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Abstract

Weakly supervised learning is an essential problem in

computer vision tasks, such as image classification, objec-

t recognition, etc., because it is expected to work in the

scenarios where a large dataset with clean labels is not

available. While there are a number of studies on weakly

supervised image classification, they usually limited to ei-

ther single-label or multi-label scenarios. In this work, we

propose an effective approach for weakly supervised image

classification utilizing massive noisy labeled data with only

a small set of clean labels (e.g., 5%). The proposed ap-

proach consists of a clean net and a residual net, which

aim to learn a mapping from feature space to clean la-

bel space and a residual mapping from feature space to

the residual between clean labels and noisy labels, respec-

tively, in a multi-task learning manner. Thus, the residu-

al net works as a regularization term to improve the clean

net training. We evaluate the proposed approach on two

multi-label datasets (OpenImage and MS COCO2014) and

a single-label dataset (Clothing1M). Experimental results

show that the proposed approach outperforms the state-of-

the-art methods, and generalizes well to both single-label

and multi-label scenarios.

1. Introduction

Weakly supervised learning is receiving increasing atten-

tion in many computer vision tasks, e.g., image classifica-

tion, object recognition, etc., because incomplete and inac-

curate annotations widely exist in many practical scenarios.

For example, the diverse knowledge levels of different sub-

jects can lead to different understanding of the same classes

of images. In addition, a massive dataset may be collected

automatically, and annotated by pre-trained models to re-
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Figure 1. An illustration of distinguishing between the reliable and

unreliable parts in the massive noisy labels based on assumptions,

such as label-to-label relationship and image-to-label relationship.

The green and yellow lines denote positive and negative correla-

tion, respectively. The thickness of a line denotes the strength of

the correlation.

duce the cost in annotation time and expense, and only a

small set of the labels can be verified by humans. It is chal-

lenging for the traditional supervised learning methods to

work on such datasets with noisy labels. Therefore, weakly

supervised learning from noisy data becomes valuable for

practical applications and has drawn increasing attentions

in recent years [5, 10, 11, 14, 25, 30].

Existing weakly supervised learning methods on im-

age classification usually have certain assumptions with the

noise label type, i.e., single-label noise or multi-label noise.

Patrini et al. [23] defined a matrix T to describe the flipping

relation between each two classes under the single label as-

sumption. Veit et al. [30] implicitly learned a structure in

the label space to do the prediction of multi-label. Both as-

sumptions have their own characteristics. Single-label noise

can introduce methods like clustering similar images in the

training process [14] while multi-label noise can use label-
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to-label relation to make the algorithm more robust [33].

Although these assumptions help to improve the model per-

formance, it limits the generalization ability of model from

single-label dataset to multi-label dataset. For single-label

noise learning methods [14, 23, 34], they cannot be applied

to the multi-label data due to their strict assumption. For

multi-label noise learning methods [20, 30, 33], their effec-

tiveness on the single-label data is unknown.

In this work, we focus on reconciling the gap between

single-label and multi-label in weakly supervised image

classification. In our observation, although previous meth-

ods use different assumptions to assist in classifier learning,

the key idea of them is to distinguish between the reliable

and unreliable parts in the massive noisy labels, e.g., learn-

ing a mapping from noisy label space to clean label space or

filtering out some noisy labels by utilizing the characteristic

of noise. As shown in Fig. 1, for methods which use as-

sumptions of label-to-label or image-to-label relationship,

the reliable and unreliable parts of the noisy labels are de-

termined by the strength of positive or negative correlations.

In this paper, we propose a weakly supervised learning

approach for image classification that can automatically i-

dentify the reliable labels from the massive noisy labels. We

expect that the proposed method can leverage massive noisy

labeled data with a small set of clean labels to obtain a more

robust image classification model. In addition, we expect

that the proposed approach can generalize to both single-

label and multi-label image classification. An overview of

our approach is shown in Fig. 2. The proposed approach

consists of a stem net (i.e., ResNet-50), a clean net, and a

residual net. The stem net is used for shared feature learn-

ing. The clean net and the residual net are responsible for

learning a mapping from feature space to clean label space

and a residual mapping from feature space to the residual

between clean labels and noisy labels, respectively. Simi-

lar to [11, 30], we only use a small fraction of dataset with

clean labels to assist in the network training. We supervise

the clean net using only the clean labels, and supervise the

sum of clean net and residual net using noisy labels, re-

spectively. The residual net works as a regularization term

to improve the clean net training so that it can utilize the

reliable information among the massive noisy data, while

avoiding big influence by the unreliable information. Ex-

perimental results show that the proposed approach outper-

forms the state-of-the-art methods, and generalizes well to

both single-label and multi-label scenarios.

Our contributions are as follows. (i) Our approach mod-

els the noisy label distribution via a residual net, and uses

it to regularize the training of clean net so that the clean

net can leverage the reliable part in the massive noisy da-

ta to improve the classification performance. (ii) Our ap-

proach has good generalization ability, and can work for

both single-label and multi-label image classification tasks.

2. Related Work

Most of the weakly supervised image classification

methods aim to learn from data with only noisy labels. One

category of methods aims to distinguish the noise data from

the entire dataset [2, 14, 17, 18, 24, 28, 32]. These meth-

ods usually focus on finding the difference between noisy

data and clean data. Brodley and Friedl [2] used a set of

classifiers to do outliers removal before training, under the

assumption that outliers are likely noisy data. Reed et al.

[24] used a bootstrap technique which could dynamically

update the supervision under a prediction consistency as-

sumption to filter out the potential noisy labels. Wang et al.

[32] used contractive loss to distinguish between data with

noisy labels and data with clean labels. Lee et al. [14] in-

troduced a reference set to get a representative of the noisy

set and used it for noise detection and image classification.

Another category of weakly supervised learning meth-

ods is to explore the new design of loss function [1, 6, 19,

21, 23] or network architecture [20, 22, 26] to achieve noise

robust learning. These methods do not aim to separate noisy

labels from all the labels explicitly. Instead, they incorpo-

rated the label transition process into the classification net-

work design and aimed at learning a robust end-to-end clas-

sification model. Sukhbaatar et al. [26] used a single linear

layer to model the label transition process from clean la-

bels to noisy labels, while Patrini et al. [23] replaced the

layer with estimating a noise transition matrix. Misra et al.

[20] proposed an image-based probability model on multi-

label noise to describe the relation between visually present

(clean) labels and human-centric (noisy) labels.

Our method belongs to another stream, which under the

assumption that few clean labels are known [11, 30, 34].

These methods aim at leveraging massive noisy labeled da-

ta with a small set of clean labels to learn a robust image

classifier. [10, 30] proposed a teacher-student framework

with a label cleaning network to achieve noisy label learn-

ing. Xiao et al. [34] built a probability model to describe

the generating process of noisy labels and used the data with

clean labels to pre-train the network. Li et al. [15] distilled

the knowledge in the clean labels and used it to avoid over-

fitting to noisy labels. Compared with learning from data

with noisy labels solely, clean labels can guide the model

to the right direction to some extent. Experimental results

in these works showed that even a small set of clean labels

have a positive influence on performance improvement. Our

method is similar to [15], but we use the data with noisy la-

bels to reduce the risk of overfitting to the data with clean

labels under a more generalized framework instead of the

single label classification assumption in [15].

Apart from using a small set of clean labels, several

studies also introduced side-information (e.g., knowledge

graph) to assist in improving model robustness toward noisy

labels [3, 15, 33]. Wu et al. [33] used a mixed dependency
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Figure 2. An overview of the proposed approach for weakly supervised image classification, which consists of a shared feature extractor

(i.e., ResNet-50), a clean net, and a residual net. The clean net and the residual net are responsible for learning a mapping (Fc) from

feature space to clean label space and a residual mapping (Fr) from feature space to the residual between clean labels and noisy labels,

respectively. We train two classifiers h and g using the noisy labels in the noisy set and the clean labels in the clean set, respectively. h is

supervised by the noisy labels yi for all samples xi in Dn in terms of Lnoise, and g is supervised by the clean labels vj for all samples xj

in Dc in terms of Lclean. Residual net r with classifier h works as a regularization term in training the clean net c with classifier g.

graph modeling the semantic hierarchical dependency be-

tween labels to complete the missing labels by label propa-

gation. Li et al. [15] introduced a label-to-label graph en-

coding the structure in label space to avoid over-certainty

of the data with clean labels. However, side-information

is sometimes highly related to the label set, which also re-

stricts the generalization ability of model to some extent.

3. Our Approach

3.1. Problem Formulation

Our goal is to leverage massive noisy labeled data with a

small set of clean labels to obtain a robust image classifica-

tion model. We also expect that the model does not require

assumptions about the label type, and can generalize to both

single-label and multi-label image classification tasks.

Let D = Dn ∪ Dc denote the entire training dataset,

where Dn = {(xi, yi)|i = 1, ..., Nn} and Dc =
{(xj , vj)|j = 1, ..., Nc} are the dataset with noisy label-

s and the dataset with clean labels, respectively; xi and yi
in Dn denote the i-th image and corresponding noisy label;

Nn denote the total image number in Dn; xj and vj in Dc

denote the j-th image and corresponding clean label; Nc

denote the total image number of Dc. It should be noted

that noisy labels for images in Dc are not required. In this

work, we do not make any assumptions about noisy label

type, i.e., single-label or multi-label data. In practical ap-

plications, we can assume the number of images with clean

labels is much less than the noisy data, i.e., Nc ≪ Nn.

As shown in Fig. 2, we leverage multi-task learning [7,

8, 31] to perform weakly supervised image classification,

which train two classifiers g and h to fit the clean labels

in clean set and the noisy labels in noisy set, respectively.

The backbone CNN (i.e., a ResNet50 [9] or Inception V3

[27]) is used to learn a mapping from image space x to the

feature space f (e.g., pool5). The features are shared by the

residual net and the clean net.

Both the clean net and the residual net contain a non-

linear transformation which works as an activation layer

between two linear layers. The activation layer could be

a common used non-linear activate function, such as ReLU,

tanh and sigmoid. We will provide the performance with

different activation functions in detail in experiments. This

non-linear transformation is used to learn a mapping from

feature space to clean label space or to noisy label space.

The reason why non-linear activation works better than lin-

ear is that the shared feature space f may not provide the

discriminative ability for both the samples with clean labels

and the samples with noisy labels simultaneously.

3.2. Residual Net for Noise Regularization

Classifier g, together with the shared backbone CNN and

the clean net, is the final image classifier that the proposed

approach aims to learn. It is used to learn a mapping from

feature space to clean label space. Let’s denote the map-

ping as Fc and the output of clean net as c; then c can be

represented as

c = Fc(f(x)). (1)

Similarly, classifier g can be represented as

g = σ(c), (2)
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where σ is a sigmoid function. Only using the data in clean

set to train classifier g makes g is prone to overfit since the

size of clean set can be very small in practical scenarios.

Therefore, we introduce classifier h, which is expected to

serve as a regularization term w.r.t. classifier g.

Specifically, h is used to learn the residual mapping from

feature space to the residual between clean labels and noisy

labels. Let’s denote the residual mapping as Fr and the out-

put of residual net as r; then r can be represented as

r = Fr(f(x)). (3)

Similarly, h can be represented as

h = σ(r + c), (4)

where σ is a sigmoid function. In our experiments, we find

that summing the values of r and c up before applying sig-

moid function helps the network to have a better conver-

gence. So we do the sum operation before sigmoid. We do

not need to explicitly distinguish between the multi-label

and single label data. Therefore, we use a sigmoid function

to generate the probability for both scenarios.

The reason why h can be regarded as a noise regular-

ization term for g is the same as that why use regularization

methods, such as weight decay, early stopping and drop out,

during network training. They are all helpful to relieve the

overfitting problem. Through the above discussion, we can

see that the proposed residual net can model the unreliable

part in the massive noisy data and then in turn can let clas-

sifier g to make use of the reliable part in the massive noisy

data to achieve more robust image classification. In this

way, the residual net works as a regularization term to re-

lieve the overfitting issue with the classifier g.

The proposed approach learns a mapping from clean la-

bel space to noisy label space conditioned on unreliable in-

formation in the noisy labels. From the perspective of learn-

ing the relation between these two label spaces, it is simi-

lar to using label transition model. However, unlike mod-

eling the label transition process explicitly, which usually

requires paired noisy-clean label for the samples in clean

set, our approach does not require such kind of paired data.

Using the clean net and the residual net, our approach can

explore the relation between clean labels and noisy labels

from unpaired data. Therefore, the two classifiers g and h

can be trained separately. This makes it possible for the pro-

posed approach to work under a wide range of applications.

3.3. Network Training

Both h and g are trained with binary cross-entropy loss.
The difference lies in the input images are different. h is
supervised by the noisy label yi for all samples i in Dn

while g is supervised by the clean label vj for all samples j
in Dc. We denote the loss of h and g as Lnoise and Lclean,

respectively, and they can be formulated as follows

Lnoise = −
1

Nn

∑

i∈Dn

(yiln(hi) + (1− yi)ln(1− hi)), (5)

Lclean = −
1

Nc

∑

j∈Dc

(vj ln(gj) + (1− vj)ln(1− gj)), (6)

where hi and gj are the predictions by classifiers h and g for

the corresponding image samples xi and xj , respectively.

Given the above definitions, the overall objective during

our network training can be formulated as

argmin
W

αLclean + Lnoise, (7)

where W denotes the parameters of the network and α de-

notes the trade-off parameter between two losses. Follow-

ing [30], to train classifiers g and h jointly leveraging the

massive noisy labeled data and a small set of clean labeled

data. In each batch during network training, we choose sam-

ples from both Dc and Dn in a ratio of 1:9.

We initialize the backbone CNN by the weights of Ima-

geNet pre-trained model. We use different training schemes

on multi-label and single-label data. For multi-label image

classification, we first fine-tune the backbone CNN by us-

ing the noisy labeled data and then only train the clean net

and the residual net. For single-label image classification,

we directly fine-tune the whole network.

4. Experimental Results

4.1. Datasets

MS COCO2014 dataset [16] is designed for image

classification, object detection, and semantic segmentation

tasks, which contains about 120K images of 80 classes. We

do not use origin MS COCO2014 dataset directly, because it

lacks the noisy labels. Following the idea of semi-automatic

image annotation in [11, 30], we use an ImageNet [4] pre-

trained Inception V3 [27] model to generate annotations for

all the images. Specifically, we first map the classes in Im-

ageNet to the classes in MS COCO and remove the classes

which do not appear in ImageNet, obtaining a label set with

56 classes, the mapped labels are clean labels. Then we use

Inception V3 to generate the top-8 predictions for each im-

age in the origin MS COCO dataset and map them to the

56 label classes. These automatically generated labels can

be viewed as the noisy labels. We remove the unlabeled

images and finally obtain three sets for train, validation and

test, with size of 68,213, 16,714 and 16,763 images, respec-

tively. 1 Among the 68,213 training images, we assume on-

ly a small set of images (e.g., 5%) have clean labels during

image classification model learning, and all the remaining

images only have noisy labels.

1We plan to put the MS COCO dataset we compiled into public domain.
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Dataset # Classes # Train Imgs. # Val/Test Imgs.

MS COCO2014 56 68K/68K 16K/16K

OpenImage 6,012 9M/40K –/120K

Clothing1M 14 1M/50K 14K/10K

Table 1. Evaluations protocols used for the MS COCO2014, Open-

Image, and Clothing1M databases.

OpenImage dataset [13] is a public multi-label dataset

for image classification. It contains more than 9M images

with machine annotated labels from 6,012 unique classes.

There are many versions of this dataset since it was pro-

posed. We adopt the first version to evaluate our approach.

It contains 9,011,219 images in training set (data with noisy

labels) and 167,056 images in validation set (data with both

noisy and clean labels). Following the partition in [30], we

use the whole training set and a quarter of validation set

(about 40K images) to train the model and the remain im-

ages in validation set to test.

Clothing1M dataset [34] is a widely used dataset for

single-label noise learning. It was proposed by [34] in 2015.

It contains 100M clothe images with noisy labels from 14

classes. Different from the noisy label type in OpenImage

and the compiling of MS-COCO, which was annotated by

pre-train model, labels in Clothing1M are corrupted by real-

world noise. According to [34], the noisy label of each im-

age in this dataset is assigned by the keyword of its sur-

rounding text. For the images with clean labels, it was split

into train, validation, and test, with size of 50K, 14K and

10K, respectively. We adopt this protocol for consistency

with state-of-the-art methods. [14, 23, 34].

4.2. Training Details

The proposed approach and all the baseline approach-

es are implemented with Tensorflow. We use Inception

V3 model as the backbone network for OpenImage and

ResNet50 model as the backbone network for MS COCO

and Clothing1M. Since MS COCO is a dataset compiled

by ourselves, we report the results by the reimplement-

ed baseline methods while using the reported results [30]

and [14, 23] on OpenImage and Clothing1M, respective-

ly. On the MS COCO dataset, we first use all the images

with noisy/clean labels to train the ResNet50 (Noisy/GT)

for 20,000 iterations using a batch size of 64 optimized by

RMSProp [29]. The learning rate is initialized with 10−4

and decayed by 0.9 every 2 epochs. To evaluate the model

performance under a small set of data with clean labels, we

use 5%, 10%, and 20% samples from the entire training set

to form the clean set. We find the state-of-the-art method by

Veit et al. [30] (WP / TJ) is hard to converge on MS COCO

when it is optimized by RMSProp. For a fair comparison,

we optimize all the models by Adam [12] using a batchsize

of 32. We use a learning rate of 10−4 to fine-tune the models

for 50,000 addition iterations. We use two pairs of learning

rate ((10−4,10−5) for 5%, 10%, (10−3,10−4) for 20%) to

train the method by Veit et al. [30] (WP / TJ) for 200,000

iterations. For the proposed method, we use a learning rate

of 10−4 for sigmoid function and a learning rate of 10−5

for tanh and ReLU , and with up to 100,000 iterations. The

trade-off parameter α empirically set to 0.2.

On the OpenImage dataset, we train the proposed

method with a learning rate of 10−3 using RMSProp op-

timizer using a batch size of 32 and up to 2M iterations. We

set the trade-off parameter α = 0.1. Since not all of the

classes in the images of clean set have the clean labels, we

just fit the classes which have clean labels. On the Cloth-

ing1M dataset, we use a learning rate of 10−4 and optimize

the model by Adam using a batch size of 32, and up to

120,000 iterations. We set the trade-off parameter α = 0.2.

4.3. Metrics

For multi-label image classification, we use the mean of

class-average precision (mAP) and the class agnostic aver-

age precision (APall) to evaluate the performance for con-

sistency with [30]. For each binary classification problem,

we compute an AP to reflect the prediction precision of pos-

itive labels, which can be written as

APc =
1

m

n∑

i=1

Pre(i, c) · I(i, c), (8)

where m and n denote the number of positive labels and

test samples, respectively. Pre(i, c) denotes the precision

of class c at rank i. I(i, c) is an indicator function with 1

denoting the positive label’s presence of class c at rank i.

mAP is the mean of APc across all classes while APall is

the AP which treats all classes as a single class by ignoring

the class annotations.

For single-label image classification, we follow the state-

of-the-art single-label noise learning methods [14, 23], and

report the top-1 accuracy.

4.4. Results for Multi­label Image Classification

We first conduct experiments on MS COCO [16] and

OpenImage [13] for multi-label image classification. We

compare it with the state-of-the-art method [30]. Since the

source code of [30] is not publicly available, we implement-

ed it based on our best understanding, and achieves similar

results (62.17% mAP and 89.15% APall) to that in [30] on

OpenImage [13]. We use WP and TJ to denote the two vari-

ants (with pre-training, trained jointly) in [30], respectively.

We also provide the results of several related baselines.

Backbone (Noisy): A backbone network is trained

for multi-label classification using all the noisy labels in

dataset. This can be viewed as a lower bound of all methods

which use clean labels.
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Method

Dataset MS COCO OpenImage

mAP APall
mAP APall5% 10% 20% 5% 10% 20%

Backbone (Noisy) 45.30 39.14 61.82 83.82

Backbone (Noisy-FT-W) 54.94 56.34 59.03 56.86 58.36 61.26 61.53 85.88

Backbone (Noisy-FT-L) 55.10 56.77 58.72 57.53 59.33 61.18 65.66 89.57

Backbone (Noisy-FT-M) 49.78 50.13 50.29 45.99 46.03 46.16 61.90 84.80

Veit et al. [30] (WP) 46.57 49.83 51.83 47.63 50.63 52.64 62.36 87.68

Veit et al. [30] (TJ) 46.42 50.15 52.14 46.47 50.59 52.76 62.38 87.67

Proposed (sigmoid) 58.28 59.51 60.55 59.86 61.12 62.34 69.02 94.08

Proposed (tanh) 57.95 59.19 60.11 60.03 61.39 62.33 – –

Proposed (ReLU) 58.16 59.29 60.19 60.19 61.54 62.44 – –

Backbone (GT) 65.16 68.15 – –

Table 2. Multi-label classification performance (in %) by the proposed approach and several baseline methods on the MS COCO and

OpenImage datasets. We choose 5%, 10% and 20% clean labels in MS COCO and all clean labels in training set of OpenImage as the

clean set, respectively. The best results except for the results using 100% clean labels, denoted as Backbone (GT), are highlighted in bold.

Backbone (GT): A backbone network is trained for

multi-label classification using all the clean labels in

dataset. This can be viewed as an upper bound of all meth-

ods which use clean labels. It should be noted that the Back-

bone (GT) is only trained on MS COCO since the clean la-

bels of whole OpenImage dataset are missing.

Backbone (Noisy-FT-W): Fine-tune the whole network

of Backbone (Noisy) with clean labels in the clean set. This

method directly uses clean labels to train a large network

which is prone to overfit when clean labels are few.

Backbone (Noisy-FT-M): Fine-tune the last layer of

Backbone (Noisy) with mixed labels in the clean set. The

mixed labels consist of both clean labels in clean set and

noisy labels in noisy set (in a ratio of 1 : 9).

Backbone (Noisy-FT-L): Fine-tune the last layer of

Backbone (Noisy) with clean labels in the clean set. This

method relieves the problem of overfitting by reducing pa-

rameters in training.

The results on MS COCO and OpenImage are reported

in Table 4.4 in terms of mAP and APall. We can see that on

MS COCO, all of the weakly supervised methods can sig-

nificantly improve the performance compared to the base-

line method - Backbone (Noisy), even using only 5% clean

labels. This shows the positive influence of clean labels on

noisy label learning, and this influence grows with the in-

crease of clean label quantity. However, when extremely

few clean labels are available (e.g., 5%), the improvement

of model performance becomes more difficult. Compared

to other methods, the proposed method shows the least per-

formance decrease (2.3% by our method vs. 3.6% by Back-

bone (Noisy-FT-L) in terms of mAP) from using 20% to 5%

clean labels while keeps the best performance.

Similar to MS COCO, we also conducted experiments

over different percent of clean labels for the training set

on OpenImage. For OpenImage dataset, the size of whole

clean set in training is about 40K. We then used several sub-

Metric
Percent of clean labels

10% 20% 40% 60% 80% 100%

mAP 65.08 65.98 67.20 67.97 68.61 69.02

APall 91.08 92.18 93.13 93.65 93.86 94.08

Table 3. Performance of image classification on OpenImage (in

%) by the proposed approach using different percent of clean la-

bels for the training set.

sets of the clean set to train the model, with ratio of 10%,

20%, 40%, 60%, and 80%, respectively. The results are

given in Table 3. We can see that the proposed method can

keep the best classification performance even the clean set

size is reduced to 20%. It concurs with the results on M-

S COCO, which achieves similar performance with Back-

bone (Noisy-FT-W) by using only half data (59.51% by our

method using 10% clean labels vs. 59.03% by Backbone

(Noisy-FT-W) using 20% clean labels in terms of mAP).

This can be encouraging and has practical significance in

real scenarios since image annotation is usually an expen-

sive and time-consuming work, which is more practicable

to annotate 8K images rather than 40K images.

The results on MS COCO and OpenImage datasets

demonstrate the effectiveness of our model in leveraging

massive noisy labeled data with a small set of clean labels

to perform weakly supervised learning. The proposed ap-

proach achieves 3.1% (on MS COCO by using 5% clean

labels) and 3.3% (on OpenImage) higher performance than

the best of the baseline methods in terms of mAP. We give

some examples of the classification results in Fig. 3. The

proposed method performs well in many hard cases that the

baseline methods cannot work well. It should be noted that

we only train the clean net and the residual net by fixing the

backbone network, and it is possible to have better results

if the entire network is trained. The possible reasons why

our method performs better than the state-of-the-art method
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Figure 3. Examples of multi-label image classification by the pro-

posed method and the baseline methods on the test set of the Open-

Image and MS COCO datasets. We provide the top-5 most con-

fident predictions by Backbone (Noisy), Backbone (Noisy-FT-L)

and the proposed method, denoted as Baseline1, Baseline2 and

Proposed, respectively. We choose 5% clean labels as the clean

set of MS COCO.
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Figure 4. The mAP of image classification on MS COCO by

the proposed approach using different activate functions (sigmoid,

tanh and ReLU) and 5% clean labels.

by Veit et al. [30] are: i) we use a non-linear transforma-

tion to learn the mapping from image feature space to label

space while a linear transformation was used in [30]; ii) our

approach can make use of all the noisy data of the whole

dataset during network training, while [30] only used the

noisy labels of the images in the clean set.

We also report the performance using different activate

functions, i.e., sigmoid, tanh and ReLU, in order to get com-

prehensive understanding of the proposed method. The re-

sults on MS COCO dataset using three different activation

functions are given in Table 4.4. We can see that the per-

formance difference between three activate functions is mi-

nor, which is less than 0.5% from 5% to 20% clean labels

# Method Data Pretrain top− 1

1 ResNet50 (Noisy) Noisy set ImageNet 68.94

2 ResNet50 (Clean) Clean set ImageNet 75.19

3 CleanNet-wsoft [14] Noisy set ImageNet 74.69

4 Fine-tune Clean set #3 79.90

5 Forward [23] Noisy set ImageNet 69.84

6 Fine-tune Clean set #5 80.38

7 Proposed (sigmoid) Noisy set, Clean set ImageNet 79.93

Table 4. Single-label classification performance (in %) by the pro-

posed approach and several state-of-the-art methods on the Cloth-

ing1M dataset. The best results are highlighted in bold.

in terms of both mAP and APall. However, we find that

the convergence speeds of the three functions are different.

We also report the changes of mAP over iterations on MS

COCO dataset by using 5% clean labels. As shown in Fig.

4, the sigmoid function has the slowest convergence speed

among all three activate functions under the same learning

rate (10−5). This is the reason why we use a higher learning

rate for the sigmoid function in our experiment.

4.5. Results for Single­label Image Classification

We perform single-label image classification on Cloth-

ing1M to evaluate the performance of the proposed ap-

proach and provide comparisons with the state-of-the-art

methods. Two important baselines we used are CleanNet-

wsoft [14] and Forward [23]. These methods are designed

for learning from the data with only noisy labels. Thus, to

utilize the data with clean labels, they need to fine-tune the

model, which denoted by Fine-tune in Table 4. Besides the

state-of-the-art methods, we also provide two other impor-

tant traditional baselines, ResNet50 (Noisy) and ResNet50

(Clean), which trains a backbone network using all the data

with noisy labels or clean labels in the dataset.

The results are reported in Table 4 in terms of top-1 ac-

curacy. We can see that the proposed method has compa-

rable accuracy with other state-of-the-art methods (79.93%

by our method vs. 80.38% by Forward [23] and 79.90% by

CleanNet-wsoft [14]) on the Clothing1M dataset. Both For-

ward [23] and the proposed method learn a mapping from

clean label space to noisy label space. Compared with the

proposed method, Forward [23] introduced extra informa-

tion, which used the paired noisy-clean labels to estimate

the label confusion matrix. This may be the reason why the

performance of [23] is slightly higher than us. However, in

real applications, paired labels are not available sometimes,

e.g., only 25K in 50K images in the training set of Cloth-

ing1M dataset have both clean and noisy labels. Thus the

requirement on paired labels in Forward [23] may also limit

its usage. For the state-of-the-art method [14], although we

achieve very similar results to it, the proposed method does

not need to generate the reference set which sometimes can

be very time-consuming.
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Figure 5. Examples of single-label image classification generated

by the proposed method on Clothing1M. We show the top-3 pre-

dictions by the classifier g and compare it with the corresponding

predictions of the classifier h. The green and red labels denote the

clean and the noisy label, respectively. We normalize the predic-

tions by both classifiers for easy comparisons.

Compared to the state-of-the-art methods [23, 14], which

are restricted to single-label image classification, the merit

of the proposed method is that it can be applied to multi-

label image classification. The proposed method does not

have the single-label noise assumption, and performs well

on the multi-label dataset as the experiments showed previ-

ously. It suggests that our method generalizes well in both

single-label and multi-label image classification scenarios.

Another merit of the proposed method is that it can use a

1-step training scheme while Forward [23] and CleanNet-

wsoft [14] need to first train the base model on the data

with noisy labels and then do the fine-tuning on data with

clean labels. The proposed method uses the entire data to

train the whole network for only one time, which simplifies

the training process while achieves high accuracy. Fig. 5

shows the examples of single-label image classification by

the proposed method on Clothing1M. From the residual be-

tween the prediction of g and h, we can see that the residual

net is helpful for modeling the unreliable part in the noisy

data, which makes g and h better fit the clean labels and

noisy labels, respectively. However, if the images are too d-

ifficult to classify, they may also lead to wrong predictions.

4.6. Influence of Residual Net

To show the influence of the residual net in the whole

network, we provide ablation experiments to analyze the

performance of classifiers g and h. We provide two vari-

ants of our model in addition to proposed method (training

g, h jointly): i) training h alone (i.e., α = 0); ii) training g

alone (i.e., only using clean labels to train the model). As

shown in Table 5, training h alone does not perform better

Method

Dataset OpenImage Clothing1M

mAP APall top− 1

Backbone (Noisy) 61.82 83.82 68.94

training h alone 64.06 81.64 67.92

training g alone 67.34 93.73 75.13

training g, h jointly 69.02 94.08 79.93

Table 5. Influence of different training strategies to the image clas-

sification accuracy (in %). We use sigmoid as the activate function

for both OpenImage and Clothing1M datasets.

than Backbone (Noisy) since there is no explicit difference

between the clean net and the residual net. When we in-

troduce the data with clean labels to train classifier g, the

different roles of the two nets can be recognized. Compared

to training g alone, training g, h jointly achieves 1.7% im-

provement on OpenImage in terms of mAP, and 4.8% im-

provement on Clothing1M in terms of top-1 accuracy. The

results suggest that the reliable information identified by

the residual net from massive noisy labeled data can im-

prove the performance of classifier g in both single-label

and multi-label image classification tasks.

5. Conclusion

While weakly supervised image classification utilizing

massive noisy labeled data is valuable for practical appli-

cations where a large clean dataset is not available, it is

challenging because of the difficulty in exploiting the un-

derline semantic information from noisy data. We address

these issues by proposing a novel end-to-end trainable ap-

proach for weakly supervised learning that does not require

assumptions about the label type. The proposed approach

consists of a clean net and a residual net, which work in a

multi-task way, and are responsible for learning a mapping

from feature space to clean label space and a mapping from

feature space to the residual between clean labels and noisy

labels, respectively. As a result, the residual net can serve as

a regularization term to reduce the risk of overfitting of the

clean net. Extensive evaluations using both multi-label and

single-label image classification tasks on the MS COCO,

OpenImage, and Clothing1M datasets show that the pro-

posed approach achieves promising results compared with

state-of-the-art, and has good generalization ability.
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