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Abstract

In this paper, we address a new task called instance co-

segmentation. Given a set of images jointly covering object

instances of a specific category, instance co-segmentation

aims to identify all of these instances and segment each of

them, i.e. generating one mask for each instance. This task

is important since instance-level segmentation is preferable

for humans and many vision applications. It is also chal-

lenging because no pixel-wise annotated training data are

available and the number of instances in each image is un-

known. We solve this task by dividing it into two sub-tasks,

co-peak search and instance mask segmentation. In the for-

mer sub-task, we develop a CNN-based network to detect

the co-peaks as well as co-saliency maps for a pair of im-

ages. A co-peak has two endpoints, one in each image, that

are local maxima in the response maps and similar to each

other. Thereby, the two endpoints are potentially covered by

a pair of instances of the same category. In the latter sub-

task, we design a ranking function that takes the detected

co-peaks and co-saliency maps as inputs and can select the

object proposals to produce the final results. Our method

for instance co-segmentation and its variant for object co-

localization are evaluated on four datasets, and achieve fa-

vorable performance against the state-of-the-art methods.

The source codes and the collected datasets are available

at https://github.com/KuangJuiHsu/DeepCO3/.

1. Introduction

Object co-segmentation aims to segment the common

objects repetitively appearing in a set of images. It is a fun-

damental and active research topic in computer vision. As

an important component of image content understanding, it

is essential to many vision applications, such as semantic

segmentation [48], image matching [4, 19, 25, 52, 60, 61],

object skeletonization [8, 27], and 3D reconstruction [42].

Object co-segmentation has recently gained significant

progress owing to the fast development of convolutional

neural networks (CNNs). The CNN-based methods [21,33,

62] learn the representation of common objects in an end-

Figure 1. Two examples of instance co-segmentation on categories

bird and sheep, respectively. An instance here refers to an object

appearing in an image. In each example, the top row gives the

input images while the bottom row shows the instances segmented

by our method. The instance-specific coloring indicates that our

method produces a segmentation mask for each instance.

to-end manner and can produce object-level results of high

quality. However, they do not explore instance-aware infor-

mation, i.e. one segmentation mask for each instance rather

than each class, which is more consistent with human per-

ception and offers better image understanding, such as the

locations and shapes of individual instances.

In this work, we present a new and challenging task

called instance-aware object co-segmentation (or instance

co-segmentation for short). Two examples of this task are

shown in Figure 1 for a quick start. Given a set of images of

a specific object category with each image covering at least

one instance of that category, instance co-segmentation

aims to identify all of these instances and segment each of

them out, namely one mask for each instance. Note that un-

like semantic [18] or instance segmentation [65], no pixel-

wise data annotations are collected for learning. The object

category can be arbitrary and unknown, which means that

no training images of that category are available in advance.

Instance-level segments that can be obtained by solving this

task are valuable to many vision applications, such as au-

tonomous driving [2, 64], instance placement [31], image

and sentence matching [26] or amodal segmentation [23].
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Therefore, instance co-segmentation has a practical setting

in input collection and better accomplishing it potentially

advances the field of computer vision.

In this paper, we develop a CNN-based method for in-

stance co-segmentation. Based on the problem setting, our

method has no access to annotated instance masks for learn-

ing and cannot involve any pre-training process. Inspired

by Zhou et al. [65]’s observation that object instances often

cover the peaks in a response map of a classier, we design a

novel co-peak loss to detect the common peaks (or co-peaks

for short) in two images. The co-peak loss is built upon a

4D tensor that is learned to encode the inter-image similar-

ity at every location. The co-peaks inferred from the learned

4D tensor correspond to two locations, one in each of the

two images, where discriminative and similar features are

present. Therefore, the two locations are potentially cov-

ered by two object instances. Using the co-peak loss alone

may lead to unfavorable false positives and negatives. Thus,

we develop the affinity loss and the saliency loss to comple-

ment the co-peak loss. The former carries out discrimina-

tive feature learning for the 4D tensor construction by sep-

arating the foreground and background features. The lat-

ter estimates the co-saliency maps to localize the co-salient

objects in an image, and can make our model focus on co-

peak search in co-salient regions. The three loss functions

work jointly and can detect co-peaks of high quality. We

design a ranking function taking the detected co-peaks and

co-saliency maps as inputs and accomplish instance mask

segmentation by selecting object proposals.

We make the following contributions in this work. First,

we introduce a new and interesting task called instance co-

segmentation. Its input is a set of images containing object

instances of a specific category, and hence is easy to col-

lect. Its output is instance-aware segments, which are de-

sired in many vision applications. Thus, we believe instance

co-segmentation worth exploring. Second, a simple and ef-

fective method is developed for instance co-segmentation.

The proposed method learns a model based on the fully con-

volutional network (FCN) [40] by optimizing three losses,

including the co-peak, affinity, and saliency losses. The

learned model can reliably detect co-peaks and co-saliency

maps for instance mask segmentation. Third, we collect

four datasets for evaluating instance co-segmentation. The

proposed method for instance co-segmentation and its vari-

ant for object co-localization [5,6,51,58,59] are extensively

evaluated on the four datasets. Our method performs favor-

ably against the state-of-the-art methods.

2. Related Work

Object co-segmentation. This task [13, 28, 45, 46, 54, 56,

57] aims to segment the common objects in images. Its ma-

jor difficulties lie in large intra-class variations and back-

ground clutter. Most methods rely on robust features, such

as handcrafted and deep learning based features, for ad-

dressing these difficulties. In addition, saliency evidence,

including single-image saliency [12, 20, 27, 28, 46, 53] or

multi-image co-saliency [3, 54, 57], has been explored to

localize the salient and common objects. Recently, CNN-

based methods [21, 33, 62] achieve better performance by

joint representation learning and co-segmentation.

Despite effectiveness, the aforementioned methods do

not provide instance-level results. In this work, we go be-

yond object co-segmentation and investigate instance co-

segmentation. Our method can determine the number, lo-

cations, and contours of common instances in each image,

and offers instance-aware image understanding.

Object co-localization. This task [5,6,51,58,59] discov-

ers the common instances in images. Different from object

co-segmentation, it is instance-aware. It detects and outputs

the bounding box of a single instance in each image even if

multiple instances are present in the image. Compared with

object co-localization, instance co-segmentation identifies

all instances in an image in the form of instance segments.

Instance-aware segmentation. Instance-aware segmen-

tation includes class-aware [1, 7, 15, 17, 65] and class-

agnostic [11, 24, 32] methods. Given training data of pre-

defined categories, class-aware instance segmentation, aka

instance segmentation, learns a model to seek each object

instance belonging to one of these categories. A widely

used way for instance segmentation is to first detect instance

bounding boxes and then segment the instances within the

bounding boxes [7,15–17,35,38,43]. Another way is to di-

rectly segment each instance without bounding box detec-

tion [1,30,36,39,65]. While most methods for instance seg-

mentation are supervised, Zhou et al. [65] present a weakly

supervised one. All these methods for instance segmenta-

tion rely on training data to learn the models. Despite the

effectiveness and efficiency in testing, their learned models

are not applicable to unseen object categories.

In practice, it is difficult to enumerate all object cat-

egories of interest in advance and prepare class-specific

training data, which limits the applicability of class-aware

instance segmentation. Class-agnostic instance segmenta-

tion [11,24,32] aims at segmenting object instances of arbi-

trary categories, and has drawn recent attention. It is chal-

lenging because it involves both generic object detection

and segmentation. Instance co-segmentation is highly re-

lated to class-agnostic instance segmentation in the sense

that both of them can be applied to arbitrary and even un-

seen object categories. However, existing class-agnostic

methods require annotated training data in the form of ob-

ject contours. On the contrary, our method for instance

co-segmentation explores the mutual information regarding

the common instances in given images, and does not need

any pre-training procedure on additional data annotations.

Thus, our method has better generalization.

8847



Figure 2. Overview of our method, which contains two stages, co-peak search within the blue-shaded background and instance mask

segmentation within the red-shaded background. For searching co-peaks in a pair of images, our model extracts image features, estimates

their co-saliency maps, and performs feature correlation for co-peak localization. The model is optimized by three losses, including the

co-peak loss ℓt, the affinity loss ℓa, and the saliency loss ℓs. For instance mask segmentation, we design a ranking function taking the

detected co-peaks, the co-saliency maps, and the object proposals as inputs, and select the top-ranked proposal for each detected instance.

3. Proposed Method

In this section, we give an overview of our method, de-

scribe its components, co-peak search and instance mask

segmentation, and provide the implementation details.

3.1. Overview

Suppose that a set of images D ✏ �In✉
N
n✏1

consisting

of object instances of a particular category is given, where

In � R
W✂H✂c is the nth image while W , H , and c are the

width, the height, and the number of channels of In, respec-

tively. The goal of instance co-segmentation is to identify

and segment each of all instances in D. Note that no train-

ing data with pixel-wise annotations are provided. In addi-

tion, both the object category and the number of instances

in each image are unknown.

In the proposed method, we decompose instance co-

segmentation into two stages, i.e. co-peak search and in-

stance mask segmentation. The overview of our method is

shown in Figure 2, where the two stages are highlighted

with the blue-shaded area and the red-shaded backgrounds,

respectively.

At the stage of co-peak search, we aim to seek co-peaks

in the response maps of two images, where a co-peak cor-

responds two discriminative and similar points, one in each

image, so that each point is potentially within an object in-

stance. We design a network model for co-peak detection.

The front part of our model is a fully convolutional network

(FCN) g, which extracts the feature maps of input images.

After feature extraction, our model is split into two streams.

One stream correlates the feature maps of two images for

co-peak localization. The other estimates the co-saliency

maps of input images, which in turn enforces FCN g to

generate more discriminative feature maps. Our model is

optimized by three novel losses, including the co-peak loss

ℓt, the affinity loss ℓa, and the saliency loss ℓs. After op-

timization, co-peaks are detected and co-saliency maps are

estimated. At the stage of instance mask segmentation, we

design a ranking function that takes the detected co-peaks,

the estimated co-saliency maps, and the instance proposals

into account, and yield one mask for each detected instance.

3.2. Co-peak search

As shown in Figure 2, our model takes a pair of images,

In and Im, from D as input at a time. It first extracts the

feature maps Fn � R
w✂h✂d for In, where w, h, and d are

the width, the height, and the number of channels, respec-

tively. Similarly, feature maps Fm � R
w✂h✂d are yielded

for Im. Our model is then divided into two streams. One

stream performs correlation between Fn and Fm, and yields

a 4D correlation tensor Tnm � R
w✂h✂w✂h. Each element

Tnm♣i, j, s, t� ✏ Tnm♣p,q� records the normalized inner

product between the feature vectors stored at two spatial lo-

cations, i.e. p ✏ �i, j� in Fn and q ✏ �s, t� in Fm. The other

stream employs a 1 ✂ 1 convolutional layer to estimate the

co-saliency map S̃k � R
w✂h of Ik, and adopts deconvo-

lution layers to generate a high-resolution co-saliency map

Sk � R
W✂H , for k � �n,m✉. We design three loss func-

tions, including the co-peak loss ℓt, the affinity loss ℓa, and

the saliency loss ℓs, to derive the network, leading to the
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following object function

L♣w� ✏ λt

N➳
n✏1

➳
m✘n

ℓt♣In, Im;w�

� λa

N➳
n✏1

➳
m✘n

ℓa♣In, Im;w� �
N➳

n✏1

ℓs♣In;w�,

(1)

where w is the set of learnable parameters of the network.

Nonnegative weights λt and λa control the relative impor-

tance among the three losses. They are fixed to 0.5 and

0.1 in this work, respectively. The co-peak loss ℓt stimu-

lates co-peak detection. The affinity loss ℓa refers to the co-

saliency maps and enables discriminative feature learning.

The saliency loss ℓs working with the other two losses car-

ries out co-saliency detection and hence facilitates instance

co-segmentation. The three losses are elaborated in the fol-

lowing.

3.2.1 Co-peak loss ℓt

This loss aims to stimulate co-peak detection. A co-peak

consists of to two points, one in each of In and Im. Since

a co-peak covered by a pair of instances of the same object

category is desired, the two points of the co-peak must be

inside the object and similar to each other. Therefore, both

intra-image saliency and inter-image correlation are taken

into account in this loss.

As shown in Figure 2, our two-stream network produces

the intra-image saliency maps S̃n and S̃m in one stream and

inter-image correlation map Tnm in the other stream. To

jointly consider the two types of information, a saliency-

guided correlation tensor T s
nm � R

w✂h✂w✂h is constructed

with its elements defined below

T s
nm♣p,q� ✏ S̃n♣p�S̃m♣q�Tnm♣p,q�, (2)

where p � P , q � P , and P is the set of all spatial coordi-

nates of the feature maps. In Eq. (2), S̃n♣p� is the saliency

value of S̃n at point p, and S̃m♣q� is similarly defined.

To have more reliable keypoints to reveal object in-

stances, we define a co-peak as a local maximum in T s
nm

within a 4D local window of size 3 ✂ 3 ✂ 3 ✂ 3. Suppose

that ♣p,q� is a peak in T s
nm. Both point p in Fn and point

q in Fm are salient, and they are the most similar to each

other in a local region. The former property implies that the

two points probably reside in two salient object instances.

The latter one reveals that the two instances are likely of the

same class, since they have similar parts. Based on above

discussion, the co-peak loss used to stimulate reliable co-

peaks is defined by

ℓt♣In, Im� ✏ ✁log

☎
✆ 1

⑤Mnm⑤

➳
♣p,q��Mnm

T s
nm♣p,q�

☞
✌, (3)

where Mnm is the set of co-peaks.

3.2.2 Affinity loss ℓa

The co-peak loss refers to the feature maps of the images,

so discriminative features that can separate instances from

background are preferable. Besides, the co-peak loss is ap-

plied to the locations of co-peaks, and features on other lo-

cations are ignored. The affinity loss is introduced to ad-

dress the two issues. It aims to derive the features with

which pixels in the salient regions are similar to each other

while being distinct from those in the background. For a

pair of images In and Im, a loss ℓ̃a♣In, Im� is defined by

ℓ̃a♣In, Im� ✏
➳
p�P

➳
q�P

S̃n♣p�S̃n♣q� ♣1✁ Tnm♣p,q��

� α♣S̃n♣p� ✁ S̃n♣q��
2Tnm♣p,q�,

(4)

where constant α is empirically set to 4. In Eq. (4), the

first term penalizes the case of low similarity between two

salient pixels, while the second term prevents high similar-

ity between a salient pixel and a non-salient pixel. The pro-

posed affinity loss generalizes ℓ̃a in Eq. (4) to consider both

inter-image and intra-image affinities and is defined by

ℓa♣In, Im� ✏ ℓ̃a♣In, Im� � ℓ̃a♣In, In� � ℓ̃a♣Im, Im�. (5)

3.2.3 Saliency loss ℓs

This term aims to identify the salient regions and can guide

the training of our model. Following the studies of ob-

ject co-segmentation [27, 28, 46, 53], we utilize an off-the-

shelf method for saliency detection. The resultant saliency

maps can serve as the object prior. In this work, we adopt

the unsupervised method, SVFSal [63], which produces the

saliency map Ŝn for image In. Note that the resolutions of

Ŝn and In are the same. Thus, the deconvolutional layers

are employed to increase the resolution. Following [22], the

saliency loss ℓs applied to image In is defined by

ℓs♣In� ✏
➳
p�In

ρn♣p�⑥Sn♣p� ✁ Ŝn♣p�⑥
2

2
, (6)

where p indexes the pixels of In, ρn♣p� is a weight repre-

senting the importance of pixel p, and Sn is the predicted

saliency map for In by our model. The weight ρn♣p� deals

with the imbalance between the salient and non-salient ar-

eas. It is set to 1✁ ε if pixel p resides in the salient region,

and ε otherwise, where ε is the ratio of the salient area to the

whole image. The mean value of Ŝn is used as the thresh-

old to divide Ŝn into the salient and non-salient regions.

In this way, the salient and non-salient regions contribute

equally in Eq. (6). As shown in Figure 2, except for the de-

convolutional layers, our model used to produce maps 
Sn✉
is derived by the three losses jointly. Thus, 
Sn✉ derived

with both intra- and inter-image cues are called co-saliency

maps. This prior term is helpful as it compensates for the

lack of supervisory signals in instance co-segmentation.
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3.3. Instance mask segmentation

After optimizing Eq. (1), we simply use the detected

peaks on the estimated co-saliency maps as the final co-

peaks, because detecting the co-peaks on all possible image

pairs is complicated. Thus, the peaks �pin✉
M
i✏1

of each im-

age In are collected, where M is the number of the peaks.

We adopt the method called peak back-propagation [65] to

infer an instance-aware heat map Oi
n for each peak pin. The

map Oi
n is supposed to highlight the instance covering pin.

An example is given in Figure 2.

For instance mask generation, we utilize an unsuper-

vised method, called multi-scale combinatorial grouping

(MCG) [44], to produce a set of instance proposals for im-

age In. With the heat maps �Oi
n✉

M
i✏1

and the co-saliency

map Sn, we extend the proposal ranking function in [65]

by further taking the co-saliency cues into account, and se-

lect the top-ranked proposal as the mask for each detected

peak. Specifically, given the maps Oi
n and Sn, the ranking

function R applied to an instance proposal P is defined by

R♣P � ✏ β♣Oi
n✝Sn�✝P�♣O

i
n✝Sn�✝P̂✁γ♣1✁Sn�✝P, (7)

where P̂ is the contour of the proposal P and operator ✝
is the Frobenius inner product between two matrices. The

coefficients β and γ are set to 0.8 and 10✁5, respectively.

In Eq. (7), three terms, i.e. the instance-aware, contour-

preserving, and object-irrelevant terms, are included. The

instance-aware term prefers the proposals that cover the re-

gions with high responses in Oi
n and high saliency in Sn.

The contour-preserving term focuses on the fine-detailed

boundary information. The background map, 1 ✁ Sn, is

used in the object-irrelevant term to suppress background

regions. Compared with the ranking function in [65], ours

further exploits the properties of instance co-segmentation,

i.e. the high co-saliency values in object instances, and can

select more accurate proposals. Following a standard pro-

tocol of instance segmentation, we perform non-maximum

suppression (NMS) to remove the redundancies.

3.4. Implementation details

We implement the proposed method using MatCon-

vNet [55]. VGG-16 [49] is adopted as the feature extrac-

tor g. It is pre-trained on the ImageNet [47] dataset, and is

updated during optimizing Eq. (1). The same network ar-

chitecture is used in all experiments. Note that the objective

in Eq. (1) involves all image pairs. Direct optimization is

not feasible due to the limited memory size. Thereby, we

adopt the piecewise training scheme [50]. Namely, only a

subset of images is considered in each epoch, and the subset

size is set to 6 in this work. The learning rate, weight decay,

and momentum are set to 10✁6, 0.0005, and 0.9, respec-

tively. The optimization procedure stops after 40 epochs.

We choose ADAM [29] as the optimization solver. All im-

ages are resized to the resolution 448✂ 448 in advance. We

dataset (a) (b) (c) (d) (e)

COCO-VOC 12 1281 3151 106.8 2.5

COCO-NONVOC 32 3130 8303 91.8 2.7

VOC12 18 891 2214 178.2 2.5

SOC 5 522 835 29.0 1.6

Table 1. Some statistics of the four collected datasets, including (a)

the number of classes, (b) the number of images, (c) the number

of instances, (d) the average number of images per class, and (e)

the average number of instances per image.

resize the instance co-segmentation results back to the orig-

inal image resolution for performance evaluation.

4. Experimental Results

In this section, our method for instance co-segmentation

and its variant for co-localization are evaluated. First,

the adopted datasets and evaluation metrics are described.

Then, the competing methods are introduced. Finally, the

comparison results are reported and analyzed.

4.1. Dataset collection

As instance co-segmentation is a new task, no public

benchmarks exist. Therefore, we establish four datasets

with pixel-wise instance annotations by collecting im-

ages from three public benchmarks, including the MS

COCO [37], PASCAL VOC 2012 [9, 14], and SOC [10]

datasets. The following pre-processing is applied to each

dataset. First, we remove the images where objects of more

than one category are present. Second, we discard the cate-

gories that contain less than 10 images. The details of col-

lecting images from each dataset are described below.

MS COCO dataset. We collect images from the training

and validation sets of the MS COCO 2017 object detection

task. As MS CCCO is a large-scale dataset, we further re-

move the images that do not contain at least two instances.

Total 44 categories remain. Some competing methods are

pre-trained on PASCAL VOC 2012 dataset. For the ease

of comparison, we divide the 44 categories into two dis-

joint sets, COCO-VOC and COCO-NONVOC. The former

contains 12 categories covered by the PASCAL VOC 2012

dataset, while the latter contains the rest.

PASCAL VOC 2012 dataset. Because few pixel-wise

instance annotations are available in the PASCAL VOC

2012 dataset, we adopt the augmented VOC12 dataset [14],

which has 18 object categories after dataset preprocessing.

SOC dataset. SOC [10] is a newly collected dataset

for saliency detection. It provides image-level labels and

instance-aware annotations. After preprocessing, only five

object categories remain because many images contain ob-

ject instances of multiple categories and some categories

have less than 10 images.
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method year trained
COCO-VOC COCO-NONVOC VOC12 SOC

mAPr

0.25
mAPr

0.5
mAPr

0.25
mAPr

0.5
mAPr

0.25
mAPr

0.5
mAPr

0.25
mAPr

0.5

CLRW [51] CVPR 2014 ✂ 33.3 13.7 24.6 10.7 29.2 10.5 34.9 15.6

UODL [5] CVPR 2015 ✂ 9.6 2.2 8.5 1.8 9.4 2.0 11.0 2.7

DDT [58] IJCAI 2017 ✂ 31.4 10.1 25.7 9.7 30.7 8.8 43.0 25.7

DDT� [59] arXiv 2017 ✂ 31.7 10.6 26.0 10.1 33.6 9.4 39.6 22.4

DFF [6] ECCV 2018 ✂ 30.8 11.6 22.6 7.3 27.7 13.7 42.3 17.0

NLDF [41] CVPR 2017
❵

39.1 18.2 23.9 8.5 34.3 12.7 49.5 21.6

C2S-Net [34] ECCV 2018
❵

39.6 13.4 25.1 7.6 30.1 10.7 37.0 12.5

PRM [65] CVPR 2018
❵

44.9 14.6 - - 45.3 14.8 - -

Ours - ✂ 52.6 21.1 35.3 12.3 45.6 16.7 54.2 26.0

Table 2. Performance of instance co-segmentation on the four collected datasets. The numbers in red and green show the best and the

second best results, respectively. The column “trained” indicates whether additional training data are used.

The statistics and the abbreviations of the four collected

datasets are given in Table 1. Note that our method can work

on images containing one or multiple instances of the com-

mon object category. The SOC dataset helps test this issue.

As shown in Table 1, the average number of instances in

SOC is 1.6, less than 2. It shows that there exist many im-

ages in this dataset with only one object instance. Please re-

fer to the supplementary material for more details and some

image samples of the four collected datasets.

4.2. Evaluation metrics

For instance co-segmentation, mean average precision

(mAP) [15] is adopted as the performance measure. Follow-

ing [65], we report mAP using the IoU thresholds at 0.25

and 0.5, denoted as mAPr
0.25 and mAPr

0.5, respectively.

For object co-localization, the performance measure

CorLoc [5,6,51,58,59] is used as the evaluation metric. The

measure CorLoc is designed for evaluating the results in the

form of object bounding boxes. For comparing with meth-

ods whose output is object or instance segments, we extend

CorLoc to CorLocr to evaluate the results in the form of

object segments.

4.3. Competing methods

As instance co-segmentation is a new task, there are

no existing methods for performance comparison. We

adopt two strategies for comparing our method with exist-

ing ones. First, we consider competing methods of three

categories, including object co-localization, class-agnostic

saliency segmentation, and weakly supervised instance seg-

mentation. For methods of the three categories, we convert

their predictions into the results in the form of instance co-

segmentation, namely one segment mask for each detected

instance. In this way, our method can be compared with

these methods on the task of instance co-segmentation.

Second, we compare our method with methods of all the

aforementioned three categories on the task of object co-

localization. To this end, we need to convert the output of

each compared method into the results in the form of object

co-localization, namely the object bounding box with the

highest confidence in each image.

In the two strategies of method comparison, two types

of prediction conversion are required, including converting

a bounding box to an instance segment and its inverse di-

rection. Unless further specified, we adopt the following

way to convert a bounding box prediction to an instance

segment. Given a bounding box in an image, we apply

MCG [44] to that image to generate a set of instance pro-

posals, and retrieve the proposal with the highest IoU with

the bounding box to represent it. On the other hand, it is

easy to concert a given instance segment to a bounding box.

We simply use the bounding box of that instance segment to

represent it. In the following, the selected competing meth-

ods from each of the three categories are specified.

Object co-localization. We choose the state-of-the-art

methods of this category for comparison, including

CLRW [51], UODL [5], DDT [58], DDT� [59], and

DFF [6]. The first two methods, CLRW and UODL, out-

put all bounding boxes with their scores, but cannot deter-

mine the number of instances in each image. Thus, we pick

the top-scored bounding boxes as many as the instances de-

tected by our method, and similarly apply NMS to remove

redundancies. The last three methods, DDT, DDT�, and

DFF, first produce the heat maps to highlight objects, then

convert the heat maps into the binary masks by using their

proposed mechanisms, and finally take the bounding boxes

of the connected components on the binary masks.

Class-agnostic instance segmentation (CAIS). We se-

lect two powerful methods, NLDF [41] and C2S-Net [34],

of this category as the competing methods. The algorithm

proposed in [32] is used to convert the saliency contours

generated by NLDF and C2S-Net into the results in the form

of instance co-segmentation.

Weakly supervised instance segmentation (WSIS). The

WSIS method, PRM [65], is trained on the PASCAL VOC

2012 dataset, and it cannot be applied to the images whose

categories are not covered by the PASCAL VOC 2012
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Figure 3. Results of instance co-segmentation on four object categories, i.e.cow, sheep, horse, and train, of the COCO-VOC dataset. (a)

Input images. (b) Ground truth. (c)✒ (g) Results with instance-specific coloring generated by different methods including (c) our method,

(d) CLRW [51], (e) DFF [6], (f) NLDF [41], and (g) PRM [65], respectively.

Figure 4. Performance in mAPr

0.25 with different loss function

combinations on the COCO-VOC and COCO-NONVOC datasets.

dataset. Therefore, PRM is compared with our method only

on the COCO-VOC and VOC12 datasets.

4.4. Instance co-segmentation

For the ease of performance analysis, we divide

the evaluated methods into two groups, i.e. trained

and non-trained. The group trained includes

NLDF [41], C2S-Net [34] and PRM [65]. Methods

of this group require additional training data other than

the input to instance co-segmentation. The other group

non-trained contains our method and the rest of the

competing methods. Methods of group non-trained

have access to only the input to instance co-segmentation.

Our method and all competing methods are evaluated

on the four collected datasets. Their performance is re-

ported in Table 2. The proposed method outperforms the

competing methods of group non-trained by large mar-

gins even though all of them access the same data. We at-

COCO-VOC COCO-NONVOC

mAPr

0.25
mAPr

0.5
mAPr

0.25
mAPr

0.5

w/o co-saliency map 33.5 12.4 25.3 8.3

w co-saliency map 52.6 21.1 35.3 12.3

Table 3. Performance of our method working with the proposal

ranking function without or with the co-saliency information on

the COCO-VOC and COCO-NONVOC datasets.

tribute the performance gain yielded by our method to fea-

ture learning enabled CNNs. The competing methods of

group non-trained adopt pre-defined features, and can-

not well deal with complex and diverse intra-class varia-

tions and background clutters. On the contrary, our method

leverages CNNs to carry out feature learning and instance

co-segmentation simultaneously, leading to much better

performance. Although the methods of group trained

have access to additional training data, ours still reaches

more favorable results. The main reason is that our method

explores co-occurrent patterns via co-peak detection when

images for instance co-segmentation are available, while the

methods of group trained fix their models after training

on additional data and cannot adapt themselves to newly

given images for instance co-segmentation.

To gain the insight into the quantitative results, Fig-

ure 3 visualizes the qualitative results generated by our

method, CLRW [51], DFF [6], NLDF [41], and PRM [65].

The major difficulties of instance segmentation lie in in-

stance mutual occlusions, intra-class variations, and clut-
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Figure 5. Seven examples, one in each row, of the co-localization

results by our method on the COCO-NONVOC dataset.

tered scene. As shown in Figure 3(c), our method still

works well when instance mutual occlusions occur on cate-

gories cow, sheep, and horse and large intra-class variations

and cluttered scene are present on category train. In Fig-

ure 3(d), CLRW yields some false alarms in the background

while has false negatives on category train. In Figure 3(e),

DFF cannot well address instance mutual occlusions due

to computing connected components for instance identifi-

cation. In Figure 3(f) and Figure 3(g), NLDF and CRP per-

form favorably against other competing methods, but still

suffer from over-segmentation and misses, respectively.

Ablation studies. We analyze the proposed objective con-

sisting of three loss functions in Eq. (1) on the COCO-VOC

and COCO-NONVOC datasets, and report the results in

Figure 4. Except loss ℓs, the other two losses, ℓt and ℓa, are

added one by one. When ℓt is included, the performance

gains are significant on both datasets. It implies that ℓt for

reliable co-peak search is important in our method. Once ℓa
is added, the performance is moderately enhanced, which

means that discriminative feature learning is helpful for in-

stance co-segmentation. In addition to the objective, the

effect of referring to co-saliency maps in proposal ranking

is analyzed in Table 3. The results clearly point out that in-

formation from co-saliency detection is crucial to proposal

ranking. It is not surprised. Since co-peaks identify the

keypoints within instances, we still need the evidence from

co-saliency maps to reveal the corresponding instances.

method year trained COCO-VOC COCO-NONVOC VOC12 SOC

CLRW [51] CVPR 2014 ✂ 33.4 31.6 29.9 30.9

UODL [5] CVPR 2015 ✂ 12.3 12.7 9.5 10.3

DDT [58] IJCAI 2017 ✂ 30.0 27.4 25.0 16.7

DDT� [59] PR 2019 ✂ 29.5 25.8 23.7 18.4

DFF [6] ECCV 2018 ✂ 32.3 30.5 28.7 22.9

NLDF [41] CVPR 2017
❵

51.2 31.0 39.2 42.0

C2S-Net [34] ECCV 2018
❵

39.0 28.4 31.1 32.9

PRM [65] CVPR 2018
❵

18.1 - 23.3 -

Ours - ✂ 49.6 34.3 39.2 43.1

Table 4. Performance of object co-localization on the four datasets.

The numbers in red and green indicate the best and the second

best results, respectively. The column “trained” indicates whether

additional training data are used.

4.5. Object co-localization

We evaluate our method and the competing methods

for object co-localization in the four datasets we collected.

For our method, we pick the top-ranked proposal in each

image when evaluating the performance in CorLocr. Ta-

ble 4 reports the performance of all the compared methods.

Our method achieves the comparable or even better perfor-

mance, even though it is not originally designed for object

co-localization. Seven examples of object co-localization

by our method are shown in Figure 5, where accurate in-

stance masks and the corresponding bounding boxes are

discovered by our method.

5. Conclusions

In this paper, we present an interesting and challeng-

ing task called instance co-segmentation, and propose a

CNN-based method to effectively solve it without using

additional training data. We decompose this task into two

sub-tasks, including co-peak search and instance mask

segmentation. In the former sub-task, we design three novel

losses, co-peak, affinity, and saliency losses, for joint co-

peak and co-saliency map detection. In the latter sub-task,

we develop an effective proposal ranking algorithm, and

can retrieve high-quality proposals to accomplish instance

co-segmentation. Our method for instance co-segmentation

and its variant for object co-localization are extensively

evaluated on the four collected datasets. Both quantitative

and qualitative results show that our method and its variant

perform favorably against the state-of-the-arts. In the

future, we plane to integrate the proposed method into

more high-level tasks, such as autonomous driving, visual

question answering, image and sentence matching where

instance-aware annotations are valuable.
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