texts such as in [43, 30]. Furthermore, the following

labeling criteria were agreed upon in order to ensure label-

ing consistency: (a) non-cellular labels (those with singular

form names, e.g. “Loose Connective”) are assigned when-

ever the tissue is confidently discerned to be present in any

quantity anywhere in the patch; (b) cellular labels (those

with plural form names, e.g. “Erythrocytes”) are assigned

whenever five or more cells are confidently discerned to be

present anywhere in the patch; (c) each pixel in a patch can

correspond to at most one morphological type, but might

also correspond to an additional functional type and vice

versa (e.g. “Simple Columnar Epithelial” and “Exocrine

Gland”); (d) labels are to be assigned at the most specific

level possible; and (e) if a patch has no recognizable tissue

structures, it is to be excluded from the database.

Figure 1. Sample patches, annotated with arrows pointing to the

regions displaying the respective tissue type labels - to interpret

the tissue type letter codes, please refer to Table 1

In Figure 1, four exemplar patches are indicated with

their ground-truth labels overlaid as black arrows point-

ing to the patch regions displaying the corresponding tis-

sue types (to be clear, each patch is assigned global labels

without local position information and the arrow labeling

indicated here is included for the purpose of demonstra-

tion only). Note that the tissue types tend to correspond

to specific visual patterns and relative spatial relationships,

which suggests that general visual pattern recognition algo-

rithms sensitive to spatial context (such as Convolutional

Neural Networks) can be readily applied for supervised

learning. “Epithelial” appears as linearly-arranged nuclei-

dense cells lining a surface, “Connective Proper” appears

as long fibrous cells with scant nuclei between other tis-

sues, “Blood” appears as circular/ovoid blobs which some-

times clump together and are often inside transport ves-

sels1, “Skeletal” appears as a woody material which some-

times contains layered rings and sometimes appears mot-

tled with lighter regions, “Adipose” appears as clustered

rings or bubbles, “Muscular” appears as parallel (longitu-

dinal cut) or bundled (transverse cut) dense fibrous cells

with oblong nuclei, “Nervous” appears as wispy strands

connecting branching circular blobs, “Glandular” appears

as epithelium-lined ovoid structures with or without inner

openings, and “Transport Vessel” corresponds to string-like

rings often containing blood.

2.4 Label Metadata

The tissue type labelers only assigned labels at the

leaf nodes of the hierarchical taxonomy described in Ta-

ble 1. However, we can also assign the non-leaf ances-

tor nodes tissue types based on their descendant nodes -

this is done by assigning an ancestor node label if at least

one descendant node label is present. For example, if

y = [· · · , yC.D, yC.D.I, · · · ] is the ground-truth tissue type

label vector for a given patch and yC.D.I = 1 (present),

then its parent label yC.D is also set to 1. After augment-

ing the leaf-node labels with these originally un-labeled

ancestor nodes, we associate each slide patch with a 57-

dimensional binary label vector y ∈ {0, 1}57 (i.e. all the

non-“Undifferentiated” types), which has at least one non-

zero element. Our proposed database includes the patch im-

age files and their associated augmented binary labels in a

comma-separated file. See Table 1 for the class exemplar

counts for the leaf-node types.

2.5 Tissue Type Label Statistics

In this section, we demonstrate some methods of under-

standing the statistics of HTT label data: (1) Co-occurrence

Network Analysis, and (2) Association Rule Learning.

Firstly, we model the data as a graph (with the tissue type

labels modeled as nodes and label co-occurrences modeled

as edges weighted by their counts) and visualize the co-

occurrence network. Figure 2 displays the co-occurrence

networks at the three levels of the hierarchical taxonomy,

visualized with the nodes in both circular (i.e. nodes posi-

tioned in a circle) and force-directed layouts (i.e. nodes are

cluttered to equalize edge length and minimize edge cross-

ings). For the force-directed layout plots 2(d), 2(e), and

2(f), the nodes are additionally colored by their k-means

clusters (k = 6) and the cluster regions are displayed in the

background. Note that the vast majority of the slide patches

belong to a large central interconnected cluster consisting

of epithelial, connective proper, blood, muscular, glandular,

and transport vessel types (although significant sub-clusters

exist for deeper levels of the hierarchy), while the less com-

mon skeletal, adipose, and nervous types tend to occur sep-

arately.

1The sub-type “Leukocytes” includes basophils, neutrophils,

eosinophils, and macrophages, while “Lymphocytes” includes natu-

ral killer cells, T lymphocytes, and plasma cells
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(a) Circular - L1 (b) Circular - L2 (c) Circular - L3

(d) Force-dir. - L1 (e) Force-dir. - L2 (f) Force-dir. - L3

Figure 2. Tissue type co-occurrence networks, displayed for all

three levels of the hierarchical taxonomy (from left to right) and

in two layouts - circular (top) and force-directed (bottom) with k-

means clustering. To interpret the tissue type letter codes, please

refer to the level-appropriate columns of Table 1

Secondly, we apply the Apriori Association Rule Learn-

ing algorithm [2] (with a support threshold of 0.01 and a

confidence threshold of 0.5) and display the most signif-

icant rule for each unique consequent label where such a

rule exists. Following Agrawal et al. in [1], we define a

rule to be between an antecedent itemset and a consequent

label. As may be seen from the results in Table 2, 12 out

of the 36 possible labels have associated rules with confi-

dence exceeding the confidence threshold. The most confi-

dent rule is “{E.M.S,E.M.O,H.Y} ⇒ T”, which indicates

that 99.643% of patches labeled with “Simple Squamous

Epithelial”, “Simple Columnar Epithelial”, and “Lympho-

cytes” are also labeled with “Transport Vessel”, which sup-

ports the observation about the relative spatial relationships

between tissue types mentioned above.

Table 2. Results of applying to the Apriori Association Rule Learn-

ing algorithm to the multi-label data, displaying only the most sig-

nificant rule for each unique consequent label where such a rule

exists.
Antecedent Itemsets ⇒ Consequent Labels Confidence

{C.D.I, H.E, H.Y, T} ⇒ E.M.S 0.78701

{G.N} ⇒ E.M.U 0.93274

{H.E, H.K, G.O, T} ⇒ E.M.O 0.50402

{M.K, T} ⇒ C.D.I 0.89457

{H.Y, E.T.U, E.T.O} ⇒ C.L 0.98404

{H.Y, G.O, T, E.M.S, E.T.U} ⇒ H.E 0.96296

{E.M.U, E.T.U, H.E, H.K} ⇒ H.Y 0.93299

{T, E.M.S, C.D.I} ⇒ M.M 0.68536

{N.G.M, T} ⇒ N.P 0.99576

{N.G.M} ⇒ N.R.B 0.8769

{E.M.U, E.M.O, H.Y} ⇒ G.O 0.98097

{E.M.S, E.M.O, H.Y} ⇒ T 0.99643

2.6 Pathologist Validation

In order to further ensure accuracy of labeling, a ran-

dom set of 1000 tissue patches was reviewed by an expe-

rienced, board-certified pathologist. The pathologist was

provided with the LabelViewer Graphical User Interface

(GUI), where patches could be viewed one at a time in con-

junction with the labels that were assigned by the original

five labelers (see Section 2.3). The pathologist was pro-

vided with the same instructions and information regarding

the tissue type hierarchical taxonomy as the original label-

ers. After comparing each image patch with its assigned

labels, the pathologist was able to provide specific notes on

each patch with respect to labels that should be added, re-

moved, or modified.

There was excellent concordance between the original

labelers and the Pathologist at the higher levels (1-2) of the

tissue type hierarchical taxonomy, with most of the sug-

gested modifications relating to Level 3 of the Epithelial

branch (e.g. simple cuboidal epithelial vs. simple columnar

epithelial) and occasionally at Level 2 (stratified vs. sim-

ple). This discordance is most likely attributable to the

original labelers’ inexperience with interpreting tissues that

mimic other tissue types due to tangential sectioning, prepa-

ration artefacts, or suboptimal section thickness. Further

detailed analysis of the pathologist’s validation is provided

in the supplementary materials.

2.7 How to Access ADP Database?

The detail information on accessing ADP database can

be found in the website2. ADP is released as an early ver-

sion V1.0 and will be updated as an ongoing research effort

to provide useful computational pathology database for aca-

demic researchers and educators around the world.

3 Experiments
In this section, we explain our experiment to computa-

tionally evaluate the labeling quality of the slide patches

with three state-of-the-art Convolutional Neural Network

architectures: VGG16 [33], ResNet18 [12], and Inception-

V3 [38]; we trained the networks separately on flat clas-

sification of the three levels of the tissue type hierarchi-

cal taxonomy. Furthermore, for the second and third lev-

els, where flat classification assumes label independence,

we tested exploiting prior knowledge about the hierarchical

relations between tissue types with the hierarchical binary

relevance method. In the rest of this section, we explain the

hierarchical binary relevance method, the training setup, the

experimental results in both patch level and slide level, and

the failure modes of the best-performing neural network.

3.1 Hierarchical Binary Relevance Method

Hierarchical Binary Relevance (HBR) is a simple

method proposed by Tsoumakas et al. in [39] for exploit-

ing hierarchical label relations in a multi-label classifier. In

our case, we implemented HBR by augmenting each level’s

tissue types during training with their ancestor types as a

flat classification problem. At test time, we obtained op-

timal thresholds θi for all nodes through ROC analysis of

2http://www.dsp.utoronto.ca/projects/ADP/
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the validation set, and then zeroed all node scores in the

test set with any non-confident ancestor node predictions

(pi < θi). For example, if the predicted score pC was be-

low θC , then its child node score pC.D would be zeroed. In

this way, HBR penalizes the network less during training

for predicting a wrong tissue type hierarchically close to

the target tissue type than one hierarchically distant; it also

prevents the network from predicting tissue types with non-

confident ancestor node predictions at test time.

Table 3. Dataset configuration for training purpose.
General Statistics

Training Sample Size 14134

Validation Sample Size 1767

Test Sample Size 1767

Original Image Size 1088 × 1088

Level-1 classes 9

Level-2 classes 31

Level-3 classes 51

3.2 Training Setup

For the following experiments, training was conducted in

Keras (TensorFlow backend) with an NVIDIA GTX 1080

Ti GPU. The following Keras implementations of the net-

works were used: VGG163, ResNet184, and Inception-

V35. Images were resized from original scan size (no pyra-

mid image is used) to each networks’ accepted input size

(ranging from 224×224 to 229×229) using bilinear down-

sampling method; all networks were trained for 80 epochs

with a batch size of 32, and ℓ2 regularization weight de-

cay of 0.0005 on all convolutional and dense layers. More-

over, we utilized a stochastic gradient descent optimizer

with cyclical learning rate (resetting-triangular policy) [36]

in order to adopt the optimum learning rate for our pro-

posed database. Initial base learning rate was 0.001 and

initial max learning rate was 0.02 for all the networks, step

size was 4 epochs, and learning rates were halved every

20 epochs. The training/validation/test split was 80-10-10

(refer to Table 3 for more information), data augmenta-

tion (horizontal/vertical flip) was used, and class weight-

ing was applied to the binary cross-entropy loss ǫ(y,p) =

−
∑k

i=1
wi (yi log(pi) + (1− yi) log(1− pi)). Here, the

class weight is defined by wi = N/ni, with N being the

training set size and ni being the class example count, target

label vector y ∈ {0, 1}k, and predicted score vector p ∈ R
k

in k configuration-specific labels. For more information on

the training progress please refer to supplementary mate-

rials. The Keras implementation of the training networks

including all pre-trained models can be obtained from6, 7.

3https://github.com/geifmany/cifar-vgg
4https://github.com/keras-team/keras-contrib/

blob/master/keras_contrib/applications/resnet.py
5https://github.com/keras-team/

keras-applications/blob/master/keras_

applications/inception_v3.py
6http://www.dsp.utoronto.ca/projects/ADP/
7https://github.com/mahdihosseini/ADP/

3.3 Patch-Level Analysis

Figure 3 demonstrates the multi-label classification ROC

curves in different hierarchical levels. The predicted scores

here are obtained by evaluating the validation set using the

VGG16-L3+HBP trained model, which was observed to

perform the best at level 3. The ROC curves of level-2 and

level-3 are overlaid with and without HBP augmented la-

beling. The vertical axis of each ROC curve corresponds to

the true positive rate (TPR), i.e. sensitivity, and the hori-

zontal axis corresponds to the false positive rate (FPR), i.e.

1 - specificity. Here, the horizontal axis is shown in log-

arithmic scale for better visual comparison between class

labels. The area under the curve (AUC) of ROCs is reason-

ably high for all trained networks, where the average AUC

for level-1, level-2, level-2+HBP, level-3, level-3+HBP are

0.992, 0.9885, 0.9813, 0.9867, and 0.9812, respectively.

Overall, the sensitivity decreases in the lower hierarchical

levels as a result of the corresponding increase in the num-

ber of classes. It is worth noting that we observe noticeable

improvements in the sensitivity on level-3 (shown in Fig-

ure 3(c)) from using HBP, which suggests that exploiting

a priori hierarchical knowledge is beneficial for predictive

performance. Confusion matrices are also provided in the

supplementary materials.
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Figure 3. ROC curves for all three hierarchical levels: (left) level-

1 of all nine different labels, (middle) level-2 with and without

HBP for select labels, and (right) level-3 with and without HBP

for select labels. The HBP curves are shown as dashed lines and

the non-HBP curves as solid lines for comparison.

The quantitative performances of all three neural net-

works trained on five different configurations are listed

in Table 4. Note that, for each combination of network

and label configuration, we have obtained optimum thresh-
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olds using the corresponding ROC analysis. The accuracy

(ACC) results are consistently high (above 0.95) across all

combinations. Note that, using the mean precision (F1-

score) and missing rate (FNR) as evaluation metrics, adding

HBP improves predictive performance in the lower lev-

els and VGG16 out-performs out-performs ResNet18 and

Inception-V3. We hypothesize that VGG16’s superior per-

formance is due to the reduced number of layers (16 in-

stead of 18 and 48 respectively), which has been shown to

correspond to a smaller effective receptive field for the fi-

nal convolutional layer [22]. This is crucial because, as

opposed to general image recognition databases such as

MS-COCO and ImageNet, where better prediction of large

objects is usually achieved by using deeper layers to im-

prove viewpoint- and scale-invariance, the tissue structures

to be recognized in our Atlas database seem to be small

viewpoint- and scale-invariant textures, so using deeper lay-

ers will be redundant and may even promote overfitting.

Table 4. Test set performance of VGG16, ResNet18, and Inception-

V3 applied to tissue type classification on the proposed database,

in three levels and five training configurations (with bracketed

numbers of classes and best-performing architecture for each met-

ric in boldface).
Tissue type configuration

L1 (9) L2 (23) L2+HBR (36) L3 (31) L3+HBR (51)

V
G

G
1
6

TPR 0.9505 0.9143 0.9099 0.8597 0.8948

FPR 0.0209 0.0219 0.0205 0.0197 0.0188

TNR 0.9791 0.9781 0.9795 0.9803 0.9812

FNR 0.0495 0.0857 0.0901 0.1403 0.1052

ACC 0.9689 0.9674 0.9644 0.9671 0.9676

F1 0.9561 0.9037 0.9172 0.8506 0.8968

R
es

N
et

1
8

TPR 0.9420 0.8896 0.8903 0.8507 0.8723

FPR 0.0209 0.0284 0.0279 0.0260 0.0267

TNR 0.9791 0.9716 0.9721 0.9740 0.9733

FNR 0.0580 0.1104 0.1097 0.1493 0.1277

ACC 0.9659 0.9579 0.9544 0.9606 0.9574

F1 0.9516 0.8761 0.8943 0.8245 0.8657

In
ce

p
ti

o
n
-V

3 TPR 0.9351 0.8969 0.8987 0.8636 0.8800

FPR 0.0178 0.0162 0.0170 0.0143 0.0162

TNR 0.9822 0.9838 0.9830 0.9857 0.9838

FNR 0.0649 0.1031 0.1013 0.1364 0.1200

ACC 0.9654 0.9693 0.9647 0.9725 0.9675

F1 0.9507 0.9071 0.9071 0.8722 0.8950

3.4 Failure Modes

From the quantitative performance results shown above,

it is clear that the quality of the tissue type labeling is suf-

ficient for consistently accurate prediction by deep neural

networks. But what about the minority of patches that

the neural networks fail to accurately predict? To answer

this, we sorted the test set patches by unweighted binary

cross-entropy loss and examined the class discordance be-

tween target labels and predicted scores (using the best-

performing VGG16-level-3+HBR configuration). Overall,

we observed that almost all failure mode patches were in-

correctly annotated, that the neural network still predicts the

correct labels, and these labeling mistakes corresponded to

those observed by the validating pathologist. They can be

grouped as: (1) fundamental mislabeling errors (i.e. tis-

sue type consistently mistaken for another) and (2) human

mislabeling errors (i.e. tissue type inconsistently omitted).

In Figure 4, four characteristic patches demonstrating se-

lect failure modes (one human error, three fundamental er-

rors) are shown with their discordance plots. In Figure 3.4,

E.M.S (Simple Squamous) is mislabeled as E.M.U (Simple

Cuboidal) and H.E (Erythrocytes) is omitted; in Figure 3.4,

fundic gland G.O (Exocrine Gland) is mislabeled as G.N

(Endocrine Gland); in Figure 3.4, tangentially cut gland

G.O (Exocrine Gland) is mislabeled with E.T.U (Stratified

Cuboidal); and in Figure 3.4, the glandular E.M.O (Simple

Columnar) is mislabeled as E.M.U (Simple Cuboidal). Fur-

ther statistical analysis on the failure modes are provided in

the supplementary materials.

(a) No E.M.U/add E.M.S (b) No G.N/add G.O, E.M.O

(c) No E.T.U (d) No E.M.U/add E.M.O

Figure 4. Failure modes: selected patch images at down-sampled

224×224 resolution on top, target label and predicted score dis-

cordance on bottom. Corresponding validating pathologist notes

are shown in the sub-figure captions

3.5 Slide-Level Analysis

In this section, we analyze the predictive performance of

the best-performing neural network (VGG16-level-3+HBR)

for the patch-level resolution prediction of tissue types in

a whole slide image (WSI). As the image size of WSIs is

very large (a digital slide of 1cm-by-1cm tissue scanned

at 40X resolution is roughly 100K× 100K pixels in size),

this demonstrates in a visual manner that the trained net-

work in its present state is already a useful visual attention

aid for pathologists in localizing the regions of tissue rel-

evant to the diagnosis at hand, thus simplifying their work

and enabling faster diagnosis. We have selected three differ-
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(a) Slide1: E.T.U (b) Slide1: H.Y (c) Slide1: C.D.I (d) Slide1: C.L (e) Slide1: H.E (f) Slide1: A.W (g) Slide1: M.M (h) Slide1: G.O

(i) Slide2: E.M.S (j) Slide2: E.M.O (k) Slide2: C.D.I (l) Slide2: C.L (m) Slide2: H.Y (n) Slide2: A.W (o) Slide2: M.M (p) Slide2: G.O

(q) Slide3: E.T.U (r) Slide3: E.M.S (s) Slide3: C.D.I (t) Slide3: C.L (u) Slide3: H.E (v) Slide3: A.W (w) Slide3: M.M (x) Slide3: G.O

Figure 5. Heatmap representation of confidence scores prediced from VGG16-level-3+HBP trained model on three different WSI images.

Each WSI is divided into multiple image patches, their corresponding scores are predicted for all class labels, and represented as a heatmap

of corresponding transparency overlaid on the original WSI image.

ent WSIs known to originate from the Gastro-Intestinal (GI)

tract and used them for our case study. Note that these slides

are completely separate from the proposed Atlas database

and have not been used for training, validating, or testing the

neural networks. Each WSI is divided into multiple patches

of 1088 × 1088 (excluding background patches), down-

sampled to 224× 224, and fed into the trained CNN model

(VGG16-level-3+HBR) explained in previous sections. The

CNN outputs one confidence score for each predicted tissue

type at a given patch, and the patch predictions are stitched

together into a slide-level class confidence heatmap, which

is overlaid on the whole slide image with transparency cor-

responding to the confidence level. In Figure 5, 24 differ-

ent confidence score heatmaps are displayed for four differ-

ent WSIs, each with eight tissue types. For instance, the

White Adipose prediction confidence is visualized for all

three WSIs in Figures 5(f), 5(n), and 5(v). Further results

on the slide level analysis are provided in the supplementary

materials.

4 Concluding Remarks

In this paper, we presented a new digital pathology

database of slide patch images annotated with histological

tissue types arranged in a hierarchical taxonomy. Given the

lack of publicly-available databases of patch-level images

annotated with a large range of histological tissue types,

which constrains current computational pathology research

to focus on particular diseases and organs, we propose that

our database will enable research into generalized tissue

type supervised learning. We demonstrated the quality of

our patch annotations by consulting an expert pathologist

and by training three state-of-the-art neural networks, both

of which suggest that the data is of sufficiently good quality

to be used for developing a useful computational pathology

tool. As a proof of concept, we developed a slide-level tis-

sue type-based visual attention aid and we hypothesize that

the presented database could be readily applied in the future

to solving related computational pathology tasks.
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