
Meta-SR: A Magnification-Arbitrary Network for Super-Resolution

Xuecai Hu∗1,2 , Haoyuan Mu∗ 4, Xiangyu Zhang3, Zilei Wang1, Tieniu Tan1,2, Jian Sun3

1 University of Science and Technology of China
2 Center for Research on Intelligent Perception and Computing, NLPR, CASIA

3 Megvii Inc (Face++) 4 Tsinghua University

huxc@mail.ustc.edu.cn, muhy17@mails.tsinghua.edu.cn

{zhangxiangyu, sunjian}@megvii.com, zlwang@ustc.edu.cn, tnt@nlpr.ia.ac.cn

Abstract

Recent research on super-resolution has achieved great

success due to the development of deep convolutional neu-

ral networks (DCNNs). However, super-resolution of arbi-

trary scale factor has been ignored for a long time. Most

previous researchers regard super-resolution of different

scale factors as independent tasks. They train a specific

model for each scale factor which is inefficient in comput-

ing, and prior work only take the super-resolution of sev-

eral integer scale factors into consideration. In this work,

we propose a novel method called Meta-SR to firstly solve

super-resolution of arbitrary scale factor (including non-

integer scale factors) with a single model. In our Meta-SR,

the Meta-Upscale Module is proposed to replace the tradi-

tional upscale module. For arbitrary scale factor, the Meta-

Upscale Module dynamically predicts the weights of the up-

scale filters by taking the scale factor as input and use these

weights to generate the HR image of arbitrary size. For any

low-resolution image, our Meta-SR can continuously zoom

in it with arbitrary scale factor by only using a single model.

We evaluated the proposed method through extensive exper-

iments on widely used benchmark datasets on single image

super-resolution. The experimental results show the superi-

ority of our Meta-Upscale.

1. Introduction

Single image super-resolution (SISR) aims to reconstruct

a visually natural high-resolution image from its degraded

low-resolution (LR) image. And it has very wide applica-

tion on security and surveillance imaging [8, 37], medical

imaging [23], as well as satellite and aerial imaging [32]. In

real-world scenarios, it is very common and necessary for

SISR to zoom in the LR image with the user-customized

∗This work is conducted during Xuecai Hu’s and Haoyuan Mu’s intern-

ship at Megvii Inc, two authors contributed equally to this work.

scale factor. As with the common image viewer, the user

can arbitrarily zoom in the viewed image by rolling the

mouse wheel to see the local details of the viewed image.

The customized scale factor for super-resolution also can

be any positive number. And it should not be fixed to some

certain integers. Thus, a method to solve super-resolution of

arbitrary scale factor is important for putting the SISR into

more practical use. If we train a specific model for each pos-

itive scale factor, it is impossible to store all these models

and it is inefficient in computing. Thus, the more important

thing is that whether we can solve the super-resolution of

arbitrary scale factor with a single model.

However, as we all known, the most existing SISR meth-

ods only consider super-resolution of some certain integer

scale factors (X2, X3, X4). And these methods treat super-

resolution of different scale factors as independent tasks.

Few previous work has discussed how to implement super-

resolution of arbitrary scale factor. As for the state-of-the-

art SISR methods, such as ESPCNN [22], EDSR [18], RDN

[36] and RCAN [35], these methods zoom in the feature

maps at the end of networks with the sub-pixel convolution

[18]. Unfortunately, these methods have to design a spe-

cific upscale module for each scale factor. Each upscale

module can only zoom in the image with the fixed integer

scale factor. And the sub-pixel convolution only works for

the integer scale factors. These disadvantages limit the use

of SISR to real-world scenarios. Although, we could imple-

ment super-resolution of non-integer scale factors by prop-

erly upscaling the input image. However, the repeated com-

putation and the upscaled input make these methods very

time-consuming and hard to put into pratical use.

To solve these drawbacks and put SISR into more prac-

tical use, an efficient and novel method for super-resolution

of arbitrary scale factor with a single model is necessary.

If we want to solve the super-resolution of arbitrary scale

factor with a single model, a group of weights for upscale

filters is necessary for each scale factor. Inspired by the

meta-learning, we propose a network to dynamically pre-

1575

dict the weights of filters for each scale factor. Thus, we

no longer need to store weights for each scale factor. Com-

pared with storing the weights for each scale factor, storing

the small weight prediction network is more convenient.

We call this method Meta-SR. There are two modules in

our Meta-SR, the Feature Learning Module and the Meta-

Upscale Module. The Meta-Upscale Module is proposed

to replace the typical upscale module. For each pixel (i, j)
on the generated HR image, we project it onto the LR im-

age based on the scale factor r. The projection coordinate

is (⌊ i
r
⌋, ⌊ j

r
⌋) on the LR image. Our Meta-Upscale Module

takes this coordinate-related and scale-related vector as in-

put and predicts the weights for the filters. For each pixel

(i, j) on the generated SR image, a convolution operation

is conducted between the feature at the corresponding pro-

jection coordinate on the LR image and the weights of the

filters to generate the pixel value on (i, j). The proposed

Meta-Upscale Module could dynamically predict the vari-

ant number of weights for the convolution filters by taking

a sequence of scale-related and coordinate-related vectors

as input. Through this way , our Meta-Upscale Module can

zoom in the feature maps of arbitrary scale factor with a

single model. Actually, our Meta-Upscale Module can be

incorporated into most previous methods [36, 35, 18] by re-

placing the typical upscale module.

We present extensive experiments on multiple bench-

mark datasets for single image super-resolution to evalu-

ate our method. We show that: 1) For super-resolution of

single integer scale factor, our Meta-SR could achieve the

comparable results with the corresponding baseline which

re-trained the model for each integer scale factor. Note that

our Meta-SR is trained a single model for super-resolution

of arbitrary scale factor together. 2) For super-resolution of

arbitrary scale factor with a single model, our Meta-SR is

better than these methods based on properly zooming in the

input images or the output images, or interpolating on the

feature maps. 3) Our Meta-Upscale Module only consists

of several fully connected layers and it is fast enough. The

running time of our Meta-Upscale is about 1% of the time

consumed by the Feature Learning Module (RDN [36]).

2. Related Work

2.1. Single Image Super Resolution

Early SISR methods are exemplar or dictionary based

super-resolution [3, 27, 25]. These methods require

a database of external images and generate the high-

resolution images by transfering the relevant patches in the

database images. The performance is limited by the size of

the database or the dictionary. These traditional methods are

very time-consuming and they have limited performance.

With the rapid development of the deep learning, nu-

merous deep learning based methods have been proposed.

A three-layers convolutional neural network is firstly pro-

posed by Dong et al. [4] called SRCNN. The SRCNN up-

scaled the low-resolution image with bicubic interpolation

before feeding into the network. Kim et al. [14] increased

the depth of the network and used the residual learning for

stable training. Kim et al. [15] firstly introduced the recur-

sive learning to SISR, called DRCN. Tai et al. [24] proposed

DRRN by introducing the recursive blocks with shared pa-

rameters to make the training stable. Tai et al. also intro-

duced the memory block called Memnet [25]. However, the

input of these networks have the same size as the final high-

resolution image, these methods are time-consuming.

Shi et al. [22] firstly proposed a real-time super-

resolution algorithm ESPCNN by proposing the sub-pixel

convolution layer. The ESPCNN [22] upscaled the image

at the end of the network to reduce the computation. Ledig

et al. [16] introduced the residual block and the adversarial

learning [7, 6] to make the generated images more realistic

and natural. Lim et al. [18] used the deeper and wider resid-

ual networks called EDSR. The EDSR [18] removed the BN

layer and used the residual scaling to speedup the training.

Lim also firstly trained single model for multiple scale fac-

tors (X2, X3, X4) called MDSR. The MDSR has different

image processing blocks and upscale modules for each scale

factor. Zhang et al. [36] proposed a residual dense network

(RDN) which combines the advantage of the residual block

and the dense connected block. Then Zhang et al. [35]

introduced the residual channel attention to the SR frame-

work. Wang et al. [28] proposed a novel deep spatial feature

transform to recover textures conditioned on the categorical

priors. Both DBPN [10] and DSRN [9] made use of the

mutual dependencies of low- and high-resolution images.

DBPN exploited iterative up-sampling and down-sampling

layers to provide an error feedback mechanism for each

stage. Jo et al. [13] introduced the dynamic upsampling

filters for video super-resolution. The dynamic upsampling

filters were generated locally and dynamically depending

on the spatial-temporal neighborhood of each pixel in LR

frames. Different from this work, our Meta-Upscale Mod-

ule predicted the weights of the convolution kernel depend-

ing on the varying scale factors for SISR. Moreover, our

Meta-Upscale could generate variant number and variant

weights of the convolution kernel depend on the scale fac-

tor. Instead of using the spatial-temporal feature blocks, the

input of the our Meta-Upscale Module is the scale-related

and coordinate-related vector. Moreover, our Meta-Upscale

Module is proposed to solve the arbitrary scale.

2.2. Meta­Learning

The meta-learning, or learning to learn, is the science of

observing how different machine learning approaches per-

form on a wide range of learning tasks, and then learn-

ing from this experience, or meta-data. The meta-learning

1576

Figure 1. An instance of our Meta-SR based on RDN [36]. We also call the network Meta-RDN. (a) The Residual Dense Block proposed

by RDN [36]. (b) The Feature Learning Module which generates the shared feature maps for arbitrary scale factor. (c) For each pixel on the

SR image, we project it onto the LR image. The proposed Meta-Upscale Module takes a sequence of coordinate-related and scale-related

vectors as input to predict the weights for convolution filters. By doing the convolution operation, our Meta-Upscale finally generate the

HR image.

is mainly used in few-shot/zero-shot learning [1, 21] and

transfer learning [29]. The detailed survey of the meta-

learning can be found in [17]. Here we only discuss the

weight prediction related work.

The weight prediction is one of meta-learning strategy in

the neural network [17]. The weights of the neural network

are predicted by another neural network rather than directly

learned from the training dataset. Cai et al. [2] predicted the

parameters W of the classifier to adapt to the new categories

without back propagation for few-shot learning. The pa-

rameters were predicted conditioned on the memory of the

support set. In the object detection task, Hu et al. [11] pro-

posed to predict the mask weights from box weights. And

Yang et al. [31] proposed a novel and flexible anchor mech-

anism for object detection. The anchor functions could be

dynamically generated from the arbitrary customized prior

boxes. In the video super resolution, Jo et al. [13] proposed

a dynamic upsampling filters. The dynamic upsampling fil-

ters were generated locally and dynamically depending on

the spatial-temporal neighborhood of each pixel in multiple

LR frames. Unlike this work, we take the advantage of the

meta-learning to predict weights of the filters for each scale

factor. We no long need to store the weights of the filters

for each scale factor. Our Meta-SR can train a single model

for super-resolution of arbitrary scale. It is convenient and

efficient for practical use.

The most related work is the Parameterized Image Oper-

ators [5] which took advantage of the weight prediction to

dynamically adjust the weights of a deep network for image

operators (image filtering or image restoration). Different

from this work, our Meta-SR focuses on reformulation of

the Upscale Module by taking both the coordinate and scale

factor as inputs.

3. Our Approach

In this section, we describe the proposed model archi-

tectures. As shown in Fig.1. In our Meta-SR, the Feature

Learning Module extracts the feature of the low-resolution

image and the Meta-Upscale Module upscales the feature

map with arbitrary scale factor. We introduce our Meta-

Upscale at first, then we describe the architecture details of

our Meta-SR.

3.1. Meta­Upscale Formulation

Given an LR image ILR which is downscaled from the

corresponding original HR image IHR, the task of SISR is

to generate a HR image ISR whose ground-truth is IHR.

We choose the RDN [36] as our Feature Learning Module.

As shown in Fig.1(b). Here, we focus on formulating the

Meta-Upscale Module.

Let FLR denote the feature extracted by the Feature

Learning Module. Suppose the scale factor is r. For each

pixel (i, j) on the SR image, we think that it is decided

1577

by the feature of the pixel (i′, j′) on the LR image and the

weights of the corresponding filter. From this perspective,

the upscale module can be seen as a mapping function to

map ISR and FLR. At first, the upscale module should map

the pixel (i, j) to the pixel (i′, j′). Then, the upscale module

needs a specific filter to map the feature of the pixel (i′, j′)
to generate the value of this pixel (i, j). We formulate the

upscale module as:

ISR(i, j) = Φ(FLR(i′, j′),W(i, j)) (1)

where ISR(i, j) denotes the pixel value at (i, j) on SR im-

age. FLR(i′, j′) denotes the feature of pixel (i′, j′) on the

LR image. W(i, j) is the weights of filter for pixel (i, j).
Φ(.) is the feature mapping function to calculate the pixel

value.

Since each pixel on the SR image corresponds to a fil-

ter. For different scale factors, both the number of the filters

and the weights of the filters are different from the other

scale factor. In order to solve the super-resolution of arbi-

trary scale factor with a single model, we propose the Meta-

Upscale Module to dynamically predict the weights W(i, j)
based on the scale factor and coordinate information.

For the Meta-Upscale Module, there are three important

functions. That is, the Location Projection, the Weight Pre-

diction and the Feature Mapping. As shown in the Fig.2.

The Location Projection projects pixel onto the LR image.

And the Weight Prediction Module predicts the weights of

the filter for each pixel on the SR image. At last, the Feature

Mapping function maps the feature on the LR image with

the predicted weights back to the SR image to calculate the

value of the pixel.

Location Projection For each pixel (i, j) on the SR im-

age, the location projection is to find the (i′, j′) on the LR

image. We think the value of the pixel (i, j) is decided by

the feature of (i′, j′) on the LR image. We do the following

projection operator to map these two pixels:

(i′, j′) = T (i, j) =

(⌊

i

r

⌋

,

⌊

j

r

⌋)

(2)

where T is the transformation function. ⌊⌋ is floor function.

The Location Projection can be seen as a kind of variable

fractional stride [19] mechanism which could upscale the

feature maps with arbitrary scale factor. As shown in the

Fig 2, if the scale factor r is 2, each pixel (i′, j′) determines

two points. However, if the scale factor is non-integer, such

as r = 1.5, some pixels determine two pixels and some pixels

determine one pixel. For each pixel (i, j) on the SR image,

we could find a unique pixel (i′, j′) on the LR image and

we think these two pixels are most related.

Weight Prediction For the typical upscale module, it

predefines the number of filters for each scale factor and

learns W from the training dataset. Different from the typ-

Figure 2. The schematic diagram for how to upscale the feature

map with the non-integer scale factor r = 1.5. Here we only show

the one-dimensional case for simplify.

ical upscale module, our Meta-Upscale Module uses a net-

work to predict the weights of the filters. We can formulate

the weight prediction as:

W(i, j) = ϕ(vij ; θ) (3)

where W(i, j) are the weights of filter for pixel (i, j) on the

SR image, vij is a vector related with i, j. ϕ(.) is weight

prediction network and takes the vij as input. θ is the pa-

rameters of the weight prediction network.

As for the input of ϕ(.) for pixel (i, j), the proper choice

is the relative offset to the (i′, j′), the vij can be formulated

as:

vij =

(

i

r
−

⌊

i

r

⌋

,
j

r
−

⌊

j

r

⌋)

(4)

In order to train the multiple scale factor together, it is

better to add the scale factor into the vij to differentiate the

weights for different scale factor. For example, if we want

to upscale the image with scale factor 2 and 4, and we de-

note them as ISR
2

and ISR
4

respectively. The pixel (i, j) on

ISR
2

would have the same weights of the filter and the same

projection coordinate with the pixel (2i, 2j) on ISR
4

. That

means that ISR
2

is the subimage of the ISR
4

. It would limit

the performance. Thus, we redefine the vij as:

vij =

(

i

r
−

⌊

i

r

⌋

,
j

r
−

⌊

j

r

⌋

,
1

r

)

(5)

Feature Mapping We extract the feature of the (i′, j′)
on the LR image from FLR. And we predict the weights

of the filters with weight prediction network. The last thing

1578

we need to do is mapping feature to the value of the pixel on

the SR image. We choose the matrix product as the Feature

Mapping function. We formulate the Φ(.)as:

Φ(FLR(i′, j′),W(i, j)) = FLR(i′, j′)W(i, j) (6)

Our Meta-Upscale Module is shown in Algorithm 1.

Algorithm 1 Meta Upscale Module

Input: scale:r, the size of input image: (inH, inW), the

weight prediction function:W, the feature: FLR

Output: the upscale image

1: Calculate the output size outH = int(inH × r), outW

= int(inW × r)

2: for i = 0 : 1 : outH do

3: for j = 0 : 1 : outW do

4: vij = (i
r
− ⌊ i

r
⌋, j

r
− ⌊ j

r
⌋, 1

r
)

5: (i′, j′) = (⌊ i
r
⌋, ⌊ j

r
⌋)

6: the feature on (i′, j′): FLR(i′, j′)
7: weight predicted by ϕ: W(i, j)
8: pv = FLR(i′, j′) · W(i, j)
9: the pixel value on (i, j) is pv

10: end for

11: end for

3.2. Architecture Details of Meta­SR

There are two modules in our Meta-SR network, the

Feature Learning Module, and the Meta-Upscale Module.

Most the state-of-the-art methods [22, 36, 18, 16, 34] could

be selected as our Feature Learning Module. The pro-

posed Meta-Upscale Module could be applied to these net-

works by simply replacing the traditional upscale module

(sub-pixel convolution [22]). We choose the state-of-the-art

SISR network, called residual dense network (RDN [36]

) as our Feature Learning Module. Note that our Meta-SR

can also work with EDSR or MDSR [18] or RCAN [35].

For the RDN [36], there are 3 convolutional layers and 16

residual dense blocks (RDBs). Each RDB has 8 convolu-

tional layers. The growth rate for the dense block is 64.

And the extracted feature map has 64 channels. The de-

tailed structure is shown in Fig.1. More details can be found

in RDN [36].

For the Meta-Upscale Module, it consists of several

fully connected layers and several activation layers. Each

input will output one group of weights with the shape

(inC, outC, k, k). Here the inC is the number of channels

of the extracted feature map, and the inC = 64 in the paper.

The outC is the number of channels of the predicted HR im-

age. Generally, outC = 3 for color images and outC = 1
for grayscale image. The k represents the size of the convo-

lution kernel.

Here we want to describe the parameters of the proposed

Meta-Upscale Module including the number of hidden neu-

rons, the number of the fully connected layers, the choice

of activation function and the kernel size of the convolu-

tion layer. Since the output size (k2 × inC × outC) is very

large compared with the input size (3), we set the number

of the hidden neurons as 256. Continuing to increase the

number of the hidden neurons has no improvements. And

the activation function is ReLU. We conduct experiments

and find that the best number of the fully connected layer

is 2 with the balance of the speed and the performance.

As for the kernel size, 3× 3 is the best size . Conduct-

ing 5× 5 convolution operation on the large feature maps

is more time-consuming.

4. Experiments

4.1. Datasets and Metrics

In the NTIRE 2017 Challenge on Single Image Super

Resolution, a high-quality dataset DIV2K [26] is newly re-

leased. There are 1000 images in DIV2K database, 800 im-

ages for training, 100 images for validation and 100 images

for test. All of our models are trained with DIV2K train-

ing images set. For testing, we use four standard bench-

mark datasets: Set14 [33], B100 [20], Manga109 [12] and

DIV2K [26] . Note that the ground truth of the DIV2K test

set is not publicly available. Therefore, we report the results

on the DIV2K validation set. The super-resolution results

are evaluated with PSNR and SSIM [30]. Following the

setting in [36], we only consider the PSNR and SSIM [30]

on the Y channel of the transformed YCbCr color space.

As for the degradation methods to generate the low-

resolution images, following [18, 36], we use the bicubic

interpolation by adopting the Matlab function imresize to

simulate the LR images.

4.2. Training Details

In the single image super-resolution, the traditional loss

function is L2 loss. Following the setting of [18], we train

our network using L1 loss instead of the L2 for better con-

vergence.

During training the network, we randomly extract 16

LR RGB patches with the size of 50*50 as a batch input.

Following the setting in [36], we randomly augment the

patches by flipping horizontally or vertically and rotating

90◦. The optimizer is Adam. The learning rate is initialized

to 10−4 for all the layers and decreases by half for every

200 epochs. All experiments run in parallel on 4 GPUs.

The training scale factors of the Meta-SR vary from 1 to 4

with stride 0.1, and the distribution of the scale factors is

uniform. Each patch image in a batch has the same scale

factor. Our Meta-SR is trained with Meta-Upscale Module

from scratch.

1579

Table 1. Results of arbitrary upscale on different methods. The EDSR is based on residual block. And the RDN is based on the dense

connection block. The test dataset is B100 [20]. The Best results is black.

Methods

Scale
X1.1 X1.2 X1.3 X1.4 X1.5 X1.6 X1.7 X1.8 X1.9 X2.0

bicubic 36.56 35.01 33.84 32.93 32.14 31.49 30.90 30.38 29.97 29.55

RDN(x1) 42.41 39.76 38.00 36.68 35.57 34.64 33.87 33.19 32.60 32.08

RDN(x2) 41.84 39.34 37.87 36.63 35.56 34.63 33.83 33.1 32.52 32.11

RDN(x4) 39.71 38.48 37.33 36.29 35.34 34.52 33.81 33.14 32.60 32.09

BicuConv 41.86 39.16 37.88 29.86 35.68 34.77 33.95 33.18 32.60 31.85

Meta-Bicu 42.11 39.58 38.07 36.83 35.81 34.86 34.03 33.24 32.63 32.18

Meta-RDN(our) 42.82 40.40 38.28 36.95 35.86 34.90 34.13 33.45 32.86 32.35

EDSR(x1) 42.42 39.79 38.08 36.73 35.65 34.73 33.83 33.27 32.67 32.15

EDSR(x2) 41.79 39.11 37.79 36.51 35.40 34.49 33.81 33.11 32.57 32.09

EDSR(x4) 39.61 38.41 37.27 36.24 35.30 34.46 33.75 33.09 32.56 32.04

Meta-EDSR(our) 42.72 39.92 38.16 36.84 35.78 34.83 34.06 33.36 32.78 32.26

Methods

Scale
X2.1 X2.2 X2.3 X2.4 X2.5 X2.6 X2.7 X2.8 X2.9 X3.0

bicubic 29.18 28.87 28.57 28.31 28.13 27.89 27.66 27.51 27.31 27.19

RDN(x1) 31.63 31.23 30.86 30.51 30.23 29.95 29.68 29.45 29.21 29.03

RDN(x2) 31.61 31.24 30.82 30.44 30.23 29.71 29.65 29.43 29.20 29.05

RDN(x4) 31.61 31.23 30.88 30.52 30.31 29.99 29.75 29.53 29.26 29.14

BicuConv 31.53 31.11 37.87 30.38 30.16 29.81 29.55 29.28 29.05 28.91

Meta-Bicu 31.59 31.21 30.91 30.54 30.34 30.01 29.76 29.54 29.28 29.22

Meta-RDN(our) 31.82 31.41 31.06 30.62 30.45 30.13 29.82 29.67 29.40 29.30

EDSR(x1) 31.69 31.29 30.91 30.56 30.28 29.98 29.73 29.49 29.25 29.07

EDSR(x2) 31.57 31.15 30.81 30.47 30.22 29.91 29.66 29.45 29.19 29.09

EDSR(x4) 31.56 31.17 30.82 30.46 30.24 29.93 29.68 29.47 29.20 29.08

Meta-EDSR(our) 31.73 31.31 30.87 30.60 30.40 30.09 29.83 29.61 29.34 29.22

Methods

Scale
X3.1 X3.2 X3.3 X3.4 X3.5 X3.6 X3.7 X3.8 X3.9 X4.0

bicubic 26.98 26.89 26.59 26.60 26.42 26.35 26.15 26.07 26.01 25.96

RDN(x1) 28.81 28.67 28.47 28.30 28.15 28.00 27.86 27.72 27.59 27.47

RDN(x2) 28.71 28.69 28.51 28.49 28.18 28.17 28.09 27.84 27.61 27.51

RDN(x4) 28.89 28.75 28.57 28.42 28.19 28.16 27.93 27.81 27.70 27.64

BicuConv 28.64 28.51 28.28 28.13 27.91 27.84 27.61 27.49 27.37 27.29

Meta-Bicu 28.89 28.75 28.54 28.39 28.17 28.11 27.87 27.75 27.64 27.58

Meta-RDN(our) 28.87 28.79 28.68 28.54 28.32 28.27 28.04 27.92 27.82 27.75

EDSR(x1) 28.85 28.69 28.51 28.36 28.18 28.04 27.91 27.77 27.64 27.52

EDSR(x2) 28.78 28.64 28.45 28.34 28.11 28.06 27.83 27.73 27.61 27.49

EDSR(x4) 28.82 28.69 28.49 28.35 28.13 28.09 27.85 27.73 27.63 27.56

Meta-EDSR(our) 28.95 28.82 28.63 28.48 28.27 28.21 27.98 27.86 27.75 27.67

4.3. Single Model For Arbitrary Scale Factor

Since no previous approach has focused on the super-

resolution of arbitrary scale factor with a single model, we

need to design several baselines. We compare our approach

with these baselines to prove the superiority of Meta-SR.

Suppose we want to zoom in the LR image with scale

r ∈ (1, 4]. Before we feed it into the network, we could

upscale it with bicubic interpolation. Thus, the first baseline

simply upscales the LR image with bicubic interpolation as

the final HR image, called bicubic baseline. The second

approach upscales the LR image r times at first, and then

input it into a CNN to generate the final HR image, called

EDSR(x1) and RDN(x1) respectively. These two methods

are very time-consuming and hard to put into practical use.

The third baseline downscales the generated HR image.

Suppose there is a network G to implement the k times up-

1580

scale. Thus we could input the LR image into the network

G to generate the HR image. And then we downscale the

HR image with scale factor r
k

to predict the final results. If

the k = 2, we call them RDN(x2), and EDSR(x2) respec-

tively. For the scale r > k, we have to upscale the LR im-

age before feeding it into the network. If the k = 4, it is

the fourth baseline. We call them RDN(x4) and EDSR(x4)

respectively.

In order to prove the superiority of the Weight Prediction

and the Location Projection, we design the fifth baseline

(BicuConv): we use the interpolation to upscale the final

feature maps, the upscale module is fixed convolution layer

for all scale factor. And the sixth baseline (Meta-Bicu) is

interpolating the feature maps to the needed size. We use

the Weight Prediction network to predict the weights of the

convolution filter for each scale factor. We train all these

models on arbitrary scale factor together.

The experimental results are shown in Table 1. For

the bicubic interpolation baseline, simply upscaling the LR

image with bicubic interpolation could not introduce any

texture or details to the HR images. It has very lim-

ited performance. For the RDN(x1) and EDSR(x1), it has

low-performance on the large scale factors. And the up-

scaled input makes it time-consuming. For the RDN(x4)

and EDSR(x4), the performance has huge gap between our

Meta-RDN and RDN(x4) (or Meta-EDSR and EDSR(x4))

for scale factor close to 1. Moreover, EDSR(x4) and

RDN(x4) also have to upscale the LR image before feed-

ing it into the network when the the scale r > k.

Thanks to the Weight Prediction, both Meta-Bicu and

our Meta-SR could learn the best weights of the filter for

each scale factor while BicuConv shares the same weights

of the filter for all the scale factors. The experimental results

show that Meta-Bicu is significantly better than BicuConv

which proves the superiority of the Weight Prediction Mod-

ule. At the same time, our Meta-RDN is also better than the

Meta-Bicu. For the interpolation on the feature maps, the

larger the scale factor is, the smaller the valid Filed Of View

(FOV) is. However, each scale factor has the same FOV in

our Meta-SR methods. Benefited from the proposed Meta-

Upscale, our Meta-RDN achieves the better performance on

almost all scale factors than the other baselines.

4.4. The Inference Time

SISR is low-level image processing task and has very

high practical use. In real-world scenarios, the time require-

ments are very important and strict for SISR. We measure

the computing efficiency using Tesla P40 with Intel Xeon

E5-2670v3@2.30GHz. We choose the B100 [20] as the test

dataset. Here, we do not take the image pre-processing time

into consideration.

We conduct experiments to calculate the running time of

each module in our Meta-SR and the baselines. As shown

Table 2. Comparison running time with the baselines. FL rep-

resents the Feature Learning Module. WP is Weight Prediction

Module of our Meta-SR. Upscale is the Upscale Module. We test

on the B100 and the test scale factor is 2.

Methods FL WP Upscale

RDN(x1) 3.66e-2s - 1.7e-4s

RDN(x2) 3.29e-2s - 1.9e-4s

RDN(x4) 3.13e-2s - 3.2e-4s

Meta-RDN 3.28e-2s 1.5e-4s 3.6e-4s

in the Table.2. Compared with the Feature Learning Mod-

ule, the running time of our Weight Prodiction Module can

be neglected. Because there are only two fully connected

layers in our Meta-Upscale Module.

Although the computing efficiency of our Meta-SR on

single scale has no advantage when we compare with the

baselines RDN(x1), RDN(x2) and RDN(x4) on scale r = 2.

If we increase the scale factor to 8 or 16, our Meta-SR is less

time-consuming than these baselines. Moreover, if we want

to continuously zoom in the same image with different scale

factors like the common image viewer, our Meta-SR is the

fastest. Since our Meta-SR method only need to run the

Meta-Upscale Module for each scale factor. RDN(x1) and

RDN(x2) have to upscale the input image at first. And then

they feed the upscaled image into whole network for each

scale factor. Thus, we claim that our Meta-RDN is more

efficient and has better performance than these baselines.

4.5. Comparison With The SOTA Methods

We apply the proposed Meta-Upscale Module to the

RDN [36] by replacing the typical upscale module, called

Meta-RDN . We train our Meta-RDN on the DIV2K train-

ing images with random scale factor r ∈ (1, 4]. We com-

pare the Meta-RDN with the corresponding baseline RDN

[36]. For fair comparison, we also try to finetune our Meta-

RDN for each single scale factor. However, fine-tuning on

each single integer scale factor have few improvement to

the final performance. And the RDN re-trained the model

for each scale factor with different upscale module, includ-

ing X2, X3, X4. We test our Meta-RDN on four different

benchmarks with PSNR and SSIM metrics.

As shown in Table 3, the Meta-RDN achieve the compa-

rable or even better results compared with the correspond-

ing baseline RDN [36]. Since the proposed Meta-Upscale

could dynamically predict weights of the filter for each scale

and thanks to the weight prediction, we could train a single

model for multiple scale factors and work well at the ar-

bitrary scale factor. Moreover, our Meta-SR network only

need to save one model for test, but the typical model needs

to save several models. Our Meta-SR network is more effi-

cient for SR of multiple scale factors.

1581

Table 3. Compared with the state-of-the-art methods on X2,X3,X4. The reported results of the state-of-the art methods are re-trained for

each scale factor.

Methods Metric
Set14 B100 Manga109 DIV2K

X2 X3 X4 X2 X3 X4 X2 X3 X4 X2 X3 X4

bicubic
PSNR 30.24 27.55 26.00 29.56 27.21 25.96 30.80 26.95 224.89 31.35 28.49 26.92

SSIM 0.8688 0.7742 0.7227 0.8431 0.7385 0.6675 0.9339 0.8556 0.7866 0.9076 0.8339 0.7774

RDN
PSNR 34.01 30.57 28.81 32.34 29.26 27.72 39.18 34.13 31.00 35.17 31.39 29.34

SSIM 0.9212 0.8468 0.7871 0.9017 0.8093 0.7419 0.9780 0.9484 0.9151 0.9483 0.8931 0.8446

Meta-RDN
PSNR 34.04 30.55 28.84 32.35 29.30 27.75 39.18 34.14 31.03 35.18 31.42 29.36

SSIM 0.9213 0.8466 0.7872 0.9019 0.8096 0.7423 0.9782 0.9483 0.9154 0.9484 0.8935 0.8448

LR

X1.5

X2.0

X2.5

X3.0

X3.5

X4.0

Figure 3. The visual comparison of an single image upsampling with different scale factors by our Meta-RDN.

4.6. Visual Results

In this section, we show the visual results in Fig.3 and

Fig.4 . As shown in Fig.4, we compare with the RDN(x1),

RDN(x2) and RDN(x4) for super-resolution of arbitrary

scale factor. Our Meta-SR has better performance for the

structure part. Since the RDN(x1), RDN(x2) and RDN(x4)

share the same the weights of filters for all the scale fac-

tors, the texture of the SR image generated by these baseline

methods is worse than our Meta-RDN. Thanks to the weight

prediction, our Meta-SR can predict a group of independent

weights for each scale factor.

5. Conclusion

We propose a novel upscale module named Meta-

Upscale to solve the super-resolution of arbitrary scale fac-

tor with a single model. The proposed Meta-Upscale Mod-

ule could dynamically predict the weights of the filters. For

each scale factor, the proposed Meta-Upscale Module gen-

erates a group of weights for the upscale module. By doing

convolution operation between the feature maps and the fil-

ters, we generate the HR image of arbitrary size. Thanks

to the weight prediction, we can train a single model for

super-resolution of arbitrary scale factor. Especially, our

Meta-SR can continuously zoom in the same image with

multiple scale factors.

HR

PSNR/SSIM

Bicubic

19.65/0.4390

RDN(x1)

16.96/0.2235

RDN(x2)

16.81/0.2361

RDN(x4)

18.40/0.4503
Meta-RDN

23.92/0.9109

r=2

img002 from Set14

HR

PSNR/SSIM
Bicubic

21.78/0.7384

RDN(x1)

32.75/0.9484

RDN(x2)

29.22/0.98866

RDN(x4)

32.80/0.9446

Meta-RDN

33.61/0.9510

img042 from B100

r=1.5

Figure 4. The visual comparison with four baselines. Our Meta-

RDN has better performance.

Acknowledgement

This research is supported by National Key R&D

Program of China (2017YFA0700800, 2016YFB1001002,

2016YFB1001000), National Natural Science Foundation

of China (61525306, 61633021, 61721004, 61420106015),

Capital Science and Technology Leading Talent Train-

ing Project (Z181100006318030), and Beijing Science and

Technology Project (Z181100008918010).

1582

References

[1] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman,

D. Pfau, T. Schaul, B. Shillingford, and N. De Freitas. Learn-

ing to learn by gradient descent by gradient descent. In Ad-

vances in Neural Information Processing Systems, 2016. 3

[2] Q. Cai, Y. Pan, T. Yao, C. Yan, and T. Mei. Memory match-

ing networks for one-shot image recognition. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2018. 3

[3] H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution

through neighbor embedding. In Computer Vision and Pat-

tern Recognition, 2004. CVPR 2004. Proceedings of the

2004 IEEE Computer Society Conference on, volume 1,

pages I–I. IEEE, 2004. 2

[4] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep

convolutional network for image super-resolution. In Euro-

pean conference on computer vision. Springer, 2014. 2

[5] Q. Fan, D. Chen, L. Yuan, G. Hua, N. Yu, and B. Chen. De-

couple learning for parameterized image operators. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 442–458, 2018. 3

[6] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation

by backpropagation. arXiv preprint arXiv:1409.7495, 2014.

2

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in neural information

processing systems, pages 2672–2680, 2014. 2

[8] B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau.

Super-resolution reconstruction of compressed video using

transform-domain statistics. IEEE Transactions on Image

Processing. 1

[9] W. Han, S. Chang, D. Liu, M. Yu, M. Witbrock, and T. S.

Huang. Image super-resolution via dual-state recurrent net-

works. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2018. 2

[10] M. Haris, G. Shakhnarovich, and N. Ukita. Deep back-

projection networks for super-resolution. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2018. 2

[11] R. Hu, P. Dollár, K. He, T. Darrell, and R. Girshick. Learning

to segment every thing. Cornell University arXiv Institution:

Ithaca, NY, USA, 2017. 3

[12] J.-B. Huang, A. Singh, and N. Ahuja. Single image super-

resolution from transformed self-exemplars. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, 2015. 5

[13] Y. Jo, S. Wug Oh, J. Kang, and S. Joo Kim. Deep video

super-resolution network using dynamic upsampling filters

without explicit motion compensation. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2018. 2, 3

[14] J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image super-

resolution using very deep convolutional networks. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, 2016. 2

[15] J. Kim, J. Kwon Lee, and K. Mu Lee. Deeply-recursive con-

volutional network for image super-resolution. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, 2016. 2

[16] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham,

A. Acosta, A. P. Aitken, A. Tejani, J. Totz, Z. Wang, et al.

Photo-realistic single image super-resolution using a genera-

tive adversarial network. In CVPR, 2017. 2, 5

[17] C. Lemke, M. Budka, and B. Gabrys. Metalearning: a sur-

vey of trends and technologies. Artificial intelligence review,

2015. 3

[18] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee. Enhanced

deep residual networks for single image super-resolution. In

The IEEE conference on computer vision and pattern recog-

nition (CVPR) workshops, 2017. 1, 2, 5

[19] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015. 4

[20] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of

human segmented natural images and its application to eval-

uating segmentation algorithms and measuring ecological

statistics. In Computer Vision, 2001. ICCV 2001. Proceed-

ings. Eighth IEEE International Conference on, volume 2,

pages 416–423. IEEE, 2001. 5, 6, 7

[21] S. Ravi and H. Larochelle. Optimization as a model for few-

shot learning. 2016. 3

[22] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken,

R. Bishop, D. Rueckert, and Z. Wang. Real-time single im-

age and video super-resolution using an efficient sub-pixel

convolutional neural network. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

2016. 1, 2, 5

[23] W. Shi, J. Caballero, C. Ledig, X. Zhuang, W. Bai, K. Bha-

tia, A. M. S. M. de Marvao, T. Dawes, D. ORegan, and

D. Rueckert. Cardiac image super-resolution with global cor-

respondence using multi-atlas patchmatch. In International

Conference on Medical Image Computing and Computer-

Assisted Intervention. Springer, 2013. 1

[24] Y. Tai, J. Yang, and X. Liu. Image super-resolution via deep

recursive residual network. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, vol-

ume 1, page 5, 2017. 2

[25] Y. Tai, J. Yang, X. Liu, and C. Xu. Memnet: A persistent

memory network for image restoration. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4539–4547, 2017. 2

[26] R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang,

L. Zhang, B. Lim, S. Son, H. Kim, S. Nah, K. M. Lee,

et al. Ntire 2017 challenge on single image super-resolution:

Methods and results. In Computer Vision and Pattern Recog-

nition Workshops (CVPRW), 2017 IEEE Conference on,

pages 1110–1121. IEEE, 2017. 5

[27] R. Timofte, V. De Smet, and L. Van Gool. Anchored neigh-

borhood regression for fast example-based super-resolution.

In Proceedings of the IEEE international conference on com-

puter vision, pages 1920–1927, 2013. 2

[28] X. Wang, K. Yu, C. Dong, and C. Change Loy. Recover-

ing realistic texture in image super-resolution by deep spa-

1583

tial feature transform. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2018. 2

[29] Y.-X. Wang and M. Hebert. Learning to learn: Model regres-

sion networks for easy small sample learning. In European

Conference on Computer Vision, pages 616–634. Springer,

2016. 3

[30] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simon-

celli. Image quality assessment: from error visibility to

structural similarity. IEEE transactions on image process-

ing, 13(4):600–612, 2004. 5

[31] T. Yang, X. Zhang, W. Zhang, and J. Sun. Metaanchor:

Learning to detect objects with customized anchors. NIPS,

2018. 3

[32] D. Yıldırım and O. Güngör. A novel image fusion method us-

ing ikonos satellite images. Journal of Geodesy and Geoin-

formation, 2012. 1

[33] R. Zeyde, M. Elad, and M. Protter. On single image scale-up

using sparse-representations. In International conference on

curves and surfaces, pages 711–730. Springer, 2010. 5

[34] K. Zhang, W. Zuo, and L. Zhang. Learning a single convo-

lutional super-resolution network for multiple degradations.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2018. 5

[35] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu. Image

super-resolution using very deep residual channel attention

networks. arXiv preprint arXiv:1807.02758, 2018. 1, 2, 5

[36] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu. Resid-

ual dense network for image super-resolution. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2018. 1, 2, 3, 5, 7

[37] W. W. Zou and P. C. Yuen. Very low resolution face recog-

nition problem. IEEE Transactions on Image Processing,

2012. 1

1584

