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Abstract

Conventionally, deep neural networks are trained of-

fline, relying on a large dataset prepared in advance. This

paradigm is often challenged in real-world applications,

e.g. online services that involve continuous streams of in-

coming data. Recently, incremental learning receives in-

creasing attention, and is considered as a promising solu-

tion to the practical challenges mentioned above. However,

it has been observed that incremental learning is subject to

a fundamental difficulty – catastrophic forgetting, namely

adapting a model to new data often results in severe perfor-

mance degradation on previous tasks or classes. Our study

reveals that the imbalance between previous and new data

is a crucial cause to this problem. In this work, we develop

a new framework for incrementally learning a unified clas-

sifier, i.e. a classifier that treats both old and new classes

uniformly. Specifically, we incorporate three components,

cosine normalization, less-forget constraint, and inter-class

separation, to mitigate the adverse effects of the imbalance.

Experiments show that the proposed method can effective-

ly rebalance the training process, thus obtaining superior

performance compared to the existing methods. On CIFAR-

100 and ImageNet, our method can reduce the classification

errors by more than 6% and 13% respectively, under the in-

cremental setting of 10 phases.

1. Introduction

Incremental learning is a learning paradigm that allows

a model to be continually updated on new data, instead of

being trained once on a whole dataset. In recent years, in-

cremental learning sees increasing demand from real-world

applications – many of them are exposed to continuous

streams of data during daily operation. A natural approach

to incremental learning is to simply finetune a pretrained

model on new data. This approach, however, faces a seri-
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Figure 1. Illustration of the adverse effects caused by the imbal-

ance between old and new classes in multi-class incremental learn-

ing, and how our approach tackle them.

ous challenge – catastrophic forgetting [26]. To be more

specific, finetuning a model on new data usually results in

significant performance drop on previous data.

Great efforts have been devoted to overcoming this dif-

ficulty, which generally follow two directions: (1) trying to

identify and preserve significant parameters of the original

model [21, 37, 1], and (2) trying to preserve the knowledge

in the original model through methods like knowledge dis-

tillation [24, 2, 28, 29, 19, 15]. Whereas these methods, to

a certain extent, mitigate the effect of catastrophic forget-

ting, the overall performances remain significantly inferior

to those obtained by joint training.

In this work, we aim to explore a more effective way

to incremental learning. Particularly, we focus on the multi-

class setting, with an aim to learn a unified classifier that can
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recognize all classes seen at different stages. Compared to

the conventional multi-task setting, where a model is trained

to handle different tasks with each task dedicated to a sepa-

rate group of classes, the multi-class setting is more realis-

tic, but also more challenging.

As we work on this problem, we find that the imbalance

between the old classes seen at previous stages and the new

ones at the current stage constitutes a key challenge. Specif-

ically, the training algorithm only sees none or a few sam-

ples of old classes but substantially more of new classes.

Under this circumstance, the focus of the training process

is significantly biased towards new classes, thus leading to

a number of adverse effects on the class-specific weights as

shown in Figure 1: (1) imbalanced magnitudes: the magni-

tudes of the weight vectors of new classes are remarkably

higher than those of old classes; (2) deviation: the previous

knowledge, i.e. the relationship between the features and the

weight vectors of old classes, are not well preserved; and (3)

ambiguities: the weight vectors of new classes are close to

those of old classes, often leading to ambiguities. The com-

bination of these effects can severely mislead the classifier,

resulting in the decisions biased towards new classes and

the confusion among old classes.

In response to these problems, we propose a new frame-

work for learning a unified classifier under the incremen-

tal setting. Particularly, it incorporates three components to

mitigate the adverse effects caused by the imbalance: (1)

cosine normalization, which enforces balanced magnitudes

across all classes, including both old and new ones; (2)

less-forget constraint, which aims to preserve the geometric

configuration of old classes; and (3) inter-class separation,

which encourages a large margin to separate the old and

new classes. By rebalancing the training process with these

techniques, the proposed framework can more effectively

preserve the knowledge learned in previous phases and re-

duce the ambiguities between old and new classes.

We systematically compare different methods for incre-

mental learning on CIFAR-100 [22] and ImageNet [7], un-

der the multi-class setting. In our experiments, the proposed

framework performs significantly superior to the baselines.

For example, under the incremental settings of 10 phases on

CIFAR100 and ImageNet, our method can reduce the clas-

sification errors by more than 6% and 13% respectively.

2. Related Work

2.1. Incremental Learning

Incremental learning has been a long standing research

area [4, 30]. Recently, along with the success of deep learn-

ing, incremental learning of deep neural networks becomes

an active topic, where the existing works mainly fall into

two categories, parameter-based and distillation-based.

Parameter-based. The methods of this category such as

EWC [21], SI [37], MAS [1] try to estimate the importance

of each parameter in the original model and add more penal-

ty to the changes on significant parameters. The differences

among these works lie in the way to compute the parameter

importance. However, it is difficult to design a reasonable

metric to evaluate all the parameters, especially in long se-

quences of tasks or classes.

Distillation-based. Knowledge distillation, as discussed

in [14], is an effective way to transfer knowledge from one

network to another. It is first introduced to incremental

learning in Learning without Forgetting (LwF) [24], where

a modified cross-entropy loss is used to preserve the knowl-

edge in the original model. Aljundi et al. [2] propose to

train multiple networks on different tasks and take an auto-

encoder to choose one for each test sample. Rannen et

al. [28] also introduce an auto-encoder to preserve the cru-

cial features for old tasks. Hou et al. [15] propose to use

knowledge distillation to facilitate the adaptation to new

tasks. Note that the works mentioned above [24, 2, 28, 15]

all follow the multi-task setting, i.e. the trained model is e-

quipped with multiple classifiers, each of which is evaluated

only on the data from an individual task.

The multi-class setting, which aims to learn a unified

classifier for all the classes observed so far, has also been ex-

plored in previous efforts [19, 29, 3]. Jung et al. [19] consid-

er the domain expansion that can be treated as a special case

of incremental learning, and propose a solution that relies

on two properties, namely unchanged decision boundaries

and feature proximity. iCaRL [29] combines knowledge

distillation and representation learning, with several novel

components, e.g. nearest-mean-of-exemplars classification,

and prioritized exemplar selection. Castro et al. [3] resort

to the sophisticated data augmentation on the reserved old

samples, reporting even better performance.

Discussion. In this work, the proposed method falls into

the distillation-based category. But it differs from previous

works in a key aspect: more than simply combining dif-

ferent objective terms to balance old and new classes, we

carefully investigate the adverse effects of imbalance and

propose a systematic solution that overcomes the issue from

multiple perspectives.

It is noteworthy that the previous works have also ex-

plored other ideas for incremental learning, such as adopt-

ing dynamic network structures [31, 36] or using a gener-

ative model to produce samples for old classes [35, 20].

These works, however, are orthogonal to the proposed

method, and thus can be incorporated into our framework

to achieve further improvement.
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Figure 2. Illustration of our approach for multi-class incremental learning. Due to cosine normalization, the features and class embeddings

lie in a high-dimensional sphere geometrically. There are three types of loss involved in the incremental process. Besides the cross-entropy

loss Lce computed on all classes, LG

dis is a novel distillation loss computed on the features (less-forget constraint), and Lmr is a variant of

margin ranking loss to separate the old and new classes (inter-class separation).

2.2. Tackling Imbalance

Class imbalance is a significant challenge for machine

learning [18, 13]. Previous efforts to tackle the class imbal-

ance can be roughly divided into two groups: data resam-

pling [13, 6, 12] and cost-sensitive learning [32, 17, 38, 16,

9]. The former aims to rebalance the training samples in d-

ifferent classes through resampling; while the latter focuses

on adjusting the loss. In this work, we tackle the imbal-

ance in incremental learning from different aspects, instead

of directly adjusting the sampling ratio or loss weights. In

inter-class separation, we introduce a margin ranking loss

which focuses on the boundary and thus is less suscepti-

ble to the imbalance among classes. Among the previous

works, the one presented in [9] is the most relevant to ours.

Dong et al. [9] propose a class rectification loss to rectify

the learning bias of cross-entropy loss given the imbalanced

data. Our margin ranking loss differs from [9] in the mining

of the positives and hard negatives which is more efficient

and specialized for incremental learning. In particular, we

do not rely on a pretrained model to define the class simi-

larity for the negative selection.

3. Our Approach

In this work we focus on the multi-class incremental

classification problem. Formally, given a model trained on

an old dataset Xo, we aim to learn a unified classifier for

both old classes Co and new classes Cn, based on a new

dataset X = Xn ∪ X ′
o. Xn is a large dataset that covers on-

ly the new classes Cn, while X ′
o ⊂ Xo reserves just a tiny

subset of old samples. The main challenge is how to utilize

the severely imbalanced X and the original model to boost

the performance on all classes without suffering from catas-

trophic forgetting [26]. In what follows, we will first review

Learning without forgetting (LwF) [24] and iCaRL [29] as

background. Then we will dive deeply into the imbalance in

multi-class incremental learning, and elaborate on how our

approach can address the issue from different aspects. The

proposed approach is shown in Figure 2.

3.1. Background

LwF is the first work to introduce knowledge distillation

to multi-task incremental learning and here we adapt it to

the multi-class setting. For each training sample x, the loss

function is the sum of two terms: the classification loss Lce

and the distillation loss LF
dis. Specifically, Lce is the stan-

dard cross-entropy loss [23]:

Lce(x) = −

|C|
∑

i=1

yi log (pi) , (1)

where C is the set of all observed classes so far, y is the

one-hot ground-truth label and p is the corresponding class

probabilities obtained by softmax. LF
dis is the distillation

loss, which aims to make the current model mimic the be-

haviors of the original model, i.e. the model learned on old

classes:

LF
dis(x) = −

|Co|
∑

i=1

τi(p
∗) log(τi(p)), (2)

where p∗ is the soft label of x generated by the original

model on old classes, τi(v) = v
1/Ω
i /

∑

j v
1/Ω
j is a rescal-

ing function, where Ω is usually set to be greater than 1
(e.g. Ω = 2 in our experiments) to increase the weights of

small values. While LF
dis is devised to preserve the previ-

ous knowledge by encouraging the current predictions on
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Figure 3. Visualization of the weights and biases in the last layer

for old and new classes. The results come from the incremental

setting of CIFAR100 (1 phase) by iCaRL [29].

old classes to match the soft labels by the original mod-

el. However, it is observed in both our study and [29] that

the adapted LwF tends to classify the test samples into new

classes.

To deal with the issue, iCaRL [29] proposes a classifi-

cation strategy named nearest-mean-of-exemplars. Specif-

ically, it computes a prototype μi by averaging features of

all reserved samples for each class ci ∈ C. During infer-

ence, it extracts the features for a test sample and assigns

the class label of the most similar prototype. While iCaR-

L makes improvements over LwF, its performance on long

sequences of classes is still not satisfying1.

Overall, despite all the efforts devoted to incremental

learning, there remains much room to improve. A key prob-

lem that limits the performance of the multi-class setting, as

discussed earlier, is the significant imbalance between old

and new classes. In this work, we aim to tackle this problem

by incorporating three components, cosine normalization,

less-forget constraint, and inter-class separation, which ad-

dresses the imbalance from different aspects. In what fol-

lows, we will present these components in turn.

3.2. Cosine Normalization

In a typical CNN, the predicted probability of a sample

x is computed as follows:

pi(x) =
exp(θTi f(x) + bi)

∑

j exp(θ
T
j f(x) + bj)

, (3)

where f is the feature extractor, θ and b are the weights

(i.e. class embedding) and the bias vectors in the last lay-

er. As shown in Figure 3, due to the class imbalance, the

magnitudes of both the embeddings and the biases for the

new classes are significantly higher than those for the old

classes. This results in the bias in the predictions that favor

new classes. To address this issue, we propose to use cosine

normalization in the last layer, as:

pi(x) =
exp(η〈θ̄i, f̄(x)〉)

∑

j exp(η〈θ̄j , f̄(x)〉)
, (4)

1The implementation of iCaRL described here is a little different from

the original version [29]. Our implementation refers to those in [3, 35]

which have proven to be more effective.

Constraint on FeaturesConstraint on Angles

Features

Embedding

Figure 4. Illutration of less-forget constraint. The constraint on

features is stronger compared to the constraint on angles with the

embeddings of old classes fixed.

where v̄ = v/‖v‖2 denotes the l2-normalized vector, and

〈v̄1, v̄2〉 = v̄T1 v̄2 measures the cosine similarity between

two normalized vectors. The learnable scalar η is intro-

duced to control the peakiness of softmax distribution s-

ince the range of 〈v̄1, v̄2〉 is restricted to [−1, 1]. Al-

though cosine normalization is widely adopted in other vi-

sual tasks [33, 10, 27, 25], it is first introduced for incre-

mental learning here. It can effectively eliminate the bias

caused by the significant difference in magnitudes.

Now we revisit the method in Section 3.1 for incremen-

tal learning based on cosine normalization. For a sample x,

the classification loss Lce is computed similarly as in Eq (1)

except that the probability for each class is computed in a

different way. For the distillation loss, since the scalar η in

the original model and that in the current network are dif-

ferent, it is reasonable to mimic the scores before softmax

instead of the probabilities after softmax. It is also note-

worthy that due to cosine normalization, the scores before

softmax all lies in the same range (i.e. [−1, 1]) and thus are

comparable. Formally, the distillation loss is updated as:

LC
dis(x) = −

|Co|
∑

i=1

‖〈θ̄i, f̄(x)〉 − 〈θ̄∗i , f̄
∗(x)〉‖, (5)

where f∗ and θ∗ are the feature extractors and class embed-

dings in the original model, |Co| are the number of old class-

es. Geometrically, the normalized features and the class em-

beddings lie on a high-dimensional sphere. LC
dis encourages

the geometric structures, reflected by the angles between the

features and the old class embeddings, to be approximately

preserved in the current network.

3.3. Less-Forget Constraint

A model adapted to new data tends to forget what it

has learned previously. Hence, one of the practical chal-

lenges for incremental learning is how to less forget the

previous knowledge. To this end, we introduce a less-

forget constraint through a new loss LG
dis, which provides

a stronger constraint on the previous knowledge compared

to LC
dis. Specifically, LC

dis mainly considers the local ge-

ometric structures, i.e. the angles between the normalized

features and the old class embeddings. This constraint is
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not able to prevent the embeddings and the features from

being rotated entirely, as illustrated in Figure 4.

To enforce a stronger constraint on the previous knowl-

edges, we propose to fix the old class embeddings and com-

pute a novel distillation loss on the features as below:

LG
dis(x) = 1− 〈f̄∗(x), f̄(x)〉, (6)

where f̄∗(x) and f̄(x) are respectively the normalized fea-

tures extracted by the original model and those by the cur-

rent one. LG
dis encourages the orientation of features extract-

ed by current network to be similar to those by the original

model. The loss is bounded (LG
dis ≤ 2). The rationale be-

hind this design is that the spatial configuration of the class

embeddings, to a certain extent, reflects the inherent rela-

tionships among classes. Hence, to preserve the previous

knowledge, a natural idea is to keep this configuration. With

the old class embeddings fixed, it is then reasonable to en-

courage the features to be similar as in LG
dis.

In practice, as different numbers of new classes intro-

duced in each phase (e.g. 10 classes vs. 100 classes), the

degree of need to preserve the previous knowledge varies.

In response to this, we propose to set the weight of the loss

LG
dis (denoted as λ) adaptively as follows:

λ = λbase

√

|Cn|/|Co|, (7)

where |Co| and |Cn| are the number of old and new classes

in each phase, λbase is a fixed constant for each dataset. In

general, λ increases when the ratio of the number of new

classes to that of old classes increases.

Note that a recent work [19], which deals with the do-

main expansion that can be treated as one-phase incremen-

tal learning, also proposes to fix the last layer and mimic the

features of the original model. However, our method differs

from [19] in three aspects. (1) The distillation loss LG
dis only

considers the orientation of the features but not the magni-

tudes (since the features are normalized in the loss), which

gives more flexibility to the model to fit for new classes. (2)

We introduce an adaptive coefficient to weight the distilla-

tion loss for more than one phase. (3) Our experiments show

that the proposed method works well on long sequences of

classes (e.g. 10 phases) and more realistic datasets (e.g. Im-

ageNet), which have not been evaluated in [19].

3.4. Inter-Class Separation

Another practical challenge for multi-class incremental

learning is how to form a unified classifier for all the class-

es, including both old and new ones, given that the data of

new classes dominate the training set. In order to avoid the

ambiguities between old and new classes, we introduce a

margin ranking loss to ensure that they are well separated.

The reserved samples for old classes are fully exploited.

Specifically, for each reserved sample x, we try to sepa-

rate the ground-truth old class from all the new classes by a

margin, using x itself as an anchor. We consider the embed-

ding of the ground-truth class as positive. To find the hard

negatives, we propose an online mining method. We select

those new classes that yield highest responses to x as hard

negative classes and use their embeddings as negatives for

the corresponding anchor. Therefore, the proposed margin

ranking loss is computed as:

Lmr(x) =
K
∑

k=1

max(m− 〈θ̄(x), f̄(x)〉+ 〈θ̄k, f̄(x)〉, 0),

(8)

where m is the margin threshold, θ̄(x) is the ground-truth

class embedding of x, θ̄k is one of the top-K new class

embeddings chosen as hard negatives for x.

It is worth noting that, the positive and the negatives for

each anchor are the class embeddings instead of samples.

The proposed loss can be seamlessly incorporated in the

training process without altering the data sampling process.

3.5. Integrated Objective

Our approach addresses the imbalance in multi-class in-

cremental learning from multiple aspects. Combining the

losses presented above, we reach a total loss comprised of

three terms, given as:

L =
1

|N |

∑

x∈N

(Lce(x) + λLG
dis(x)) +

1

|No|

∑

x∈No

Lmr(x),

(9)

where N is a training batch drawn from X , No ⊂ N are

the reserved old samples contained in N . λ is a loss weight,

which is set according to Eq (7).

Besides, at the end of each training phase, we can further

finetune the model with a balanced set of reserved samples

taken from all observed classes. We find that the so-called

class balance finetune can improve the performance moder-

ately in pratice.

4. Experiment

4.1. Settings

Datasets. Our experiments are conducted on two popu-

lar datasets for multi-class incremental learning, i.e. CI-

FAR100 [22], and ImageNet [7]. In a real-world applica-

tion such as product categorization or face recognition, in-

cremental learning usually starts from a model trained on

a pre-collected dataset. To mimic this, we evaluate our al-

gorithm starting from a model trained on half of classes for

each dataset, and the rest classes come in different phases.

Implementation Details. All models are implemented

with PyTorch and trained on TITAN-X GPUs. We adopt

a 32-layer ResNet for CIFAR100 and a 18-layer ResNet for

ImageNet. When adopting cosine normalization in the last
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(a) CIFAR100 (1 phase) (b) CIFAR100 (2 phases) (c) CIFAR100 (5 phases) (d) CIFAR100 (10 phases)

Figure 5. The performance on CIFAR100. The average and standard deviations are obtained over three runs.

(a) ImageNet-Subset (5 phases) (b) ImageNet-Subset (10 phases) (c) ImageNet-Full (5 phases) (d) ImageNet-Full (10 phases)

Figure 6. The performance on ImageNet. Reported on ImageNet-Subset (100 classes) and ImageNet-Full (1000 classes).

layer, the ReLU in the penultimate layer is removed to allow

the features to take both positive and negative values. For

CIFAR100, the learning rate starts from 0.1 and is divided

by 10 after 80 and 120 epochs (160 epochs in total). For Im-

ageNet, the learning rates also starts from 0.1 and is divided

by 10 every 30 epochs (90 epochs in total). Through the

experiments, the networks are trained by SGD [23] with the

batch size 128. The training images are randomly flipped

and cropped as input, and no more data augmentation is

used. For other hyper-parameters, λbase is set to 5 for CI-

FAR100 and 10 for ImageNet, K is set to 2 and m is set to

0.5 for all the experiments.

As for the strategy to reserve the samples for old classes,

there are two popular ones. The first one stores a constan-

t number of samples for each old class (e.g. Rper = 20),

and thus the memory size grows with the number of class-

es. The second one considers a memory with fixed capacity

(e.g. Rtotal = 2000 for CIFAR100 and Rtotal = 20000 for

ImageNet). Since the capacity is independent of the num-

ber of classes, the more classes stored, the fewer samples

reserved for each old class. In our experiments, we adop-

t the first strategy because it is usually more challenging

(e.g. Rper = 20 vs. Rtotal = 2000 on CIFAR100) 2. Be-

sides, we used the method proposed in [29] based on herd

selection [34] to select the samples to be reserved within

each old class.

For the experiments on a given dataset, the classes are ar-

2We provide some results with the second strategy to reserve old sam-

ples in the supplementary material.

ranged in a fixed random order. Each method is then trained

in a class-incremental way. After each incremental phase,

the output model is evaluated on all the classes observed so

far. Thus the evaluation result for each method is a curve

of the classification accuracies after each phase. If a single

number is preferable, we report the average of these accu-

racies, namely average incremental accuracy [29].

Baselines. iCaRL [29], as described in Section 3.1, is the

representative method for multi-class incremental learning,

which is adopted as the baseline here. More specifical-

ly, we respectively report its results of CNN prediction-

s and nearest-mean-of-exemplars classification, denoted as

iCaRL-CNN and iCaRL-NME.

For other methods, Finetune [11] and Feature Extrac-

tion [8] have proven to perform poorly for this setting [29,

3]. LwF [24] with a few additional reserved samples is e-

quivalent to iCaRL-CNN, where the reserved samples have

proven much helpful for incremental learning [29, 15]. Cas-

tro et al. [3] report better performance than iCaRL through

the sophisticated data augmentation on the reserved old

samples. However, according to the ablation study in [3],

the performance is still inferior to iCaRL without the data

augmentation. The recent works [35, 20] also report supe-

rior performance than iCaRL with the help of a generative

model to produce the samples for old classes, which deal

with the task in a different line with us and rely heavily on

the quality of the generative model. The parameter-based

methods such as EWC [21] and SI [37] have not evaluate
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on ImageNet while MAS [1] and A-GEM [5] are evaluated

in the multi-task setting.

To evaluate our model, we also respectively report

the results achieved by the CNN predictions and nearest-

mean-of-exemplars classification, denoted as Ours-CNN

and Ours-NME. Besides, the results of Joint Training are

provided as reference, which requires all previous data

available in each phase 3.

4.2. Evaluation on CIFAR100

CIFAR100 is composed of 60000 images from 100 class-

es of size 32 × 32. Every class has 500 images for train-

ing and 100 images for evaluation. We start from a model

trained on 50 classes and the remaining 50 classes come in

1, 2, 5 and 10 phases.

As shown in Figure 5, our method outperforms iCaRL by

a large margin, either in the trend of classification accuracy

curve or average incremental accuracy. Particularly, under

the incremental setting of 10 phases (Figure 5(d)), the over-

all performance on the total 100 classes at the end of incre-

mental learning is improved by more than 6% (Ours-CNN

vs. iCaRL-NME). In our model, the CNN predictions per-

forms (i.e. Ours-CNN) better or at least comparable to the

nearest-mean-of-exemplars classification (i.e. Ours-NME),

which is contrary to the observation in iCaRL [29]. Thus

the CNN predictions can be directly adopted for prediction-

s which indicates that the imbalance between old and new

classes are well handled in our approach.

4.3. Evaluation on ImageNet

ImageNet is a large-scale dataset consisting of 1000

classes with more than 1000 images per class, which is a

more challenging benchmark for incremental learning. In

total, there are roughly 1.2 millon training images and 50k

validation images. We report the performance on the vali-

dation set. Referring to [29, 3], we run two series of exper-

iments on this dataset. In the first one, we conduct the ex-

periments on a randomly selected subset of 100 classes, de-

noted as ImageNet-Subset. In the other one we evaluate our

method on the whole 1000 classes denoted as ImageNet-

Full. We start from a model trained on half of the total

classes and divide the rest classes into 5 and 10 phases. The

results are shown in Figure 6.

The observations on this dataset are consistent with those

on CIFAR100. Our method performs significantly better

than iCaRL under different settings. In our model, the re-

sults of CNN predictions is better or at least comparable

to those of nearest-mean-of-exemplars classification. It is

noteworthy that, under the incremental setting of 10 phases

on ImageNet-Full, our method can reduce the overall clas-

3We provide the results compared to more baselines in the supplemen-

tary material.

(a) CIFAR100 (5 phases) (b) CIFAR100 (5 phases)

Figure 7. (a) The effect of each component. (b) The effect of the

number of reserved samples.

(a) CIFAR100 (5 phases) (b) CIFAR100 (10 phases)

Figure 8. The effect of adaptive loss weight (AW).

sification error on the 1000 classes at the last phase by more

than 13% (Ours-CNN vs. iCaRL-NME in Figure 6(d))

4.4. Ablation Study

The effect of each component. Our approach are main-

ly comprised of three components, i.e. cosine normaliza-

tion (CN), less-forget constraint (LC), inter-class separa-

tion (IS)), When all the training is done, a class balance

finetune (CBF) is further conducted on the reserved sam-

ples. Here we provide the results of some intermediate

models to analyze the effect of each component: (a) CN:

cosine normalization is adopted in the last layer and the

distillation loss is updated as in Eq (5); (b) CN + LC: on

the basis of cosine normalization, a stronger constraint is

built to less forget the previous knowledge and the distilla-

tion loss is computed as in Eq (6); (c) CN + LC + IS: the

proposed margin ranking loss in Eq (8) is further added to

separate the old and new classes. For convenience, we only

report the results of CNN predictions. From the results in

Figure 7(a), we can observe that, each component has its

contribution to the performance achieved by our final mod-

el, while CBF has a relatively small effect on this dataset

since the adverse effects of the imbalance is mitigated by

the former three components.

The effect of the number of reserved samples. To re-

serve a few samples have proven much helpful to maintain

the performance for old classes [29, 15]. Figure 7(b) shows

the comparison of our approach with iCaRL reserving d-
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(a) iCaRL-CNN (51.80%) (b) iCaRL-NME (59.13%)

(c) Ours-NME (60.21%) (d) Ours-CNN (62.34%)

Figure 9. The comparison of confusion matrix (with entries trans-

formed by log (1 + x) for better visibility). CIFAR100 (1 phase)

is adopted as the benchmark for convenience. Along with each

method is the overall top-1 accuracy on the 100 classes.

ifferent number of samples per class. The more samples

reserved, the better performance for both iCaRL and our

approach. While in each case, the results of our approach

are superior to those of iCaRL.

The effect of adaptive loss weight. In our approach we

introduce an adaptive loss weight in Eq (7) for the distilla-

tion loss. Figure 8 shows the effect of adaptive loss weight

compared to the baseline that uses the fixed constant λbase
4

to weight the distillation loss. According to Figure 8, we

can observe that, the adaptive loss weight for the distilla-

tion loss can help achieve better performance for long se-

quences of classes. Eq (7) is a heuristic strategy and we

believe that there exists better choice to set the adaptive loss

weight which will be explored in the future work.

The comparison of confusion matrix. Figure 9 shows

the comparison of confusion matrix by iCaRL and our ap-

proach, which can provides further insight into the behav-

iors of both methods. iCaRL-CNN (Figure 9(a)) tends to

classify the samples into new classes, while is caused by

4λbase is optimized in the case of 1 phase where the number of old and

new classes are the same.

the severe imbalance between old and new classes. The ad-

verse effects of the imbalance is mitigated in the last three

methods, while Ours-CNN achieves the best overall per-

formance. The confusion matrix of Ours-CNN suggests

more balanced predictions over all classes, both in terms

of diagonal entries (i.e. correction predictions) as well as

off-diagonal entries (i.e. mistakes), which indicates that the

class imbalance is well handled in our approach.

5. Conclusion

This work develops a novel framework to learn a unified

classifier under the multi-class incremental setting. Our s-

tudy reveals that the imbalance between old and new classes

is an crucial cause for the challenges in this task, which is

handled from different aspects in our approach, including

cosine normalization, less-forget constraint, and inter-class

separation. The combination of these components rebal-

ances the training process which can thus more effectively

preserve the previous knowledge and reduce the ambiguities

between old and new classes. The extensive experiments

on CIFAR100 and ImageNet demonstrate that our approach

outperforms iCaRL by a large margin, and brings consistent

improvements under different settings.
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Cordelia Schmid, and Karteek Alahari. End-to-end incre-

mental learning. In ECCV, 2018.

[4] Gert Cauwenberghs and Tomaso Poggio. Incremental and

decremental support vector machine learning. In NIPS, 2001.

[5] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,

and Mohamed Elhoseiny. Efficient lifelong learning with a-

gem. In ICLR, 2019.

[6] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and

W Philip Kegelmeyer. Smote: synthetic minority over-

sampling technique. Journal of artificial intelligence re-

search, 16:321–357, 2002.

838



[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, 2009.

[8] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman,

Ning Zhang, Eric Tzeng, and Trevor Darrell. Decaf: A deep

convolutional activation feature for generic visual recogni-

tion. In ICML, 2014.

[9] Qi Dong, Shaogang Gong, and Xiatian Zhu. Class rectifi-

cation hard mining for imbalanced deep learning. In ICCV,

2017.

[10] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot

visual learning without forgetting. In CVPR, 2018.

[11] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In CVPR, 2014.

[12] Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li.

Adasyn: Adaptive synthetic sampling approach for imbal-

anced learning. In International Joint Conference on Neural

Networks, 2008.

[13] Haibo He and Edwardo A Garcia. Learning from imbalanced

data. IEEE Transactions on Knowledge & Data Engineering,

(9):1263–1284, 2008.

[14] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling

the knowledge in a neural network. arXiv preprint arX-

iv:1503.02531, 2015.

[15] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and

Dahua Lin. Lifelong learning via progressive distillation and

retrospection. In ECCV, 2018.

[16] Chen Huang, Yining Li, Chen Change Loy, and Xiaoou

Tang. Learning deep representation for imbalanced classi-

fication. In CVPR, 2016.

[17] Chen Huang, Chen Change Loy, and Xiaoou Tang. Discrim-

inative sparse neighbor approximation for imbalanced learn-

ing. IEEE transactions on neural networks and learning sys-

tems, 29(5):1503–1513, 2018.

[18] Nathalie Japkowicz and Shaju Stephen. The class imbal-

ance problem: A systematic study. Intelligent data analysis,

6(5):429–449, 2002.

[19] Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim.

Less-forgetful learning for domain expansion in deep neural

networks. In AAAI, 2018.

[20] Ronald Kemker and Christopher Kanan. Fearnet: Brain-

inspired model for incremental learning. In ICLR, 2018.

[21] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel

Veness, Guillaume Desjardins, Andrei A Rusu, Kieran

Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-

Barwinska, et al. Overcoming catastrophic forgetting in neu-

ral networks. Proceedings of the National Academy of Sci-

ences, 114(13):3521–3526, 2017.

[22] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. 2009.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In NIPS, 2012.

[24] Zhizhong Li and Derek Hoiem. Learning without forgetting.

In ECCV, 2016.

[25] Chunjie Luo, Jianfeng Zhan, Xiaohe Xue, Lei Wang, Rui

Ren, and Qiang Yang. Cosine normalization: Using cosine

similarity instead of dot product in neural networks. In In-

ternational Conference on Artificial Neural Networks, 2018.

[26] German I Parisi, Ronald Kemker, Jose L Part, Christo-

pher Kanan, and Stefan Wermter. Continual lifelong learn-

ing with neural networks: A review. arXiv preprint arX-

iv:1802.07569, 2018.

[27] Hang Qi, Matthew Brown, and David G Lowe. Low-shot

learning with imprinted weights. In CVPR, 2018.

[28] Amal Rannen Ep Triki, Rahaf Aljundi, Matthew Blaschko,

and Tinne Tuytelaars. Encoder based lifelong learning. In

ICCV, 2017.

[29] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, and

Christoph H Lampert. icarl: Incremental classifier and

representation learning. In CVPR, 2017.

[30] Stefan Ruping. Incremental learning with support vector ma-

chines. In ICDM, 2001.

[31] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,

Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-

van Pascanu, and Raia Hadsell. Progressive neural networks.

arXiv preprint arXiv:1606.04671, 2016.

[32] Kai Ming Ting. A comparative study of cost-sensitive boost-

ing algorithms. In ICML, 2000.

[33] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wier-

stra, et al. Matching networks for one shot learning. In NIPS,

2016.

[34] Max Welling. Herding dynamical weights to learn. In ICML,

2009.

[35] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,

Zicheng Liu, Yandong Guo, Zhengyou Zhang, and Yun Fu.

Incremental classifier learning with generative adversarial

networks. arXiv preprint arXiv:1802.00853, 2018.

[36] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju H-

wang. Lifelong learning with dynamically expandable net-

works. In ICLR, 2018.

[37] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-

ual learning through synaptic intelligence. In ICML, 2017.

[38] Zhi-Hua Zhou and Xu-Ying Liu. On multi-class cost-

sensitive learning. In AAAI, 2006.

839


