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Abstract

This paper studies the problem of generalized zero-shot
learning which requires the model to train on image-label
pairs from some seen classes and test on the task of clas-
sifying new images from both seen and unseen classes. In
this paper, we propose a novel model that provides a uni-
fied framework for three different approaches: visual —
semantic mapping, semantic — wvisual mapping, and
deep metric learning. Specifically, our proposed model con-
sists of a feature generator that can generate various vi-
sual features given class embedding features as input, a
regressor that maps each visual feature back to its corre-
sponding class embedding, and a discriminator that learns
to evaluate the closeness of an image feature and a class
embedding. All three components are trained under the
combination of cyclic consistency loss and dual adversar-
ial loss. Experimental results show that our model not only
preserves higher accuracy in classifying images from seen
classes, but also performs better than existing state-of-the-
art models in classifying images from unseen classes.

1. Introduction

Deep learning models have achieved great success in im-
age classification tasks [28], and these models are so ef-
fective that they are comparable with humans. However,
humans are much better at recognizing novel objects that
they only saw a few times before or heard of but never saw.
This is because deep learning models for image classifi-
cation rely heavily on fully supervised training, and thus
they require a lot of labeled data. As there are too many
classes in the real world, it is almost impossible to collect
enough labeled data for each class. In this case, these mod-
els are challenged by the task of recognizing images from
classes that are unseen during training, which is also called
the zero-shot learning (ZSL) problem [!, 18]. In conven-
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tional zero-shot learning, the goal is to train an image clas-
sifier on a set of images from seen classes, and then test the
trained model using images from unseen classes, where the
sets of seen and unseen classes are totally disjoint, and that
during testing the label space only contains unseen classes.
However, this conventional setting is based on a strong as-
sumption that in testing stage the model knows whether an
image is from the set of seen or unseen classes, which is
not realistic and thus not applicable in the real world. When
the model receives a new image, it does not know whether
it comes from seen or unseen classes, and thus it needs the
ability to classify images from the combination of seen and
unseen classes, which is called generalized zero-shot learn-
ing (GZSL) [34, 6]. The main difference between zero-
shot learning and generalized zero-shot learning is the label
space during testing, which means that models designed for
conventional zero-shot learning can still be applied in the
generalized zero-shot learning setting.

A common strategy for tackling zero-shot learning is to
map images and classes into the same latent space and then
perform nearest neighbor search. Most existing methods
project visual features to the semantic space spanned by
class attributes, such as [11, 33, 1, 27, 2, 17], as is illus-
trated in Figure 1(a). However, as pointed out by [29, 9, 38],
using semantic space as shared latent space will suffer
from the hubness problem, which means projecting high-
dimensional visual features to low-dimensional space will
further reduce the variance of features and the results may
become more clustered as a hub. In order to mitigate this
problem, [29, 9, 38] propose to project semantic features
into the visual space, as illustrated in the left part of Fig-
ure 1(b). However, using a deterministic approach to map a
class’s semantic embedding to the visual space is still prob-
lematic, since one class label has numerous corresponding
visual features. In contrast, some recent works [23, 35, 31]
propose to use generative methods that can generate vari-
ous visual features conditioned on a semantic feature vec-
tor, as illustrated in the right part of Figure 1(b). Despite
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their effectiveness, their performance is limited by lacking

either the ability to learn a bi-directional mapping between

visual and semantic space, or an adversarial loss that acts as

a more flexible metric to evaluate the similarity of features.

Instead of manually choosing a common latent space, Rela-

tionNet [36] proposes to learn a deep metric network which

takes a pair of visual and semantic features as input and out-
put their similarity, as illustrated in Figure 1(c). However,

RelationNet [36] fails to learn latent features of images and

classes, nor does it support semi-supervised learning, and

thus it is outperformed by some recent works [23, 35, 31].
As the three different approaches have their different

merits and limitations, in this paper, we study the general-

ized zero-shot learning problem and propose a novel model
named Generative Dual Adversarial Network (GDAN) that
combines visual — semantic mapping, semantic —
visual mapping as well as metric learning methods in a uni-
fied framework, as illustrated in Figure 1(d). More specif-
ically, our model contains a generator network which is
able to generate image features conditioned on class em-
bedding, a regressor network that takes image features and
output their class embedding (i.e. semantic features), and

a discriminator network that takes as input an image fea-

ture and a semantic feature and output a score indicating

how well they match with each other. The generator and re-
gressor learn from each other through a cyclic consistency
loss, while both of them also interact with the discriminator
through a dual adversarial loss.

Our main contributions are summarized as follows:

e We propose a novel Generative Dual Adversarial
Network (GDAN) that unifies visual — semantic,
semantic — visual methods as well as metric learning
for generalized zero-shot learning.

e In contrast to previous works in zero-shot learning, we
design a novel dual adversarial loss so that the Regres-
sor and Discriminator can also learn from each other to
improve the model’s performance.

e We conduct extensive experiments that demonstrate the
ability of our proposed GDAN model in effectively clas-
sifying images from unseen classes as well as preserving
high accuracy for seen classes on four widely used bench-
mark datasets.

e We conduct component analysis to show that the combi-
nation of three components in our model actually helps
each of them in achieving better performance than in-
dividual ones. Visualization of synthetic samples from
unseen classes also demonstrate the effective generation
power of our model. Our code will also be available on-
line.

2. Related Work

Generative Adversarial Network Generative Adver-
sarial Network (GAN) [12] was originally proposed as a
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Figure 1. Four categories of zero-shot learning methods. (a) Em-
bedding models that map visual features of the same class to the
same feature in semantic space. (b) Models that map each class’s
semantic feature to features in the visual space. (c¢) Metric learn-
ing models that directly learn to evaluate the closeness of a pair of
visual and semantic features. (d) Our proposed model that unifies
the three methods using generative adversarial network and dual
learning.

method for image synthesis [12, 25] and has achieved state-
of-the-art results. However, GAN is also known for its
instability in training and suffers the mode collapse prob-
lem [4, 13]. In order to mitigate these problems and im-
prove the quality of synthetic samples, many methods have
been proposed. WGAN [4] and WGAN-GP [13] propose to
optimize GAN on an approximate Wasserstein distance by
enforcing 1-Lipschitz smoothness. LS-GAN [22] offers a
simple but effective solution by replacing the cross-entropy
loss of GAN with a least square loss that push the scores
of real and fake samples to different decision boundaries
so that the gradient never vanishes even when two distribu-
tions are totally disjoint. Our model also includes a GAN,
which is realized by combining a feature generator and a
discrminator. One major difference between our model and
traditional GAN is that our model contains a non-generative
component, i.e. a regressor network, that interacts with the
discriminator through an extra adversarial loss.

Dual Learning Dual learning has been shown to be ef-
fective in neural machine translation (NMT) [14] by train-
ing a prime task and a dual task together, where the dual task
is the inverse task of the prime task. For example, in neu-
ral machine translation, the prime task may be English —
French, and then the dual task is French — English.
Dual learning has also been applied to other computer vi-
sion tasks like semantic segmentation [19] and image-to-
image translation [42, 37]. Our work is related to Cycle-
GAN [42] and DualGAN [37] in that we borrow the cyclic
consistency loss from them. However, those two models re-
quire two generative networks which make them unable to
be directly applied in generalized zero-shot learning, since
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each class has a fixed semantic representation and a gener-
ative network is not suitable for visual — semantic map-
ping as it may generate very diverse semantic features. Thus
we need a novel architecture to incorporate cyclic consis-
tency in zero-shot learning.

(Generalized) Zero-shot Learning There are a few re-
cent works that tackles the (generalized) zero-shot learning
problem, which are closely related to our work. CVAE-
ZSL [23] proposes to use conditional variational autoen-
coder (CVAE) [30] to generate samples for unseen classes,
but it uses the vanilla version of CVAE which suffers from
the prior collapse problem [41]. SE-GZSL [31] is another
recent work that utilize variational autoencoder in general-
ized zero-shot learning. Although SE-GZSL [31] also has
a regressor that is similar to our model, it lacks the dual
adversarial loss we have. In contrast, the discriminator of
our model can learn a flexible metric to evaluate the rela-
tion between an image feature and a class embedding, and
the regressor of our model can also learn from the discrim-
inator through the adversarial loss. f-CLSWGAN [35] ap-
plies GAN to generate image features conditioned on class
attributes, but it does not have the ability to map image fea-
tures back to class attributes. RelationNet [36] tries to learn
a deep metric to evaluate the compatibility between an im-
age feature and an semantic feature, which is similar to the
discriminator in our model, while our model also has the
ability to generate samples for unseen classes and infer se-
mantic embedding from visual features.

3. Proposed Model

In this section, we first formally define the generalized
zero-shot learning problem, give an overview of our pro-
posed model, and then introduce each part of our model in
details.

3.1. Problem Definition and Notations

In this paper, we study the generalized zero-shot learning
problem. Specifically, let the training data (including vali-
dation) be defined as S = {(v,y,s,)|v € V*,y € V* s, €
A}, where v is an image’s feature produced by a pre-trained
neural network, V* is the set of image features from seen
classes, y is the label of image feature v, )* is the set of
labels for seen classes, s, is the attribute vector (semantic
embedding) for class y. Similarly, we can define the test
setas U = {(v,y,sy)|v € V', y € Y* s, € A}, where
V" represent the set of image features from unseen classes,
Y represents the set of labels for unseen classes, and that
Y NY*® = . The goal of generalized zero-shot learning is
to learn a classifier f : v — Y* U )%, where v is the visual
feature of an image from either seen or unseen classes.

3.2. Model Overview

The overall framework of our proposed Generative Dual
Adversarial Network (GDAN) is illustrated in Figure 2.
There are three components in our model, a Generator, a
Regressor and a Discriminator. The core component of
GDAN is the Generator network that can generate various
visual features conditioned on certain class labels. Along
with the Generator, we have a Regressor network that acts
as a deep embedding function, which tries to map each vi-
sual feature back to its corresponding class’s semantic fea-
ture. The Generator and the Regressor network together
form a dual learning framework, so that they can learn
from each other through a cyclic consistency loss. In ad-
dition, we have an extra Discriminator network that mea-
sures the similarity of a visual-textual feature pair, and it
interacts with the other two networks through a dual adver-
sarial loss. It should be noted that any of the three com-
ponents is able to perform generalized zero-shot learning,
where the Generator represents the semantic — visual
methods (e.g. [23, 31, 35]), the Regressor represents the
visual — semantic methods (e.g. [3, 7]), and the Dis-
crminator represents metric learning approach such as Re-
lationNet [36]. Our model provides a unified framework of
all three different approaches so as to make use of their re-
spective advantages and achieves better results for zero-shot
image classification.

Adversarial
training

‘ Generator

A ]
Discriminator

Dual learning

A,

Adversarial
training

‘ Regressor

Figure 2. Overall framework of the proposed GDAN model, where
black arrows indicate data flow.

3.3. Feature Generation Network

Our model’s framework is very flexible, which means we
can choose any generative model as the Generator. The sim-
plest one can be a feed-forward neural network that takes
as input the concatenation of a class embedding as well
as a noise vector randomly sampled from normal Gaus-
sian distribution, which is widely used in Generative Ad-
versarial Nets (GANs) [12]. However, this naive model
lacks the ability to infer noise vectors from image features.
Thus, here we resort to Conditional Variational Autoen-
coder (CVAE) [30], which was proposed as a generative
method that maps a random noise vector z € R? drawn
from P(z|x,c) to a data point x in the data distribution
conditioning on the context feature c. A CVAE consists
of two parts, an encoder Pg(z|x, c) that maps a data point
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Figure 3. Detailed illustration of our proposed GDAN model. E and G are the encoder and decoder/generator of the CVAE, R represents
the Regressor network, and D represents the Discriminator for adversarial training. The CVAE and the Regressor interact with each other
through a cyclic consistency loss, while they both learn from the Discriminator through a dual adversarial loss. The CVAE loss is not
illustrated in the figure for clarity, and the Regressor has an additional supervised reconstruction loss.

X, along with its class feature c, to its latent feature z, and a
decoder/generator Pg;(x|z, c) that maps a latent vector to a
data point. The training objective of CVAE is to minimize
the following loss function:

loss(0r,0c) = Ep,,,.(x,2),Ps(z/x.c) 108 Pa(x|z, c)] (1)
— Dk 1(Pe(z[x, ¢)||P(z)),

where Dxr.(p||q) represents the Kullback-Leibler diver-
gence between two distributions p and ¢, and P(z) is treated
as a unit Gaussian distribution.

However, as pointed out in [41, 40, 8, 21], CVAE is hard
to train due to the posterior collapse problem. In order to
mitigate this problem, we follow [31] to disentangle z from
¢, so that the encoder only depends on x (i.e. Ps(z|x)), as
illustrated in the top left of Figure 3. Also, as in [21], we
add an adversarial loss to help learning better CVAE, which
we will discuss later. The loss of the conditional variational
autoencoder (CVAE) used in our model is defined as fol-
lows:

Levae(0r,06) =Ep,,,.(v.s),Pu(ziv)[10g Pa(v|z,s)] (2)
— Dk (Pgp(z|v)||P(2)),

where v is an image’s visual feature and s is the class em-
bedding of v.

Although generative models like VAE [16] and
GAN [12] have been proved to be effective in generating
images, the output images of generative models are still
blurry for images with complex objects, and the synthetic
images often lack the sharpness to reveal the detailed at-
tributes of objects, which are important for zero-shot learn-
ing [7]. Hence, instead of generating raw images, we train
CVAE to generate visual feature v, where the ground truth
visual features are provided by image classification models
pretrained on ImageNet [28].

3.4. Regressor Network

While the CVAE learns to generate visual features from
semantic features, our model also has a Regressor network

that performs the reverse task of mapping visual features
back to their corresponding semantic features. The CVAE
and Regressor together form a dual learning framework so
that they can learn from each other. In our case, the prime
task is generating image features conditioned on class em-
bedding, while the dual task is to transform image features
back to their corresponding class embedding.

As illustrated in the down left of Figure 3, the Regres-
sor network R takes two kinds of image features as input,
where the first kind is the real image features v sampled
from training data, and the second kind is the fake features
v/ = G(s, z) generated by the CVAE. With the paired train-
ing data (v, s), we can train the Regressor with a supervised
loss:

Lap(R) =Ep,,,.v.slls — R(V)|[3- 3)

In addition, the Regressor interacts with the CVAE with
the following cyclic-consistency loss:

ﬁCyC (er 9E7 QR) = Epdam(V,SLPE (z|v) H |V - G(R(V)7 Z)”%
4

+1ls = R(G(s, 2))lI3),

where G is the decoder/generator of CVAE and Pg(z|v) is
implemented by the encoder E' in Figure 3.

3.5. Discriminator Network

So far, the Generator and Regressor already combines
semantic — visual and visual — semantic methods,
but it still lacks the ability to learn from a flexible metric
which can better evaluate the similarity of features. In order
to incorporate metric learning, the third component of our
model is a Discriminator network D (as shown in the right
of Figure 3) that takes as input a visual-semantic feature pair
(v, s) and output a compatibility score indicating the extent
to which v belongs to the class characterized by s. The
Discriminator network learns how to evaluate the closeness
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of an image feature to a class, instead of using a predefined
metric like L1/L2 distance or cosine similarity.

In order to train the Discrimiantor to distinguish differ-
ent types of fake data, inspired by Text-to-Image-GAN [26],
we also train the Discriminator with two kinds of fake in-
put, i.e. (G(s,z),s) and (v,s™), where s~ is a randomly
sampled class’s embedding and s # s~. In addition, we
add a novel third type of fake input generated by the Re-
gressor, i.e. (v, R(v)). In this way, not only the CVAE but
also the Regressor can learn from the Discriminator through
adversarial training.

Since GANs are notoriously hard to train, there are
many methods that try to stabilize the training process of
GAN [12, 22,4, 13]. In our model, we apply LS-GAN [22]
as the training method for adversarial loss for its simplicity
and effectiveness. Thus the adversarial loss for the Discrim-
inator of our model can be defined as:

Laaw(0D) =Ep,,,.(v.5)[D(v,s) — 1] )
+Epyua(v.9),Pr(aiv) [D(G(5,2),8)°]
+Ep,,,. [PV, R(V))?]
+EPya(v,9), Paara (s~ 1) [P (V,87)7),

where the first term is the loss for real samples (v, s), the
second term stands for the scores of features generated by
the Generator, the third term stands for the scores of class
embedding generated by the Regressor, and the last term is
the control loss which trains the Discriminator to discrimi-
nate pairs of real image features and real negative class em-
bedding. The negative sample s~ is randomly sampled from
the set of training classes {s, |y € V*,s, # s}. Here the
discriminator D tries to push the scores of real samples to
1 and push the scores for generated samples to 0, while the
generator G tries to push the scores of its synthetic samples
to 1.

Also, the adversarial loss for CVAE and Regressor can
be defined as:

»Cadv(eR) = ]EPdam(V) [D(Vv R(V)) - 1]2 (6)

Laav(08,0c) =Ep,.,.(v.s),Psv) [D(G(s,2) — 1]
@)

3.6. Full Objective and Training Procedure

In adversarial training, the discriminator is training sep-
arately from the other two networks, while we train the
CVAE and Regressor using an overall loss defined as:

L(0c,08,0p,0R) = Lcvae(Oa,08) + Laav(0c,0F)
+ A x Ecyc(ﬂg, 0r,0r)
+ A2 * Lo (Or)
+ A3 * Laay(OR), 3)

where A;, Ao and A3 are hyper-parameters that assign
weight on different parts of the overall loss.

The training procedure of our GDAN model is as fol-
lows: we first pretrain CVAE using Equation 2, and then
train the whole model in an adversarial way using Equa-
tion 5 and Equation 8. The implementation details will be
provided in the experiment section.

3.7. Evaluation Protocol

Once the model has been trained, in order to predict the
label for unseen classes, we can first generate new sam-
ples for each unseen class, and then combine those synthetic
samples with other samples in the training data, after which
we can train any new classifier based on this new dataset
that contains samples for both seen and unseen classes. For
fair comparison with other baselines, we just apply a simple
1-NN classifier for testing, which is used in most baselines.

4. Experiments

In this section, we conduct extensive experiments on four
public benchmark datasets under the generalized zero-shot
learning setting.

4.1. Datasets and Settings

We compare our GDAN model with several baselines on
SUN [24], CUB [32], aPY [10] and AWA2 [34]. Among
these datasets, aPY [10] and AWAZ2 [34] are coarse-grained
and of small and medium size respectively, while SUN [24]
and CUB [32] are both medium fine-grained datasets. We
follow the training/validation/testing split as well as the im-
age and class features provided by [34]. The statistics of
these datasets is summarized in Table 1.

For image features and class embedding, we use pub-
licly available features provided by [34]. We also adopt the
widely used average per-class top-1 accuracy to evaluate
the performance of each model, which is defined as follows:

Y . .. .
1 %I:I # of correction predictions in ¢

Y|

In generalized zero-shot learning setting, during test
phrase we use images from both seen and unseen classes,
and the label space is also the combination of seen and un-
seen classes V* U Y*. We want the accuracy of both seen
and unseen classes to be as high as possible, thus we need a
metric that can reflect the overall performance of a model.
Since arithmetic mean can be significantly biased by ex-
treme values, we follow [34] and use harmonic mean in-
stead. Let Accys and Accyw denote the accuracy of images
from seen and unseen classes respectively, the harmonic
mean H of seen and unseen accuracy is thus defined as:

Accy = T )

# of samples in ¢

2% Accyu x Accys

H =
Accyu + Accys

(10)
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. #seen classes | #unseen | #images #images #images
Dataset #attributes . .
(train+val) classes (total) (train+val) | (test unseen/seen)
aPY [10] 64 15+5 12 15339 5932 7924/1483
AwA2 [34] 85 27+13 10 37332 23527 7913/5882
CUB [32] 312 100+50 50 11788 7057 2679/1764
SUN [24] 102 580+65 72 14340 10320 1440/2580
Table 1. Statistics of datasets.
Dataset SUN CUB AwA2 aPY
Methods U S H S H U S U S H
SSE [39] 2.1 364 4.0 85 469 144 | 81 826 148 | 02 789 04
LATEM [33] 147 288 195|152 573 240 | 11,5 773 200 | 0.1 730 0.2
ALE [1] 21.8 33.1 263|273 628 344|140 81.8 239 | 46 737 8.1
DEVISE [11] 169 274 209|238 53.0 328|171 747 278 | 49 769 9.2
SJE [2] 147 305 19.8 | 235 529 336 | 80 739 144 | 37 557 69
ESZSL [27] 11.0 279 158 | 126 638 210 | 59 778 110 | 24 701 4.6
SYNC [5] 79 433 134|115 709 198 | 100 90.5 180 | 74 663 133
SAE [17] 88 180 11.8 | 78 540 136 | 1.1 822 22 04 809 0.9
DEM [38] 343 205 256 | 19.6 579 292|305 864 451 | 11.1 794 194
RelationNet [36] - - - 38.1 61.1 470 | 30 934 453 - - -
PSR-ZSL [3] 20.8 372 267 | 246 543 339|207 738 323|135 514 214
SP-AEN [7] 249 382 303|347 706 46.6 | 233 909 31.1 | 137 634 226
CVAE-ZSL [23] - - 26.7 - - 34.5 - - 51.2 - - -
GDAN 38.1 899 534|393 667 495|321 675 435|304 750 434
SE-GZSL* [31] 409 305 349 | 415 533 46.77 | 583 68.1 628 - - -
f-CLSWGAN* [35] | 42.6 36.6 394 | 43.7 49.7 - - - - - -

Table 2. Results of generalized zero-shot learning evaluated on four benchmark datasets.
] trains additional embedding models for testing, so their results may not be directly

LinearSVC for testing, and that f-CLSWGAN [
comparable with others.

4.2. Implementation Details

We implement the CVAE, Regressor and Discriminator
of our model as feed-forward neural networks. The Encoder
of CVAE has two hidden layers of 1200 and 600 units re-
spectively, while the Generator of CVAE and the Discrim-
inator is implemented with one hidden layer of 800 hidden
units. The Regressor has only one hidden layer of 600 units.
The dimension of noise vector z is set to 100 for all datasets.
We use Ay = A2 = A3 = 0.1 and find that they generally
work well. We choose Adam [!5] as our optimizer, and
the momentum is set to (0.9,0.999).The learning rate of
Discriminator is set to 0.00001, while the learning rate for
CVAE and Regressor is 0.0001. d_iter and g_iter are set to
1, which means all the modules of our model train with the
same number of batches. We train on each dataset for 500
epochs, save the model checkpoints every 10 epochs, and
then evaluate on the validation set to find the best one for
testing. Our code is also available online'.

' www.github.com/stevehuanghe/GDAN

*Note that SE-GZSL [31] trains an additional

4.3. Results

We compare our model with recent state-of-the-art meth-
ods on generalized zero-shot learning, and the results are
shown in Table 2. Although f-CLSWGAN [35] also uses
GAN for zero-shot learning, it trains additional embedding
methods such as [, 2, 11, 33], while most baselines only
use 1-NN for testing, thus its results may not be directly
comparable with others. SE-GZSL [31] is also closely re-
lated to our model, but it trains an additional LinearSVC for
testing, so it is not directly comparable with other methods.
For f-CLSWGAN [35] and SE-GZSL [31], we just copy
and paste their results from the original papers [35, 31] in
Table 2 for reference.

As can be seen from Table 2, our model achieves a sig-
nificant performance gain in SUN [24]. For both seen and
unseen classes, our method achieves the highest accuracy
among all baselines, and with a significant improvement
in classifying images from seen classes, our method also
outperform deep embedding models [38, 3, 7] and gener-
ative model such as [23] as well as metric learning model
[36] by a large margin. This shows the benefits of putting
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visual — semantic, semantic — visual and metric
learning into one framework.

For CUB [32] dataset, our model achieves the highest
accuracy for unseen classes, while our accuracy for seen
classes is slightly lower than SP-AEN [7]. Still, we achieve
the highest harmonic mean of 49.5%, which is 2.5% higher
than the second place RelationNet [36]. This again shows
that our model maintains a good balance of predicting im-
age from both seen and unseen classes, while previous
method may not manage the trade-off as well as ours.

For AwA2 [34], our GDAN outperforms some recent
methods like SP-AEN [7] and PSR-ZSL [3] in both un-
seen class accuracy and harmonic mean accuracy. Al-
though DEM [38] and RelationNet [36] slightly outper-
forms our GDAN in harmonic mean accuracy by less than
1%, GDAN achieves a higher unseen class accuracy than
them with a margin of 1.6%.

According to [7], aPY [10] has a much smaller cosine
similarity (0.58) between the attribute variances of the dis-
joint train and test images than the other datasets (0.98 for
SUN, 0.95 for CUB, 0.74 for AwA2), which means it is
harder to synthesize and classify images of unseen classes.
Although previous methods have relatively low accuracy
for unseen classes, our performance gain is even higher
with such a difficult dataset. Compared to all previous
models, our GDAN achieves a higher accuracy for unseen
classes by a large margin of 16%, and still our model main-
tains a high accuracy for seen classes. From the results of
previous models we can see that although they generally
achieves very high accuracy for seen classes, they perform
very poorly when predicting images from unseen classes,
while our model achieves a good balance between seen and
unseen classes, which give us the highest harmonic mean
accuracy on aPY [10].

4.4. Component Analysis

In this section, we study the problem of whether the three
components actually help each other in training, so we train
them independently to see how well they perform when they
are alone. We train the CVAE component using Equation 2
and evaluate using the same protocol as GDAN. For the
Discriminator, we train it using Equation 5 but with only
two kinds of input, i.e. (v,s) and (v,s™). During evalu-
ation, for each image feature, we use the Discrimiantor to
calculate its matching score with all class embedding and
assign it to the class which has the largest score. As for
the Regressor, we train it with Equation 3 and evaluate us-
ing 1-NN. We can also use the Discriminator and Regres-
sor of our trained GDAN model and test their performance
in generalized zero-shot learning, and we denote them as
Discriminator-GDAN and Regressor-GDAN. We also train
our GDAN without Discriminator (GDAN w/o Disc) and
without Regressor (GDAN w/o Reg) respectively.

Datasets | SUN | CUB | AwA2 | aPY |

CVAE 30.1 | 33.7 28.5 | 28.1
Discriminator 0.07 | 143 4.2 1.2
Regressor 0.1 34 3.8 10.1

Discriminator-GDAN | 1.0 3.3 11.2 11.1
Regressor-GDAN 5.8 4.3 7.1 11.5
GDAN w/o Disc 37.3 | 38.2 314 | 29.6
GDAN w/o Reg 37.4 | 38.1 30.9 | 29.3
GDAN 38.1 | 39.3 321 | 304

Table 3. Unseen class accuracy for component analysis.

The results of unseen class accuracy evaluated on four
dataset are shown in Table 3. As we can see, the CVAE
component alone is comparable to many baselines like
PSR-ZSL [3] and SP-AEN [7], while the Regressor and
Discrimiantor are very weak on their own, which is reason-
able since they are implemented as neural networks with
only one hidden layer. If we train with only two of the com-
ponents, as we can see from the second and third last row of
Table 3, our model still have a major performance gain com-
pared to other baselines, and the Regressor or Discriminator
have similar effect on improving the performance of CVAE.
In addition, if we train all three components together, we
find out that not only the CVAE component generates better
samples for unseen classes, but also the Discriminator and
Regressor have a performance boost, which demonstrates
the effectiveness of putting three components under a uni-
fied framework.

38 /\
36 -

— aPY

— AwA2

— CUB
SUN

32

100 200 300 400 500
number of synthetic samples

test accuracy of unseen classes
w
g

Figure 4. Test accuracy for unseen classes with respect to the num-
ber of synthetic samples.

4.5. Effect of the Number of Synthetic Samples

We also analyze how the number of synthetic samples
affects test accuracy, as shown in Figure 4. As we can see,
for AwWA2 [34], increasing the number of synthesized ex-
amples does not help much in increasing the prediction ac-
curacy on unseen classes, while for the other classes, the
accuracy increases as the number of synthesized samples
increases, and saturates when the number of synthetic sam-
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ples is about 400. Also, CUB [32] and SUN [24] have a
larger improvement in performance as the number of syn-
thetic samples increases than the other two datasets, which
may be because of there are much more unseen classes in
CUB [32] (50) and SUN [24] (72) than that of aPY [10] (12)
and AwA?2 [34] (10), and thus more synthetic samples can
better help distinguishing images among those classes.

4.6. Visualization of Synthetic Image Features

In order to provide a qualitative evaluation on our pro-
posed GDAN model, we visualize some synthetic image
features along with some real image features, and the re-
sults are illustrated in Figure 5. Since the numbers of un-
seen classes for CUB [32] and SUN [24] are relatively large
and thus hard to visualize, we only visualize the results of
AwA?2 [34] and aPY [10]. For each unseen class we syn-
thesize 200 image features, and we also randomly sample
200 real image features for each unseen class as well, and
then we use t-SNE [20] to reduce the dimension to two for
visualization.

From the real samples in Figure 5(a) we can see that
some classes overlap with each other by a large degree, such
as blue whale and walrus, rat and bat. This overlapping is
reasonable since bat and rat are biologically similar to each
other, and thus it make sense for the synthetic samples of
bat to be close to rat as well. For most classes like bobcat,
horse, dolphin, the synthetic image features are very close
to the true samples, where some even overlap with true sam-
ples quite well, such as blue whale, sheep and giraffe. One
failure case is the rat class, where we can see that the syn-
thetic samples are far from the true samples. Except for this,
as we can see from Figure 5(a), I-NN can predict the label
of test images quite well for most classes.

Similar conclusions can be drawn for aPY [10] as well,
as shown in Figure 5(b). It should be noted that the real sam-
ples of aPY [10] are densely cluttered and that many classes
overlap with each other by a large degree, especially in the
down-right part of Figure 5(b), where there are at least 4

® donkey ® motorbike train horse
® tvmonitor ® cow sheep person
® goat jetski statue ® pottedplant

60 -

40 -

(b)

Figure 5. t-SNE visualization of synthetic () and real (x) image features for unseen classes in (a) AWA?2 and (b) aPY datasets.

classes almost completely overlap together. From the visu-
alization of other classes that are put closer to the boundary
of the figure, we can see that our model generates very good
visual features that matches the real ones quite well, such
as the sheep, motorbike and person classes. Even for the
densely cluttered area, the synthetic features still totally lie
within that clutter, which means our model can still gener-
ate very good examples of those cluttered classes. Just as
the AwA?2 [34] dataset, however, there are still some failure
cases here, for example, the synthetic features of the starue
class are not very close to the real features.

5. Conclusion

In this paper, we study the generalized zero-shot learning
problem and propose GDAN, a model that unifies three dif-
ferent approaches: visual — semantic mapping (genera-
tor), semantic — visual mapping (regressor), and metric
learning (discriminator). The generator and the regressor
learn from each other in a dual learning fashion, while they
both learn from the discriminator through a dual adversarial
loss. In this way, our model provides a unified framework to
bridge the gap between visual and semantic space in a gen-
erative dual adversarial framework. Extensive experiments
on four benchmark datasets demonstrate the effectiveness
of our model in balancing accuracy between seen and un-
seen classes. Component analysis also show that each of
the three components can benefit from jointly training to-
gether and thus demonstrate the effectiveness of our pro-
posed model. We also visualize the synthetic visual features
of unseen classes to show that our model is able to generate
high quality visual features.
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