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Figure 1: An example sequence of the SAIL-VOS dataset. First row: the original frames. Second row: the instance level

segmentation. Third row: the corresponding instance level amodal segmentation.

Abstract

We introduce SAIL-VOS (Semantic Amodal Instance

Level Video Object Segmentation), a new dataset aiming

to stimulate semantic amodal segmentation research. Hu-

mans can effortlessly recognize partially occluded objects

and reliably estimate their spatial extent beyond the visible.

However, few modern computer vision techniques are capa-

ble of reasoning about occluded parts of an object. This is

partly due to the fact that very few image datasets and no

video dataset exist which permit development of those meth-

ods. To address this issue, we present a synthetic dataset ex-

tracted from the photo-realistic game GTA-V. Each frame is

accompanied with densely annotated, pixel-accurate visible

and amodal segmentation masks with semantic labels. More

than 1.8M objects are annotated resulting in 100 times more

annotations than existing datasets. We demonstrate the

challenges of the dataset by quantifying the performance of

several baselines. Data and additional material is available

at http://sailvos.web.illinois.edu.

1. Introduction

Semantic amodal instance level video object segmen-

tation (SAIL-VOS), i.e., semantically segmenting individ-

ual objects in videos even under occlusion, is an important

problem for sophisticated occlusion reasoning, depth order-

ing, and object size prediction. Particularly the temporal

sequence provided by a densely and semantically labeled

video dataset is increasingly important since it enables as-

sessment of temporal reasoning and evaluation of methods

which anticipate the behavior of objects and humans.

Despite these benefits, even for images, amodal segmen-

tation has not been considered until very recently [68, 110,

62, 33, 34, 52, 92, 24, 30]. While the problem is ill-posed,

it has been shown that humans are able to predict the oc-

cluded regions with high degrees of confidence and con-

sistency [110]. However, the lack of available data makes

amodal image segmentation a challenging endeavor, even

today. Concretely, no dataset was available until Maire

et al. [68] released 100 meticulously annotated images in

2013. Zhu et al. [110] followed up in 2015 by annotating

5000 images. In 2018 two more datasets were released by

Ehsani et al. [24] and Follman et al. [29].

Unfortunately, the situation is worse when considering

videos. While video object segmentation data, e.g., Seg-

trackV1 [97], Youtube-Objects [80], FBMS [71], Jump-

Cut [28], DAVIS16 [76], and instance level video object

segmentation data, e.g., SegtrackV2 [61], DAVIS17 [79],

Youtube-VOS [101], is available these days, no dataset

permits direct training of semantic amodal instance level

video object segmentation (SAIL-VOS). This isn’t surpris-

ing when considering that it is time-consuming and expen-
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sive to collect such a dataset. Nevertheless, its use for the

aforementioned applications (temporal reasoning, anticipat-

ing behavior, depth ordering, etc.) is immediately obvious.

To improve the situation, we make a first step in the di-

rection of SAIL-VOS, presenting a new dataset and base-

lines by leveraging Grand Theft Auto V (GTA-V) as a

reasonably realistic environment simulator. The collected

dataset improves upon existing amodel image segmentation

data in multiple ways: (1) the data is semantically labeled

at an object instance level based on COCO’s categories but

not including all classes defined in COCO; (2) in addition to

classical modal segmentation, an amodal instance level seg-

mentation is made available; (3) the proposed dataset con-

sists of densely sampled and completely annotated video

frames, permitting models to leverage dense temporal infor-

mation; (4) diverse amodal 3D pose information for humans

is available as well. The latter can be used as an additional

cue or can be used as training data for 3D pose detectors.

Even though it isn’t real data just yet, we believe that us-

age of data from an environment simulator such as GTA-V

is an important first step to assess suitability of models in the

absence of real-world data and to gauge the use of collecting

real-world data. Moreover, at least for images, the proposed

dataset provides an opportunity to assess transfer-learning

abilities by leveraging the publicly available amodal image

data provided by Zhu et al. [110]. We therefore hope the

collected data will stimulate research in two directions: (1)

methods and techniques for SAIL-VOS, a task that is signif-

icantly more challenging than classical instance level video

object segmentation; (2) transfer-learning techniques.

The proposed error metrics for evaluation on the SAIL-

VOS dataset address both directions. Beyond introducing

the dataset we also provide baseline methods to assess and

demonstrate the challenges of SAIL-VOS.

2. Related Work

We now discuss directions related to SAIL-VOS.

Image Segmentation research can be traced back to the

1970s [72] and gained increasingly more attention once a

focus on objects and semantics was established in the late

1980s [23]. Early segmentation methods group perceptually

similar pixels, e.g., color image segmentation by Comaniciu

and Meer [19], normalized cuts by Shi and Malik [88] or

implicit shape models [60]. Popular datasets for segmenta-

tion include the BSDS dataset [4]. Classifiers for semantic

segmentation were considered by Konishi and Yuille [57]

demonstrating results on the Sowerby Image Database and

the San Francisco Database. As early as 2004, He et al. [40]

applied Conditional Random Fields (CRFs) [59], segment-

ing a 100-image subset of the Corel image database into 7

classes, and segmenting the Sowerby Image Database (104

images) into 8 classes. Semantic segmentation was fur-

ther popularized by combining Random Forests with CRFs

as proposed by Shotton et al. [90] who used 591 images

containing 21 classes. This latter dataset was a precursor

to the Pascal VOC 2007 segmentation taster [25] which

was significantly extended in 2012, also via the Semantic

Boundaries Dataset [36]. Deep net based methods have re-

cently been predominant, starting with [32, 86, 67, 13, 109].

Recent developments include atrous/dilated spatial pyra-

mid pooling and encoders [14] which achieved state-of-the-

art on the Pascal VOC 2012 dataset at the time of writ-

ing. Many more datasets for specific domains such as au-

tonomous driving have recently been introduced as well and

we highlight them below.

Semantic Instance-level Image Segmentation provides a

more detailed decomposition of the scene into individual

instances, which is, among others, useful for count-based

search, differentiation of multiple objects, etc. Some tech-

niques infer depth-ordering [33, 103, 94, 108], while oth-

ers are based on a combination of detection and segmen-

tation [104, 37, 38], and yet others combine several over-

segmentations [93]. Reference images are used in [39] and

the approach is evaluated on the TUD Pedestrian [3] and

the Polo dataset [107]. Another common technique is par-

titioning of an initial semantic segmentation [56, 5, 6, 66].

A variety of other techniques based on voting, refinement,

multi-task learning and grouping, e.g., [8, 84, 55, 99, 77, 78,

21, 22, 64], have been investigated.

Frequently used recent datasets for instance-level image

segmentation are Pascal VOC 2012 [25], NYUv2 [91], MS

COCO [65], CityScapes [20], Berkeley Deep Drive [106],

KITTI [2] and Mapillary Vistas [70].

Amodal Image/Instance Segmentation, despite obvious

ambiguities, was shown to be a task where different opera-

tors agree to a reasonable degree on the annotation [110]. To

facilitate the task Maire et al. [68] meticulously annotated

100 images and Zhu et al. [110] provided 5000 COCO an-

notations. Early object agnostic methods are based on con-

tour completion [33, 34, 52, 92].

Explicit occlusion reasoning [43, 31, 74, 16] is related in

that occluded objects are detected using bounding boxes or

occlusion of specific objects are modeled, e.g., people.

Amodal instance segmentation without amodal data was

considered by Li and Malik [62]. It is proposed to sidestep

the lack of training data by synthetically adding occlusion

and retaining the original semantic segmentation mask. The

authors found this technique to be quite robust. However,

occlusion patterns are random in this case which is unlikely

for real-world data.

Very recently a generative adversarial net based method

and the new synthetic indoor scene dataset ‘DYCE’ [24]

comprised of five living rooms and six kitchens has been

released. Our SAIL-VOS dataset differs in that the scenes

are from both indoor and outdoor settings and consequently
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Figure 2: The dataset collection pipeline. For every sequence, we randomly initialize the weather, the time of day and the

clothing of appearing characters. After initialization, we play the scene, wait for 1 milliseconds (ms) and pause to collect the

frames, including (a) the original frame with all objects displayed, (b) the empty background with all objects invisible and

(c) screenshots with one object displayed at a time. We then resume the game, pause after 1ms and collect data again.

much richer (see Fig. 1). Moreover, we consider video data.

Even more recently the ‘Densely Segmented Supermar-

ket’ (D2S) dataset [29] has been presented, focusing on a

warehouse setting, i.e., groceries from a top-down view.

Our proposed dataset is again much more diverse.

Video Object Segmentation data annotation is much more

time-consuming than labeling of images. It is therefore not

surprising that first datasets, which focus on a single object

per video, didn’t appear until recently [97, 80, 71, 28, 76].

A variety of methods have tackled the unsupervised (i.e., no

object annotation available during testing) [73, 71, 27, 44,

95, 96, 48] and the semi-supervised (i.e., first frame annota-

tion available during testing) [12, 54, 49, 11, 53, 98, 45, 18,

63, 105, 17, 15, 102, 100] setting.

Instance-level Video Object Segmentation data has been

made available even more recently [61, 79, 101] since it

requires annotation of multiple objects per video. A variety

of techniques have also been proposed, e.g., [85, 45, 46]. To

the best of our knowledge, no data is publicly available for

amodal instance-level video object segmentation.

We note that particularly the autonomous driving based

semantic instance level segmentation data is related to video

segmentation as frames are extracted from driving vehicles.

Synthetic Data has been used for many tasks in the com-

puter vision community for a long time, particularly if real

data is hard to obtain. For instance, synthetic data has been

used for optical flow [42, 41, 9, 7, 69, 81, 58], robustness

estimation of features [51], visual odometry [35, 81], hand

tracking [87], shape from shading [82], semantic segmenta-

tion [83, 50, 81, 58], amodal segmentation [52, 24], multi-

view stereopsis [47] and human pose estimation [89, 26].

This work differs from the aforementioned ones in that

we collect a dataset for the task of SAIL-VOS using the

GTA-V environment simulator. To obtain instance level la-

bels our data collection procedure differs significantly from

any of the aforementioned works. We think this data will

help our community assess the use cases of SAIL-VOS data,

and we hope it will inspire research in a new direction. Be-

yond presenting the dataset we also propose a few simple

baseline methods and illustrate arising challenges that fu-

ture models have to meet.

3. Data Collection

We use the game GTA-V to collect the SAIL-VOS

dataset. In order to compute the amodal segmentation, we

need to get information from the occluded region, which

is not visible on the screen. We therefore interact with the

game engine and successively toggle the visibility of objects

such that we can perceive each object as a whole.

We illustrate our dataset collection pipeline in Fig. 2.

Specifically, we play the scenes to collect video sequences

and their annotations. For each sequence, we randomly alter

the weather condition, the time of day and the clothing of

characters which appear in the video sequence before play-

ing the video. After waiting for 1 millisecond we pause the

game and collect the data for this particular frame. Due to

a delay between sending a pause signal and the game reac-

tion, we obtain a sampling rate of around 8 frames per sec-

ond. We repeat the process by resuming the video, waiting

for another 1 milliseconds before recording the next frame.

For every frame we pause at, we record screenshots turn-

ing the visibility of all objects once on (Fig. 2 (a)) and once

off (Fig. 2 (b)). In addition, we toggle the visibility of all

objects, displaying them one by one at a time and acquire

screenshots as shown in Fig. 2 (c). We use the Script Hook

V library [10] for altering the weather, the time of day, the

clothing and pausing the game as well as toggling the vis-

ibility of objects. Along with the screenshots (RGB im-

ages), we hook into DirectX functions to access the GPU re-

sources and save the corresponding stencil and depth buffers

as shown in Fig. 3. The DirectX hooks are based on the

GameHook library [58]. The stencil buffer contains the se-

mantic label of each pixel at the class level, instead of at the

instance level, e.g., all pixels belonging to a person will be
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RGB Frame Depth Buffer Stencil Buffer

x f d f s f

x /0
f d /0

f s /0
f

xo
f do

f so
f

Figure 3: Along with every recorded image, we also record

the depth buffer (the second column) and the stencil buffer

(the third column). We collect data with all objects dis-

played (the first row), all object invisible (the second row),

and an example where there is only one object displayed at

a time (the third row).

(a) (b) (c)

Figure 4: There are objects for which visibility cannot be

toggled using Script Hook V. (a) The frame with objects

in O not displayed. The visibility of the building cannot

be toggled by Script Hook V. (b) xo
f without a clean back-

ground. Note that we cannot compute the amodal segmen-

tation as the object is partially occluded. (c) xo
f with a clean

background. A clean background is obtained by hooking

into DirectX draw functions.

assigned the same value no matter whether they belong to

the same person or not.

Amodal segmentation: To describe computation of the

amodal segmentation formally we introduce some notation.

We collect an RGB image x f , the depth buffer d f and the

stencil buffer s f for each frame f ∈ {1, . . . ,F} as shown in

the first row of Fig. 3. For each frame f we also capture

the image, depth and stencil buffer x /0
f , d /0

f and s /0
f which do

not show any objects (see Fig. 3, second row). We subsume

all objects of frame f for which we can toggle visibility in

the set O f . We obtain this set via Script Hook V. For each

object o ∈O f , we also capture the RGB image xo
f , the depth

buffer do
f , and the stencil buffer so

f showing only one object

o (see third row of Fig. 3). Note that visible objects exist

for which we cannot toggle the visibility using Script Hook

V, such as the building shown in Fig. 4 (a). Obviously we

cannot compute the amodal segmentation of an object if it

is occluded by other objects for which we cannot toggle vis-

ibility, as shown in Fig. 4 (a, b). To address this issue we

hook into the DirectX draw functions when recording xo
f ,

x /0
f and their corresponding depth and stencil buffer. Specif-

ically, we obtain a clean scene by not rendering any objects

but the one currently under consideration. Hence the hook

function only issues a rendering call for the currently tar-

geted object and ignores all other rendering requests.

To compute the amodal mask ao
f of object o∈O, we fuse

the information of the depth buffer and the stencil buffer, in-

stead of using purely the depth buffer or the stencil buffer.

We found using the combination of both to be important for

higher accuracy. For instance, we found that the depth of an

object might be slightly altered after toggling the visibility,

especially for soft objects such as clothes. This randomness

during rendering, presumably added to increase game real-

ism, results in artifacts when computing the segmentation

exclusively based on the depth mask. Using purely depth

information is therefore not enough, while the stencil buffer

contains only class-level semantic segmentation instead of

instance-level segmentation. To obtain accurate segmenta-

tions, we therefore first compute the amodal segmentation

based on depth, ao
f ,d , by comparing do

f with d /0
f , i.e.,

ao
f ,d = δ (do

f 6= d /0
f ).

Here, δ returns a binary mask indicating which pixels of the

object depth map differ from the background depth map.

Similarly, we compute the amodal mask ao
f ,s based on sten-

cil information using the above equation but replacing the

depth buffer with the stencil buffer.

We then fuse ao
f ,d and ao

f ,s to get the amodal mask ao
f via

ao
f = ao

f ,d ⊕ao
f ,s,

where ‘⊕’ denotes a logical OR operation to combine the

amodal segmentation masks.

To compute the visible segmentation, we also first com-

pute the depth-based modal mask m0
f ,d via

mo
f ,d = δ (do

f = d f ) ·δ (a
o
f = 1).

We also compute the visible mask mo
f ,s using the above

equation while replacing the depth buffer with the stencil

buffer. To obtain the visible segmentation candidate mo
f we

fuse mo
f ,d and mo

f ,s via

mo
f = mo

f ,d ·m
o
f ,s.

Object tracking: Every object in O is assigned a unique

ID in the game and we can get the IDs by accessing the

rendering engine using the Script Hook library. As the IDs

do not change across frames, we are able to keep track of

objects via their IDs.

Semantic class label: Manually, we also assign a class la-

bel to each object, defining a total of 162 classes. To assign
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Figure 5: The proposed dataset contains diverse scenes, including outdoor scenes, indoor scenes, and different weather

(sunny, rainy, storm). We also vary the appearance of the characters by changing their clothing as shown in the two images

on the right in the bottom row.

Figure 6: The number of instances per class in the proposed SAIL-VOS dataset. There are 162 semantic classes in total.

the label, we access the name of the 3D model file used

to render the object. We use Script Hook V and [1] to get

the memory address where the information related to the

object is stored and extract the 3D model file name. The

name usually contains the semantics of the object, e.g., the

model with the name prop laptop 01a is a 3D model

for a laptop. We use the names to group the models by

comparing the similarity of their names. We further manu-

ally merge the groups with either similar semantics and/or

shape into the final 162 classes. Of those 162 classes, 48

overlap with the MS-COCO dataset [65], i.e., 60% of the

classes in MS-COCO can be found in the proposed SAIL-

VOS dataset. Classes that exist in MS-COCO but not in

our dataset include hair drier, giraffe, and kite,

and classes which exist in the SAIL-VOS dataset but not in

MS-COCO include lamp, pot and cabinet.

Depth ordering: We use the depth buffer to compute the

depth ordering by sorting the depth do
f ∀o ∈O at each pixel.

The depth ordering in the scene is computed at the pixel

level based on the depth buffer. Note that the depth ordering

is not at the object level.

Pose annotation: In addition to semantic instance level

mask annotation, we also record the pose information.

Specifically, we record the 2D and 3D pose information for

people. This information includes the 2D coordinate on the

image plane and the 3D position in the world coordinate for

30 facial landmarks, 18 points on the body and 30 points on

both hands (15 points per hand). We use the Script Hook

V library to retrieve the 2D and 3D pose information. For

other objects including vehicles and properties, we record
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Table 1: Amodal segmentation dataset statistics. Note, for computation of the number of occluded instance we define an

object to be occluded if the occlusion rate is larger than 1%.

Dataset COCOA COCOA-cls D2S DYCE Ours

Image/Video Image Image Image Image Video

Resolution 275K pix 275K pix 3M pix 1M pix 1M pix

- - 1440×1920 1000×1000 800×1280

Synthetic/Real Real Real Real Synthetic Synthetic

# of images 5,073 3499 5,600 5,500 111,654

# of classes - 80 60 79 162

# of instances 46,314 10,562 28,720 85,975 1,896,295

# of occluded instances 28,106 5,175 16,337 70,766 1,653,980

Avg. occlusion rate 18.8% 10.7% 15.0% 27.7% 56.3%
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Figure 7: Comparison of the SAIL-VOS dataset with COCOA [110], COCOA-cls [110, 30], D2S [29, 30], and DYCE [24].

the 3D location in the world coordinate, the 3D rotation

matrix, the 2D coordinate on the image plane and the 2D

bounding box.

4. SAIL-VOS Dataset

We collect 111,654 frames in total from GTA-V at a res-

olution of 800× 1280. A total of 201 video sequences are

collected, covering different weather conditions, illumina-

tion, scenes and scenarios as illustrated in Fig. 5. The an-

notation includes semantic instance level segmentation and

amodal segmentation. Moreover, each object is manually

assigned a class label. There are a total of 162 classes

defined in the proposed SAIL-VOS dataset, 48 of which

overlap with the MS-COCO object classes. Moreover,

each class is subdivided into subclasses to provide more

fine-grained semantic information. For instance, the class

road barrier is divided into 6 subclasses, containing

bollard, traffic cone, road pole, etc. Every

object is assigned a class label and a subclass label. We also

have the 2D and 3D pose annotation exclusively for person.

In Fig. 6, we show the number of instances per class in

the dataset. We found the dataset to have a similar distri-

bution as the MS COCO dataset [65]. In Tab. 1 we com-

pare the SAIL-VOS dataset with other amodal segmenta-

tion datasets, i.e., COCOA [110], COCOA-cls [110, 30],

DYCE [24] and D2S [29, 30], looking at the number of in-

stances included in the dataset, the occlusion ratio and the

resolution. In Fig. 7, we also show a detailed comparison

among the amodal datasets, comparing the number of cate-

gories and instances per image, the size of the objects and

the occlusion rate.

Dataset splits: We split the dataset into training, valida-

tion and test set based on the geographic location of the

scenes. The training set contains 160 video sequences

(84,781 images, 1,388,389 objects) while the validation set

contains 41 (26,873 images, 507,906 objects). The portion

of overlapping models between training and validation set

is 32.9%, i.e., there are only 32.9% of the models in the

training set that also appear in the validation set. Note that

the model defines the geometry but different textures may

be used during rendering. In addition to the training and

validation set, we retain a test-dev set and a test-challenge

set for future use.

5. SAIL-VOS Problem Formulation

Because of annotations for modal and amodal seman-

tic segmentation, human pose and depth ordering, a variety

of tasks can be evaluated using the presented SAIL-VOS

dataset. We discuss some of the possibilities next.

Due to the semantic segmentation labels, class-agnostic

and class-specific modal and amodal instance level segmen-

tation for video data can be assessed. Because of the tem-

poral density, frame-based and tracking based formulations

can be evaluated. Because the proposed dataset is syn-
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Table 2: Segmentation performance on the SAIL-VOS dataset in the class-agnostic setting. Both the modal mask (visible

mask) and amodal mask are evaluated. We report AP50 (average precision at IoU threshold 50%) and AP (average precision)

using four methods.

Modal mask Amodal mask

AP50 AP APP
50 APH

50 APL
50 APM

50 APS
50 AP50 AP APP

50 APH
50 APL

50 APM
50 APS

50

MaskRCNN [38] 40.6 28.0 51.2 13.5 74.6 20.2 5.6 - - - - - - -

MaskAmodal [30] - - - - - - - 40.4 26.6 51.2 14.8 72.9 20.6 6.8

MaskJoint 38.8 26.0 49.5 11.9 70.4 17.4 6.4 40.8 26.4 51.2 15.8 73.1 19.6 7.5

Table 3: Segmentation performance on the SAIL-VOS dataset in the class-specific setting. Both the modal mask (visible

mask) and amodal mask are evaluated. We report AP50 (average precision at IoU threshold of 50%) and AP (average

precision) using four methods.

Modal mask Amodal mask

AP50 AP APP
50 APH

50 APL
50 APM

50 APS
50 AP50 AP APP

50 APH
50 APL

50 APM
50 APS

50

MaskRCNN [38] 24.1 14.3 24.7 17.2 42.8 21.3 4.9 - - - - - - -

MaskAmodal [30] - - - - - - - 23.0 13.0 24.3 16.7 36.6 21.5 6.1

MaskJoint 24.5 14.2 24.1 17.6 38.9 21.0 5.1 24.8 14.1 24.3 18.9 37.8 21.5 5.7

Table 4: IoU on the DAVIS validation set.

DAVIS fraction 0% 10% 20% 30% 50% 100%

VideoMatch-S 0.74 0.77 0.78 0.78 0.78 0.79

VideoMatch 0.55 0.66 0.73 0.74 0.78 0.81

thetic and due to available smaller real-world amodal image

datasets, transferability can be measured.

Future possibilities of the collected dataset include rea-

soning about depth ordering, 2D and 3D pose estimation.

We will not focus on those directions subsequently.

In the following we focus on class-agnostic and class-

specific modal and amodal instance level video segmen-

tation using frame-based techniques. We focus on frame-

based techniques to ensure comparability with recently pro-

posed existing amodal segmentation methods. We also eval-

uate transferability to assess whether training on synthetic

data can improve video object segmentation. We defer an

assessment of tracking based formulations to future work.

Importantly, we make all the baselines, the dataset and

hopefully an evaluation server available to the community.1

6. Experiments

In the following we first present evaluation metrics for

class-agnostic and class-specific modal and amodal instance

level segmentation using frame-based detection techniques,

before discussing quantitative and qualitative results.

Evaluation Metrics: Since we focus on frame-based de-

tection techniques we follow Pascal VOC [25] and MS-

COCO [65] and use average precision (AP) as the evalua-

tion metric for the modal segmentation and the amodal seg-

mentation. The AP is computed by averaging the APs at

1http://sailvos.web.illinois.edu

increasing IoU thresholds from 0.5 to 0.95. We also report

AP50, which is the AP with an IoU threshold of 0.5.

To better assess a method we look at a variety of data

splits. We report APP
50 for objects with no or partial occlu-

sion (occlusion rate less than 0.25) and APH
50 for heavily oc-

cluded objects (occlusion rate larger than or equal to 0.25).

Also, we report APL
50, APM

50 and APS
50 to evaluate the perfor-

mance of segmenting large (area larger than 962), medium

(area between 322 to 962) and small objects (area less than

322).

There are two common settings for evaluating amodal

segmentation: the class-agnostic setting, e.g., the COCOA

dataset evaluation in [110] and the class-specific setting,

e.g., the COCOA-cls and D2S evaluation in [30]. In the

class-agnostic setting, the network is trained to detect object

segments without using the class label. In the class-specific

setting, the network is trained to detect instance level se-

mantic object segments. We evaluate the frame-based de-

tection techniques in both of the settings on the proposed

SAIL-VOS dataset. For the object-specific setting, for now,

we focus on 24 classes in our dataset for simplicity.

Approaches: Irrespective of the class-agnostic or class-

specific setting we evaluate three methods. First, we apply

MaskRCNN [38] for predicting the modal masks, training

on the SAIL-VOS training set and testing on the SAIL-VOS

validation set. The baseline MaskAmodal is a MaskRCNN

trained on the amodal masks of the SAIL-VOS dataset.

This approach is tested and discussed in [30] and accord-

ing to [30] MaskAmodal is the state-of-the-art method for

predicting the amodal mask on the COCOA [110] and

COCOA-cls [110, 30] datasets. Note that occluded objects

can cause issues because the model simply assumes the oc-

cluder is the object of interest. MaskJoint aims to jointly

predict the modal and amodal mask and is our extension of
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Input Frame Amodal Groundtruth MaskAmodal [30] MaskJoint

Figure 8: The qualitative results of the amodal mask of the baselines MaskAmodal [30], MaskCascade and MaskJoint on

SAIL-VOS dataset.

the baseline MaskAmodal, adding an additional mask head

to predict the modal mask. During training and testing, we

exclude objects with occlusion rate larger than 75%.

Quantitative Results: We present results for the class-

agnostic setting in Tab. 2. We observe that MaskRCNN

performs best when predicting the modal segmentation in

all cases. In contrast, MaskAmodal performs best when pre-

dicting the amodal segmentation on AP and medium objects

while MaskJoint performs best on AP50, objects with heavy

occlusion, large and small objects.We present results for the

class-specific setting in Tab. 3. We observe MaskRCNN

to outperform other baselines in the modal case except for

AP50, objects with high occlusion and small objects, and

MaskJoint outperforms MaskAmodal when predicting the

amodal segmentation except for small objects.

Video object segmentation: To assess whether train-

ing with additional synthetic data provides improvements

in accuracy, we evaluate on the DAVIS16 dataset [75].

We employ the video object segmentation baseline Video-

Match [46] in this experiment. We show results for train-

ing of VideoMatch with the proposed SAIL-VOS dataset

(VideoMatch-S) and without using the discussed data

(VideoMatch). Moreover we vary the percentage of the

used DAVIS-2016 training data from 0% to 100% during

training. We report the Intersection over Union (IoU) met-

ric computed using the DAVIS16 validation set in Tab. 4.

We found that the proposed synthetic dataset is useful when

access to real data is limited. Specifically, without access

to real data (0% DAVIS fraction), pretraining on the SAIL-

VOS dataset improves the performance by 19% IoU, boost-

ing the performance of VideoMatch from 55% to 74%.

Qualitative Results: We show qualitative results of the

amodal segmentation for MaskAmodal and MaskJoint in

Fig. 8. We observe that the baselines are able to reason

about the object contour under slight occlusion. As shown

in the first two rows of Fig. 8, the contour of the person and

the box is inferred. However, predicting the amodal seg-

mentation of objects under heavy occlusion remains chal-

lenging for the investigated approaches. All methods fail

to segment the second person from the left in the third row

of Fig. 8. In this example, as the visible region of the ob-

ject is small, it is hard to segment the object using a frame-

based technique, i.e., predicting the amodal segmentation

by only looking at one frame. This suggests that a video-

based approach using the temporal context (i.e., using ad-

jacent frames for reasoning about the amodal mask) is a

promising direction to improve amodal segmentation. The

SAIL-VOS dataset can serve as a good test bed and training

source for development of video-based techniques.

7. Conclusion

We propose a new synthetic dataset for semantic amodal

instance level video object segmentation (SAIL-VOS)

which has a compelling diversity and rich annotations. We

hope to stimulate new research in a variety of directions and

show that the dataset can be used to improve video segmen-

tation if little real data is available.
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[58] P. Krḧenbühl. Free supervision from video games. In Proc.

CVPR, 2018. 3

[59] J. Lafferty, A. McCallum, and F. Pereira. Conditional Ran-

dom Fields: Probabilistic Models for segmenting and label-

ing sequence data. In Proc. ICML, 2001. 2

[60] B. Leibe, A. Leonardis, and B. Schiele. Combined ob-

ject categorization and segmentation with an implicit shape

model. In ECCV Workshop, 2004. 2

[61] F. Li, T. Kim, A. Humayun, D. Tsai, and J. Rehg. Video

segmentation by tracking many figure- ground segments.

In Proc. ICCV, 2013. 1, 3

[62] K. Li and J. Malik. Amodal Instance Segmentation. In

Proc. ECCV, 2016. 1, 2

[63] X. Li, Y. Qi, Z. Wang, K. Chen, Z. Liu, J. Shi, P. Luo,

C. C. Loy, and X. Tang. Video object segmentation with re-

identification. The 2017 DAVIS Challenge on Video Object

Segmentation - CVPR Workshops, 2017. 3

[64] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei. Fully convolutional

instance-aware semantic segmentation. In Proc. CVPR,

2017. 2

[65] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft COCO:

Common Objects in Context. In Proc. ECCV, 2014. 2,

5, 6, 7

[66] S. Liu, J. Jia, S. Fidler, and R. Urtasun. SGN: Sequen-

tial grouping networks for instance segmentation. In Proc.

ICCV, 2017. 2

[67] J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional

Networks for Semantic Segmentation. In Proc. CVPR,

2015. 2

[68] M. Maire, S. X. Yu, and P. Perona. Hierarchical scene an-

notation. In Proc. BMVC, 2013. 1, 2

[69] N. Mayer, E. Ilg, P. Fisher, C. Hazirbas, D. Cremers,

A. Dosovitskiy, and T. Brox. What Makes Good Synthetic

Training Data for Learning Disparity and Optical Flow Es-

timation? https://arxiv.org/abs/1801.06397, 2018. 3

[70] G. Neuhold, T. Ollmann, S. R. Rota, and P. Kontschieder.

The Mapillary Vistas Dataset for Semantic Understanding

of Street Scenes. In Proc. ICCV, 2017. 2

[71] P. Ochs, J. Malik, and T. Brox. Segmentation of moving

objects by long term video analysis. PAMI, 2014. 1, 3

[72] Y.-I. Ohta, T. Kanade, and T. Sakai. An Analysis System for

Scenes Containing Objects with Substructures. In IJCPR,

1978. 2

[73] A. Papazoglou and V. Ferrari. Fast object segmentation in

unconstrained video. In Proc. ICCV, 2013. 3

[74] B. Pepik, M. Stark, P. Gehler, and B. Schiele. Occlusion

Patterns for Object Class Detection. In Proc. CVPR, 2013.

2

[75] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. V. Gool,

M. Gross, and A. Sorkine-Hornung. A benchmark dataset

and evaluation methodology for video object segmentation.

In Proc. CVPR, 2016. 8

[76] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool,

M. Gross, and A. Sorkine-Hornung. A benchmark dataset

and evaluation methodology for video object segmentation.

In Computer Vision and Pattern Recognition, 2016. 1, 3

[77] P. O. Pinheiro, R. Collobert, and P. Dollár. Learning to

segment object candidates. In Proc. NIPS, 2015. 2

[78] P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollár. Learn-

ing to refine object segments. In Proc. ECCV, 2016. 2

3114



[79] J. Pont-Tuset, F. Perazzi, S. Caelles, P. Arbeláez,

A. Sorkine-Hornung, and L. Van Gool. The 2017 davis

challenge on video object segmentation. arXiv:1704.00675,

2017. 1, 3

[80] A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Fer-

rari. Learning object class detectors from weakly annotated

video. In Proc. CVPR, 2012. 1, 3

[81] S. R. Richter, Z. Hayder, and V. Koltun. Playing for bench-

marks. In Proc. ICCV, 2017. 3

[82] S. R. Richter and S. Roth. Discriminative shape from shad-

ing in uncalibrated illumination. In Proc. CVPR, 2015. 3

[83] S. R. Richter, V. Vineet, S. Roth, and V. Koltun. Playing

for Data: Ground Truth from Computer Games. In Proc.

ECCV, 2016. 3

[84] H. Riemenschneider, S. Sternig, M. Donoser, P. M. Roth,

and H. Bischof. Hough regions for joining instance local-

ization and segmentation. In Proc. ECCV, 2012. 2

[85] G. Seguin, P. Bojanowski, R. Lajugie, and I. Laptev.

Instance-level video segmentation from object tracks. In

Proc. CVPR, 2016. 3

[86] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,

and Y. LeCun. OverFeat: Integrated Recognition, Localiza-

tion and Detection using Convolutional Networks. In Proc.

ICLR, 2014. 2

[87] T. Sharp, C. Keskin, D. P. Robertson, J. Taylor, J. Shot-

ton, D. Kim, C. Rhemann, I. Leichter, A. Vinnikov, Y. Wei,

D. Freedman, P. Kohli, E. Krupka, A. W. Fitzgibbon, and

S. Izardi. Accurate, robust, and flexible real-time hand

tracking. In Proc. CHI, 2015. 3

[88] J. Shi and J. Malik. Normalized Cuts and Image Segmenta-

tion. PAMI, 2000. 2

[89] J. Shotton, R. B. Girshick, A. W. Fitzgibbon, T. Sharp,

M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Crminisi,

A. Kipman, and A. Blake. Efficient human pose estimation

from single depth images. In 2013, PAMI. 3

[90] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Texton-

Boost: Joint Appearance, Shape and Context Modeling for

Multi-Class Object Recognition and Segmentation. In Proc.

ECCV, 2006. 2

[91] N. Silberman, D. Hoiem, , and R. Fergus. Indoor segmen-

tation and support inference from RGBD images. In Proc.

ECCV, 2012. 2

[92] N. Silberman, L. Shapira, R. Gal, and P. Kohli. A contour

completion model for augmenting surface reconstructions.

In Proc. ECCV, 2014. 1, 2

[93] N. Silberman, D. Sontag, and R. Fergus. Instance Segmen-

tation of Indoor Scenes using a Coverage Loss. In Proc.

ECCV, 2014. 2

[94] J. Tighe, M. Niethammer, and S. Lazebnik. Scene Parsing

with Object Instances and Occlusion Ordering. In Proc.

CVPR, 2014. 2

[95] P. Tokmakov, K. Alahari, and C. Schmid. Learning motion

patterns in videos. In Proc. CVPR, 2017. 3

[96] P. Tokmakov, K. Alahari, and C. Schmid. Learning video

object segmentation with visual memory. In Proc. ICCV,

2017. 3

[97] D. Tsai, M. Flagg, and J. Rehg. Motion coherent tracking

with multi-label mrf optimization. In Proc. BMVC, 2010.

1, 3

[98] P. Voigtlaender and B. Leibe. Online adaptation of con-

volutional neural networks for video object segmentation.

BMVC, 2017. 3

[99] B. Wu and R. Nevatia. Detection and segmentation of mul-

tiple, partially occluded objects by grouping, merging, as-

signing part detection responses. IJCV, 2009. 2

[100] S. Wug Oh, J.-Y. Lee, K. Sunkavalli, and S. Joo Kim. Fast

video object segmentation by reference-guided mask prop-

agation. In Proc. CVPR, 2018. 3

[101] N. Xu, L. Yang, Y. Fan, D. Yue, Y. Liang, J. Yang, and

T. Huang. Youtube-vos: A large-scale video object seg-

mentation benchmark. In Proc. ECCV, 2018. 1, 3

[102] L. Yang, Y. Wang, X. Xiong, J. Yang, and A. K. Katsagge-

los. Efficient video object segmentation via network mod-

ulation. In Proc. CVPR, 2018. 3

[103] Y. Yang, S. Hallman, D. Ramanan, and C. C. Fowlkes. Lay-

ered object models for image segmentation. PAMI, 2012. 2

[104] J. Yao, S. Fidler, and R. Urtasun. Describing the scene as

a whole: Joint object detection, scene classification and se-

mantic segmentation. In Proc. CVPR, 2012. 2

[105] J. S. Yoon, F. Rameau, J. Kim, S. Lee, S. Shin, and I. S.

Kweon. Pixel-level matching for video object segmentation

using convolutional neural networks. In Proc. ICCV, 2017.

3

[106] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Mad-

havan, and T. Darrell. BDD100K: A Diverse Driving

Video Database with Scalable Annotation Tooling. In

https://arxiv.org/abs/1805.04687, 2018. 2

[107] H. Zhang, T. Fang, X. Chen, Q. Zhao, and L. Quan. Par-

tial similarity based nonparametric scene parsing in certain

environment. In Proc. CVPR, 2011. 2

[108] Z. Zhang∗, A. G. Schwing∗, S. Fidler, and R. Urtasun.

Monocular Object Instance Segmentation and Depth Order-

ing with CNNs. In Proc. ICCV, 2015. ∗ equal contribution.

2

[109] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,

Z. Su, D. Du, C. Huang, and P. H. S. Torr. Conditional

Random Fields as Recurrent Neural Networks. In Proc.

ICCV, 2015. 2

[110] Y. Zhu, Y. Tian, D. Metaxas, and P. Dollár. Semantic

amodal segmentation. In Proc. CVPR, 2017. 1, 2, 6, 7

3115


