
Deep ChArUco: Dark ChArUco Marker Pose Estimation

Danying Hu, Daniel DeTone, and Tomasz Malisiewicz

Magic Leap, Inc.

{dhu,ddetone,tmalisiewicz}@magicleap.com

Abstract

ChArUco boards are used for camera calibration,

monocular pose estimation, and pose verification in both

robotics and augmented reality. Such fiducials are de-

tectable via traditional computer vision methods (as found

in OpenCV) in well-lit environments, but classical meth-

ods fail when the lighting is poor or when the image un-

dergoes extreme motion blur. We present Deep ChArUco,

a real-time pose estimation system which combines two

custom deep networks, ChArUcoNet and RefineNet, with

the Perspective-n-Point (PnP) algorithm to estimate the

marker’s 6DoF pose. ChArUcoNet is a two-headed marker-

specific convolutional neural network (CNN) which jointly

outputs ID-specific classifiers and 2D point locations. The

2D point locations are further refined into subpixel coor-

dinates using RefineNet. Our networks are trained using

a combination of auto-labeled videos of the target marker,

synthetic subpixel corner data, and extreme data augmenta-

tion. We evaluate Deep ChArUco in challenging low-light,

high-motion, high-blur scenarios and demonstrate that our

approach is superior to a traditional OpenCV-based method

for ChArUco marker detection and pose estimation.

1. Introduction

In this paper, we refer to computer-vision-friendly 2D

patterns that are unique and have enough points for 6DoF

pose estimation as fiducials or markers. ArUco mark-

ers [1, 2] and their derivatives, namely ChArUco mark-

ers, are frequently used in augmented reality and robotics.

For example, Fiducial-based SLAM [3, 4] reconstructs the

world by first placing a small number of fixed and unique

patterns in the world. The pose of a calibrated camera can

be estimated once at least one such marker is detected. But

as we will see, traditional ChArUco marker detection sys-

tems are surprisingly frail. In the following pages, we mo-

tivate and explain our recipe for creating a state-of-the-art

Deep ChArUco marker detector based on deep neural net-

works.

Figure 1. Deep ChArUco is an end-to-end system for ChArUco

marker pose estimation from a single image. Deep ChArUco is

composed of ChArUcoNet for point detection (Section 3.1), Re-

fineNet for subpixel refinement (Section 3.2), and the Perspective-

n-Point (PnP) algorithm for pose estimation (Section 3.3). For this

difficult image, OpenCV does not detect enough points to deter-

mine a marker pose.

We focus on one of the most popular class of fiducials in

augmented reality, namely ChArUco markers. In this paper,

we highlight the scenarios under which traditional computer

vision techniques fail to detect such fiducials, and present

Deep ChArUco, a deep convolutional neural network sys-

tem trained to be accurate and robust for ChArUco marker

detection and pose estimation (see Figure 1). The main con-

tributions of this work are:

1. A state-of-the-art and real-time marker detector that

improves the robustness and accuracy of ChArUco pat-

tern detection under extreme lighting and motion

2. Two novel neural network architectures for point ID

classification and subpixel refinement

3. A novel training dataset collection recipe involving

auto-labeling images and synthetic data generation

Overview: We discuss both traditional and deep

learning-based related work in Section 2. We present

ChArUcoNet, our two-headed custom point detection net-

work, and RefineNet, our corner refinement network in

Section 3. Finally, we describe both training and testing

ChArUco datasets in Section 4, evaluation results in Sec-

tion 5, and conclude with a discussion in Section 6.

8436

2. Related Work

2.1. Traditional ChArUco Marker Detection

A ChArUco board is a chessboard with ArUco markers

embedded inside the white squares (see Figure 2). ArUco

markers are modern variants of earlier tags like ARTag [5]

and AprilTag [6]. A traditional ChArUco detector will first

detect the individual ArUco markers. The detected ArUco

markers are used to interpolate and refine the position of

the chessboard corners based on the predefined board lay-

out. Because a ChArUco board will generally have 10 or

more points, ChArUco detectors allow occlusions or par-

tial views when used for pose estimation. In the classi-

cal OpenCV method [7], the detection of a given ChArUco

board is equivalent to detecting each chessboard inner cor-

ner associated with a unique identifier. In our experiments,

we use the 5 × 5 ChArUco board which contains the first

12 elements of the DICT_5x5_50 ArUco dictionary as

shown in Figure 2.

Figure 2. ChArUco = Chessboard + ArUco. Pictured is a 5x5

ChArUco board which contains 12 unique ArUco patterns. For

this exact configuration, each 4x4 chessboard inner corner is as-

signed a unique ID, ranging from 0 to 15. The goal of our algo-

rithm is to detect these unique 16 corners and IDs.

2.2. Deep Nets for Object Detection

Deep Convolutional Neural Networks have become the

standard tool of choice for object detection since 2015 (see

systems like YOLO [8], SSD [9], and Faster R-CNN [10]).

While these systems obtain impressive multi-category ob-

ject detection results, the resulting bounding boxes are typ-

ically not suitable for pose inference, especially the kind of

high-quality 6DoF pose estimation that is necessary for aug-

mented reality. More recently, object detection frameworks

like Mask-RCNN [11] and PoseCNN [12] are building pose

estimation capabilities directly into their detectors.

2.3. Deep Nets for Keypoint Estimation

Keypoint-based neural networks are usually fully-

convolutional and return a set of skeleton-like points of the

detected objects. Deep Nets for keypoint estimation are

popular in the human pose estimation literature. Since for

a rigid object, as long as we can repeatably detect a smaller

yet sufficient number of 3D points in the 2D image, we can

perform PnP to recover the camera pose. Albeit indirectly,

keypoint-based methods do allow us to recover pose using

a hybrid deep (for point detection) and classical (for pose

estimation) system. One major limitation of most keypoint

estimation deep networks is that they are too slow because

of the expensive upsampling operations in hourglass net-

works [13]. Another relevant class of techniques is those

designed for human keypoint detection such as faces, body

skeletons [14], and hands [15].

Figure 3. Defining ChArUco Point IDs. These three examples

show different potential structures in the pattern that could be used

to define a single ChArUco board. a) Every possible corner has

an ID. b) Interiors of ArUco patterns chosen as IDs. c) Interior

chessboard of 16 ids, from id 0 of the bottom left corner to id 15

of the top right corner (our solution).

2.4. Deep Nets for Feature Point Detection

The last class of deep learning-based techniques relevant

to our discussion is deep feature point detection systems–

methods that are deep replacements for classical systems

like SIFT [17] and ORB [18]. Deep Convolutional Neu-

ral Networks like DeTone et al’s SuperPoint system [16]

are used for joint feature point and descriptor computa-

tion. SuperPoint is a single real-time unified CNN which

performs the roles of multiple deep modules inside earlier

deep learning for interest-point systems like the Learned In-

variant Feature Transform (LIFT) [19]. Since SuperPoint

networks are designed for real-time applications, they are a

starting point for our own Deep ChArUco detector.

3. Deep ChArUco: A System for ChArUco De-

tection and Pose Estimation

In this section, we describe the fully convolutional neu-

ral network we used for ChArUco marker detection. Our

network is an extension of SuperPoint [16] which includes

a custom head specific to ChArUco marker point identifi-

cation. We develop a multi-headed SuperPoint variant, suit-

able for ChArUco marker detection (see architecture in Fig-

ure 4). Instead of using a descriptor head, as was done in

the SuperPoint paper, we use an id-head, which directly re-

gresses to corner-specific point IDs. We use the same point

8437

Figure 4. Two-Headed ChArUcoNet and RefineNet. ChArUcoNet is a SuperPoint-like [16] network for detecting a specific ChArUco

board. Instead of a descriptor head, we use a point ID classifier head. One of the network heads detects 2D locations of ChArUco boards

in X and the second head classifies them in C. Both heads output per-cell distributions, where each cell is an 8x8 region of pixels. We use

16 unique points IDs for our 5x5 ChArUco board. ChArUcoNet’s output is further refined via a RefineNet to obtain subpixel locations.

localization head as SuperPoint – this head will output a

distribution over pixel location for each 8x8 pixel region in

the original image. This allows us to detect point locations

at full image resolution without using an explicit decoder.

Defining IDs. In order to adapt SuperPoint to ChArUco

marker detection, we must ask ourselves: which points do

we want to detect? In general, there are multiple strategies

for defining point IDs (see Figure 3). For simplicity, we de-

cided to use the 4x4 grid of interior chessboard corners for

point localization, giving a total of 16 different point IDs to

be detected. The ID classification head will output distri-

bution over 17 possibilities: a cell can belong to one of the

16 corner IDs or an additional “dustbin” none-of-the-above

class. This allows a direct comparison with the OpenCV

method since both classical and deep techniques attempt to

localize the same 16 ChArUco board-specific points.

3.1. ChArUcoNet Network Architecture

The ChArUcoNet architecture is identical to that of the

SuperPoint [16] architecture, with one exception - the de-

scriptor head in the SuperPoint network is replaced with a

ChArUco ID classification head C as shown in Figure 4.

The network uses a VGG-style encoder to reduce the

dimensionality of the image. The encoder consists of

3x3 convolutional layers, spatial downsampling via pooling

and non-linear activation functions. There are three max-

pooling layers which each reduce the spatial dimensionality

of the input by a factor of two, resulting in a total spatial

reduction by a factor of eight. The shared encoder out-

puts features with spatial dimension Hc × Wc. We define

Hc = H/8 and Wc = W/8 for an image sized H×W . The

keypoint detector head outputs a tensor X ∈ R
Hc⇥Wc⇥65.

Let Nc be the number of ChArUco points to be detected

(e.g. for a 4x4 ChArUco grid Nc = 16). The ChArUco

ID classification head outputs a classification tensor C ∈

R
Hc⇥Wc⇥(Nc+1) over the Nc classes and a dustbin class,

resulting in Nc + 1 total classes. The ChArUcoNet net-

work was designed for speed–the network weights take 4.8

Megabytes and the network is able to process 320 × 240

sized images at approximately 100fps using an NVIDIA R�

GeForce GTX 1080 GPU.

3.2. RefineNet Network Architecture

To improve pose estimation quality, we additionally per-

form subpixel localization – we refine the detected integer

corner locations into subpixel corner locations using Re-

fineNet, a deep network trained to produce subpixel co-

ordinates. RefineNet, our deep counterpart to OpenCV’s

cornerSubPix, takes as input a 24×24 image patch and

outputs a single subpixel corner location at 8× the resolu-

tion of the central 8 × 8 region. RefineNet performs soft-

max classification over an 8× enlarged central region – Re-

fineNet finds the peak inside the 64× 64 subpixel region (a

4096-way classification problem). RefineNet weights take

up only 4.1 Megabytes due to a bottleneck layer which con-

verts the 128D activations into 8D before the final 4096D

mapping. Both ChArUcoNet and RefineNet use the same

VGG-based backbone as SuperPoint [16].

For a single imaged ChArUco pattern, there will be at

most 16 corners to be detected, so using RefineNet is as

expensive as 16 additional forward passes on a network with

24× 24 inputs.

3.3. Pose Estimation via PnP

Given a set of 2D point locations and a known physi-

cal marker size we use the Perspective-n-Point (PnP) algo-

rithm [20] to compute the ChArUco pose w.r.t the camera.

PnP requires knowledge of K, the camera intrinsics, so we

calibrate the camera before collecting data. We calibrated

the camera until the reprojection error fell below 0.15 pix-

els. We use OpenCV’s solvePnPRansac to estimate the

final pose in our method as well as in the OpenCV baseline.

4. ChArUco Datasets

To train and evaluate our Deep ChArUco Detection sys-

tem, we created two ChArUco datasets. The first dataset

8438

focuses on diversity and is used for training the ChArUco

detector (see Figure 5). The second dataset contains short

video sequences which are designed to evaluate system per-

formance as a function of illumination (see Figure 7).

4.1. Training Data for ChArUcoNet

We collected 22 short video sequences from a cam-

era with the ChArUco pattern in a random but static pose

in each video. Some of the videos include a ChArUco

board taped to a monitor with the background changing,

and other sequences involve lighting changes (starting with

good lighting). Videos frames are extracted into the positive

dataset with the resolution of 320 × 240, resulting in a to-

tal of 7, 955 gray-scale frames. Each video sequence starts

with at least 30 frames of good lighting. The ground truth

of each video is auto-labeled from the average of the first 30

frames using the classical OpenCV method, as the OpenCV

detector works well with no motion and good lighting.

The negative dataset contains 91, 406 images in to-

tal, including 82, 783 generic images from the MS-COCO

dataset 1 and 8, 623 video frames collected in the office. Our

in-office data contains images of vanilla chessboards, and

adding them to our negatives was important for improving

overall model robustness.

We collect frames from videos depicting “other”

ChArUco markers (i.e., different than the target marker de-

picted in Figure 2). For these videos, we treated the clas-

sifier IDs as negatives but treated the corner locations as

“ignore.”

n
o

d
at

a
au

g
+

d
at

a
au

g

Figure 5. ChArUco Training Set. Examples of ChArUco dataset

training examples, before and after data augmentation.

Figure 6. RefineNet Training Images. 40 examples of syntheti-

cally generated image patches for training RefineNet.

1MS-COCO 2014 train: http://images.cocodataset.org/zips/train2014.zip

4.2. Data Augmentation for ChArUcoNet

With data augmentation, each frame will undergo a ran-

dom homographic transform and a set of random combina-

tion of synthetic distortions under certain probability (see

Table 1) during the training stage, which dramatically in-

creases the diversity of the input dataset. The order and the

extent of the applied distortion effects are also randomly se-

lected for each frame. For example, Figure 5 shows frames

from the training sequences (top row) and augmented with

a set of distortions (bottom row).

Effect Probability

additive Gaussian noise 0.5

motion blur 0.5

Gaussian blur 0.25

speckle noise 0.5

brightness rescale 0.5

shadow or spotlight effect 0.5

homographic transform 1.0 (positive set) / 0.0 (negative set)

Table 1. Synthetic Effects Applied For Data Augmentation.

During training we transform the images to capture more illumi-

nation and pose variations.

4.3. Synthetic Subpixel Corners for RefineNet

We train RefineNet using a large database of syntheti-

cally generated corner images. Each synthetic training im-

age is 24×24 pixels and contains exactly one a ground-truth

corner within the central 8 × 8 pixel region. For examples

of such training image patches, see Figure 6.

4.4. Evaluation Data

For evaluation, we captured 26 videos of 1000 frames

at 30Hz from a Logitech R� webcam (see examples in Fig-

ure 7). Each video in this set focuses on one of the following

effects:

• Lighting brightness (20 videos with 10 different light-

ing configurations)

• Shadow / spotlight (3 videos)

• Motion blur (3 videos)

5. Evaluation and Results

We compare our Deep ChArUco detector against a tradi-

tional OpenCV-based ChArUco marker detector in a frame-

by-frame manner. We first evaluate both systems’ ability

Figure 7. ChArUco Evaluation Set. Examples of frames from the

ChArUco evaluation set. From left to right, each frame focuses on

lighting (10lux), shadow, motion blur.

8439

Figure 8. Synthetic Motion Blur Test Example. Top row: input image applied with varying motion blur effect from kernel size 0 to 10;

middle row: corners and ids detected by OpenCV detector, with detection accuracy [1. 1. 1. 1. 1. 0.125 0. 0. 0. 0. 0. 0.]; bottom row:

corners and ids detected from the Deep ChArUco, with detection accuracy [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

to detect the 16 ChArUco markers for a fixed set of im-

ages, under increasing blur and lighting changes (synthetic

effects). Then, on real sequences, we estimate the pose of

the ChArUco board based on the Perspective-n-Point algo-

rithm and determine if the pose’s reprojection error is below

a threshold (typically 3 pixels). Below, we outline the met-

rics used in our evaluation.

• Corner Detection Accuracy (accuracy of ChArU-

coNet)

• ChArUco Pose Estimation Accuracy (combined accu-

racy of ChArUcoNet and RefineNet)

A corner is correctly detected when the location is within

a 3-pixel radius of the ground truth, and the point ID is iden-

tified correctly based on ChArUcoNet ID classifier. The

corner detection accuracy is the ratio between the number

of accurately detected corners and 16, the total number of

marker corners. The average accuracy is calculated as the

mean of detection accuracy across 20 images with different

static poses. To quantitatively measure the pose estimation

accuracy in each image frame, we use the mean reprojec-

tion error ✏re as defined below:

✏re =

Pn

i=1 |PCi − ci|

n
, (1)

where P is the camera projection matrix containing intrin-

sic parameters. Ci represents the 3D location of a detected

corner computed from the ChArUco pose, ci denotes the 2d

pixel location of the corresponding corner in the image. n
(≤ 16) is the total number of the detected ChArUco corners.

5.1. Evaluation using synthetic effects

In this section, we compare the overall accuracy of the

Deep ChArUco detector and the OpenCV detector under

synthetic effects, in which case, we vary the magnitude of

the effect linearly. The first two experiments are aimed to

evaluate the accuracy of ChArUcoNet output, without rely-

ing on RefineNet.

In each of our 20 synthetic test scenarios, we start with

an image taken in an ideal environment - good lighting and

random static pose (i.e., minimum motion blur), and gradu-

ally add synthetic motion blur and darkening.

Figure 9. Synthetic Motion Blur Test. We compare Deep

ChArUco with the OpenCV approach on 20 random images from

our test-set while increasing the amount of motion blur.

5.1.1 Synthetic Motion Blur Test

In the motion blur test, a motion blur filter along the hori-

zontal direction was applied to the original image with the

varying kernel size to simulate the different degrees of mo-

tion blur. In Figure 9, we plot average detection accuracy

versus the degree of motion blur (i.e., the kernel size). It

shows that Deep ChArUco is much more resilient to the

motion blur effect compared to the OpenCV approach. Fig-

ure 8 shows an example of increasing motion blur and the

output of both detectors. Both the visual examples and re-

sulting plot show that OpenCV methods start to completely

fail (0% detection accuracy) for kernel sizes of 6 and larger,

while Deep ChArUco only degrades a little bit in perfor-

mance (94% detection accuracy), even under extreme blur.

5.1.2 Synthetic Lighting Test

In the lighting test, we compare both detectors under differ-

ent lighting conditions created synthetically. We multiply

the original image with a rescaling factor of 0.6k to simulate

increasing darkness. In Figure 11, we plot average detection

accuracy versus the darkness degree, k. Figure 10 shows an

example of increasing darkness and the output of both de-

8440

Figure 10. Synthetic Lighting Test Example. Top row: input image applied with a brightness rescaling factor 0.6k with k from 0 to 10;

middle row: corners and ids detected by OpenCV detector with detection accuracy [1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0.]; bottom row: corners

and ids detected from the Deep ChArUco with detection accuracy [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.]

tectors. We note that Deep ChArUco is able to detect mark-

ers in many cases where the image is “perceptually black”

(see last few columns of Figure 10). Deep ChArUco detects

more than 50% of the corners even when the brightness is

rescaled by a factor of 0.69 ∼ .01, while the OpenCV de-

tector fails at the rescaling factor of 0.64 ∼ .13.

Figure 11. Synthetic Lighting Test. We compare Deep ChArUco

with the OpenCV approach on 20 random images from our test-set

while increasing the amount of darkness.

5.2. Evaluation on real sequences

First, we qualitatively show the accuracy of both detec-

tors in real video clips captured in different scenarios as de-

scribed in section 4.4, “Evaluation Data.” Figure 13 shows

the results of both detectors under extreme lighting and mo-

tion. Notice that the Deep ChArUco detector significantly

outperforms the OpenCV detector under these extreme sce-

narios. Overall, our method detects more correct keypoints

where a minimum number of 4 correspondences is neces-

sary for pose estimation.

In our large experiment, we evaluate across all 26, 000
frames in the 26-video dataset, without adding synthetic ef-

fects. We plot the fraction of correct poses vs. pose correct-

ness threshold (as measured by reprojection error) in Fig-

ure 12. Overall, we see that the Deep ChArUco system

exhibits a higher detection rate (97.4% vs. 68.8% under

a 3-pixel reprojection error threshold) and lower pose er-

ror compared to the traditional OpenCV detector. For each

sequence in this experiment, Table 3 lists the ChArUco de-

tection rate (where ✏re < 3.0) and the mean ✏re.

For sequences at 1 and 0.3 lux, OpenCV is unable to

return a pose–they are too dark. For sequences with shad-

ows, Deep ChArUco detects a good pose 100% of the time,

compared to 36% for OpenCV. For videos with motion blur,

Deep ChArUco works 78% of the time, compared to 27%

for OpenCV. For a broad range of “bright enough” scenar-

ios ranging from 3 lux to 700 lux, both Deep ChArUco and

OpenCV successfully detect a pose 100% of the time, but

Deep ChArUco has slightly lower reprojection error, ✏re on

most sequences.2

5.3. Deep ChArUco Timing Experiments

At this point, it is clear that Deep ChArUco works well

under extreme lighting conditions, but is it fast enough for

real-time applications? We offer three options in network

configuration based on the application scenarios with dif-

ferent requirements:

• ChArUcoNet + RefineNet: This is the recommended

configuration for the best accuracy under difficult con-

ditions like motion blur, low light, and strong imaging

noise, but with longest post-processing time.

• ChArUcoNet + cornerSubPix: For comparable accu-

racy in well-lit environment with less imaging noise,

this configuration is recommended with moderate

post-processing time.

• ChArUcoNet + NoRefine: This configuration is pre-

ferred when only the rough pose of the ChArUco pat-

tern is required, especially in a very noisy environment

where cornerSubPix will fail. The processing time is

therefore the shortest as the image only passes through

one CNN.

We compare the average processing speed of 320× 240

sized images using each of the above three configurations

in Table 2. The reported framerate is an average across the

evaluation videos described in Section 4.4. Experiments are

performed using an NVIDIA R� GeForce GTX 1080 GPU.

Since ChArUcoNet is fully convolutional, it is possible to

2For per-video analysis on the 26 videos in our evaluation dataset,

please see the Appendix.

8441

Figure 12. Deep ChArUco vs OpenCV across entire evaluation

dataset. Pose accuracy vs. reprojection error ✏re threshold is com-

puted across all 26, 000 frames in the 26 videos of our evalua-

tion set. Deep ChArUco exhibits higher pose estimation accuracy

(97.4% vs. 68.8% for OpenCV) under a 3 pixel reprojection error

threshold.

Configurations Approx. fps (Hz)

ChArUcoNet + RefineNet 24.9

ChArUcoNet + cornerSubPix 98.6

ChArUcoNet + NoRefine 100.7

OpenCV detector + cornerSubPix 99.4

OpenCV detector + NoRefine 101.5

Table 2. Deep ChArUco Timing Experiments. We present tim-

ing results for ChArUcoNet running on 320×240 images in three

configurations: with RefineNet, with an OpenCV subpixel refine-

ment step, and without refinement. Additionally, we also list the

timing performance of OpenCV detector and refinement.

apply the network to different image resolutions, depending

on computational or memory requirements. To achieve the

best performance with larger resolution images, we can pass

a low-resolution image through ChArUcoNet to roughly lo-

calize the pattern and then perform subpixel localization via

RefineNet in the original high-resolution image.

6. Conclusion

Our paper demonstrates that deep convolutional neu-

ral networks can dramatically improve the detection rate

for ChArUco markers in low-light, high-motion scenarios

where the traditional ChArUco marker detection tools in-

side OpenCV often fail. We have shown that our Deep

ChArUco system, a combination of ChArUcoNet and Re-

fineNet, can match or surpass the pose estimation accu-

racy of the OpenCV detector. Our synthetic and real-

data experiments show a performance gap favoring our ap-

proach and demonstrate the effectiveness of our neural net-

work architecture design and the dataset creation methodol-

Video deep acc cv acc deep ✏re cv ✏re

0.3lux 100 0 0.427 (0.858) nan

0.3lux 100 0 0.388 (0.843) nan

1lux 100 0 0.191 (0.893) nan

1lux 100 0 0.195 (0.913) nan

3lux 100 100 0.098 (0.674) 0.168

3lux 100 100 0.097 (0.684) 0.164

5lux 100 100 0.087 (0.723) 0.137

5lux 100 100 0.091 (0.722) 0.132

10lux 100 100 0.098 (0.721) 0.106

10lux 100 100 0.097 (0.738) 0.105

30lux 100 100 0.100 (0.860) 0.092

30lux 100 100 0.100 (0.817) 0.088

50lux 100 100 0.103 (0.736) 0.101

50lux 100 100 0.102 (0.757) 0.099

100lux 100 100 0.121 (0.801) 0.107

100lux 100 100 0.100 (0.775) 0.118

400lux 100 100 0.086 (0.775) 0.093

400lux 100 100 0.085 (0.750) 0.093

700lux 100 100 0.102 (0.602) 0.116

700lux 100 100 0.107 (0.610) 0.120

shadow 1 100 42.0 0.254 (0.612) 0.122

shadow 2 100 30.1 0.284 (0.618) 0.130

shadow 3 100 36.9 0.285 (0.612) 0.141

motion 1 74.1 16.3 1.591 (0.786) 0.154

motion 2 78.8 32.1 1.347 (0.788) 0.160

motion 3 80.3 31.1 1.347 (0.795) 0.147

Table 3. Deep ChArUco vs OpenCV Individual Video Sum-

mary. We report the pose detection accuracy (percentage of

frames with reprojection error less than 3 pixels) as well as the

mean reprojection error, ✏re, for each of our 26 testing sequences.

Notice that OpenCV is unable to return a marker pose for images

at 1 lux or darker (indicated by nan). The deep reprojection er-

ror column also lists the error without RefineNet in parenthesis.

RefineNet reduces the reprojection error in all cases except the

motion blur scenario, because in those cases the “true corner” is

outside of the central 8× 8 refinement region.

ogy. The key ingredients to our method are the following:

ChArUcoNet, a CNN for pattern-specific keypoint detec-

tion, RefineNet, a subpixel localization network, a custom

ChArUco pattern-specific dataset, comprising extreme data

augmentation and proper selection of visually similar pat-

terns as negatives. The final Deep ChArUco system is ready

for real-time applications requiring marker-based pose esti-

mation.

Furthermore, we used a specific ChArUco marker as an

example in this work. By replacing the ChArUco marker

with another pattern and collecting a new dataset (with

manual labeling if the automatic labeling is too hard to

achieve), the same training procedure could be repeated to

produce numerous pattern-specific networks. Future work

will focus on multi-pattern detection, integrating ChArU-

coNet and RefineNet into one model, and pose estimation

of non-planar markers.

8442

Figure 13. Deep ChArUco vs OpenCV Qualitative Examples. Detector performance comparison under extreme lighting: shadows (top)

and motion (bottom). Unlike OpenCV, Deep ChArUco appears unaffected by cast shadows.

8443

References

[1] R. Munoz-Salinas, “Aruco: a minimal library for aug-

mented reality applications based on opencv,” Univer-

sidad de Córdoba, 2012.

[2] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-

Cuevas, and M. J. Marı́n-Jiménez, “Automatic gener-

ation and detection of highly reliable fiducial markers

under occlusion,” Pattern Recognition, vol. 47, no. 6,

pp. 2280–2292, 2014.

[3] J. DeGol, T. Bretl, and D. Hoiem, “Improved structure

from motion using fiducial marker matching,” in Pro-

ceedings of the European Conference on Computer Vi-

sion (ECCV), 2018, pp. 273–288.

[4] H. Lim and Y. S. Lee, “Real-time single camera slam

using fiducial markers,” in ICCAS-SICE, 2009. IEEE,

2009, pp. 177–182.

[5] M. Fiala, “Artag, a fiducial marker system using

digital techniques,” in Computer Vision and Pattern

Recognition, 2005. CVPR 2005. IEEE Computer Soci-

ety Conference on, vol. 2. IEEE, 2005, pp. 590–596.

[6] E. Olson, “Apriltag: A robust and flexible visual fidu-

cial system,” in Robotics and Automation (ICRA),

2011 IEEE International Conference on. IEEE, 2011,

pp. 3400–3407.

[7] G. Bradski and A. Kaehler, “Opencv,” Dr. Dobbs jour-

nal of software tools, vol. 3, 2000.

[8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,

“You only look once: Unified, real-time object detec-

tion,” in Proceedings of the IEEE conference on com-

puter vision and pattern recognition, 2016, pp. 779–

788.

[9] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed,

C.-Y. Fu, and A. C. Berg, “Ssd: Single shot multibox

detector,” in European conference on computer vision.

Springer, 2016, pp. 21–37.

[10] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn:

Towards real-time object detection with region pro-

posal networks,” in Advances in neural information

processing systems, 2015, pp. 91–99.

[11] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask

r-cnn,” in Computer Vision (ICCV), 2017 IEEE Inter-

national Conference on. IEEE, 2017, pp. 2980–2988.

[12] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox,

“Posecnn: A convolutional neural network for 6d

object pose estimation in cluttered scenes,” arXiv

preprint arXiv:1711.00199, 2017.

[13] A. Newell, K. Yang, and J. Deng, “Stacked hourglass

networks for human pose estimation,” in European

Conference on Computer Vision. Springer, 2016, pp.

483–499.

[14] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Real-

time multi-person 2d pose estimation using part affin-

ity fields,” CVPR, 2017.

[15] T. Simon, H. Joo, I. A. Matthews, and Y. Sheikh,

“Hand keypoint detection in single images using mul-

tiview bootstrapping.” in CVPR, vol. 1, 2017, p. 2.

[16] D. DeTone, T. Malisiewicz, and A. Rabinovich,

“Superpoint: Self-supervised interest point detection

and description,” in CVPR Deep Learning for

Visual SLAM Workshop, 2018. [Online]. Available:

http://arxiv.org/abs/1712.07629

[17] D. G. Lowe, “Distinctive image features from scale-

invariant keypoints,” International journal of com-

puter vision, vol. 60, no. 2, pp. 91–110, 2004.

[18] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski,

“Orb: An efficient alternative to sift or surf,” in Com-

puter Vision (ICCV), 2011 IEEE international confer-

ence on. IEEE, 2011, pp. 2564–2571.

[19] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua, “Lift:

Learned invariant feature transform,” in European

Conference on Computer Vision. Springer, 2016, pp.

467–483.

[20] R. Hartley and A. Zisserman, Multiple view geome-

try in computer vision. Cambridge university press,

2003.

8444

