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Abstract

The planar motion of ground vehicles is often non-
holonomic, which enables a solution of the two-view rel-
ative pose problem from a single point feature correspon-
dence. Man-made environments such as underground park-
ing lots are however dominated by line features. Inspired
by the planar tri-focal tensor and its ability to handle lines,
we establish an n-linear constraint on the locally circular
motion of non-holonomic vehicles able to handle an arbi-
trarily large and dense window of views. We prove that
this stays a uni-variate problem under the assumption of lo-
cally constant vehicle speed, and it can transparently han-
dle both point and vertical line correspondences. In par-
ticular, we prove that an application of Viete’s formulas
for extrapolating trigonometric functions of angle multiples
and the Weierstrass substitution casts the problem as one
that merely seeks the roots of a uni-variate polynomial. We
present the complete theory of this novel solver, and test it
on both simulated and real data. Our results prove that it
successfully handles a variety of relevant scenarios, eventu-
ally outperforming the 1-point two-view solver.

1. Introduction

Autonomous vehicles promise to be a future disrupt-
ing technology on the market. The topic is currently in-
vestigated intensively across both industry and academia,
and any successful outcome depends heavily on a reli-
able, online solution to the interdependent problems of self-
localisation and environment mapping. While the most
powerful solutions rely on a multitude of sensors including
lidars and cameras, the community maintains a high inter-
est in developing vision-only alternatives, too. Cameras are
economic close-to-market sensors that may unlock lower-

level autonomy in more controlled and less critical scenar-
ios, even in the absence of other exteroceptive sensors [6].

While direct sparse [2], semi-dense [3], and dense meth-
ods [26] have already been presented, the more traditional
way of sparse feature correspondence-based localization
and mapping continues to be of high importance. Besides
outstanding computational efficiency, it also produces valu-
able information for place recognition and enables seamless
integration into global optimization objectives [25]. A par-
ticularly interesting case is given by the estimation with a
single, forward-looking camera, as such sensors can already
be found in today’s vehicles on the market. The present
paper focuses on the related fundamental problem of rela-
tive pose estimation with a single camera mounted on a car.
The solution to this problem is required at the initialization
stage, when no prior information about either the motion
of the vehicle or the environment is available. Sequential
application furthermore enables a straightforward solution
of the visual odometry problem [28], thus enabling online
relative self-localization of the vehicle.

The classical solution to the calibrated relative pose
problem with a single camera requires at least five point-
feature correspondences. However, as shown in [31], the
non-holonomic motion of ground vehicles has fewer de-
grees of freedom, which reduces the number of required
correspondences. The motion of ground vehicles can be ap-
proximated by the Ackermann model, which forces the lo-
cal trajectory to be a circular arc in the plane, and the head-
ing of the vehicle to remain tangential to the arc. The model
depends on only two parameters, which are the radius of the
circle and the inscribed angle of the arc. Furthermore, us-
ing only a single camera renders scale unobservable, and
the latter affects only the radius of the circle. As outlined in
[31], this fact permits the resolution of the relative rotation
angle from only a single feature correspondence.

Draw-backs of the 1-point solver presented in [31] are a
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Figure 1. Our work aims at exploiting the non-holonomic motion
of ground vehicles along circular trajectories to simplify visual
motion estimation. We use a single, forward-looking camera.

restriction to two views and an inability to handle line corre-
spondences. As encompassed by tri-focal tensor geometry
[12], the inclusion of lines notably requires the presence of
at least three views. For general motion with 6 degrees of
freedom, the minimal case leads us to the three-view four-
point problem, which remains unsolved to date. Though
the case of planar motion has been successfully addressed
by the planar trifocal tensor [11], an adaptation to the non-
holonomic motion of most ground vehicles is yet to be pre-
sented.

Inspired by the planar tri-focal tensor, we present the fol-
lowing contributions:

e We introduce an n-linear constraint adapted to the case
of planar non-holonomic motion. It can transparently
handle both point and vertical line feature correspon-
dences measured over an arbitrary number of views.

e We prove that the resolution of the motion can be re-
garded as a rank minimisation problem over a single
degree of freedom.

e We apply Viete’s formulas for extrapolating trigono-
metric functions of angle multiples and the Weierstrass
substitution to transform the rank minimisation objec-
tive into a uni-variate polynomial.

The hereby obtained solver is able to handle either points
or vertical lines over an arbitrary number of views (at least
three) and increases the flexibility in how we can boot-
strap and realise online visual localisation pipelines. In
particular—as we will demonstrate through our experiments
on both simulated and real data—using more views in-
creases the signal-to-noise ratio, and therefore leads to im-
proved accuracy over existing solvers. Our paper is organ-
ised as follows. After a discussion on further related work
in Sections 2 and 3, Section 4 presents the derivation of our

novel solver. Section 5 presents successful results on both
simulated and real data, before Section 6 concludes with a
brief discussion of our contribution.

2. Related work

While, the majority of online localization and map-
ping frameworks for ground vehicles rely on either stereo
[16, 17, 9] or even surround-view camera systems [6, 15],
the most recent, state-of-the-art pipelines successfully solve
the problem based on only a single forward-looking camera
[25]. As outlined in the seminal work by Nistér et al [28],
a basic monocular visual odometry solution may already be
achieved by a sequential application of a calibrated relative
pose solver. The latter algorithm is furthermore required for
general bootstrapping of any point-based method in the ab-
sence of prior information about either motion or structure.

The calibrated relative pose problem can be solved with
as few as five point-feature correspondences between a pair
of views [27, 32, 22, 19]. Linear solutions to the problem
have been presented earlier in [23, 13], which do however
suffer from degenerate conditions in the planar case. How-
ever, of higher relevance to our work are solvers that rely
on lower-dimensional, approximative models of the spe-
cific motion of ground vehicles. For example, [4] and [34]
look at the special case of a known directional correspon-
dence between both views, a case that is easily fulfilled on
a ground vehicle for which the motion can be approximated
to remain in a plane. The most important foundation for
our work is given by [31], who exploits the fact that non-
holonomic motion of ground vehicles is in fact a function of
only two degrees of freedom. Considering that scale may be
unobservable, this enables the solution of the relative pose
problem from as few as a single point-feature correspon-
dence across two views. The work has later been extended
in [30], proving that a fixed, known, horizontal baseline be-
tween the wheel axis and the camera may even render scale
observable. [20] furthermore applied the model to multi-
perspective camera systems.

More recently, we have experienced a revival of hybrid
point and line feature-based methods, with [29] and [35]
providing monocular solutions, and [9] a state-of-the-art
stereo alternative. Despite its difficulty, there have also
been a few efforts on realizing purely line-based online
structure-from-motion pipelines [24, 7, 21]. Their results
are however not very encouraging as [24] states that From
the experimental and simulation results, there is no incen-
tive to believe that lines constrain the motion sufficiently to
be used alone, and [7] and [21] only present small scale
experiments without evaluating motion accuracy at all. As
we will show in this work, exploiting non-holonomic con-
straints over multiple views bares the potential to perform
accurate and robust, purely line-based visual motion esti-
mation. Our work relies on the tri-focal tensor, which has
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been introduced in [12] as a means to constrain relative pose
over multiple views observing line feature correspondences.
The theory has later been summarized in [14], eventually
leading up to further important foundations for constraining
motion over n views. Our work is also inspired by [11],
which adapts the tri-focal tensor relationships to the case of
planar motion and bearing measurements in the plane.

3. Foundations

We start with a brief review of the planar tri-focal ten-
sor [11], which solves a problem that is tightly related to
ours. We furthermore introduce a parametrization of the
non-holonomic motion of ground vehicles that will be used
in the continuation.

3.1. Short review of the planar tri-focal tensor

The general tri-focal tensor describes the incidence re-
lationships between lines measured over three views [12].
In the calibrated case, these incidence relationships take the
form

n; x (nd [Ty, Ty, Ts]nz)” =0, (1)

where n1, no, and ng are the normalized line measurements
in views 1, 2, and 3, and T, T, and T3 are a function of
the extrinsic Euclidean transformation parameters describ-
ing the pose of each view. The planar tri-focal tensor looks
at what happens if the camera is mounted on a ground ve-
hicle which remains in the horizontal plane, and for which
the z-axis of the body frame remains aligned with the grav-
ity vectorg = [0 0 —1]7. nj, ny, and n3 furthermore
originate from bearing measurements in the plane. Such
measurements can originate from 1) points measured in the
horizontal plane, 2) vertical lines projected into the horizon-
tal plane, or 3) arbitrary 3D points projected onto the ground
plane. We explain the case of vertical lines, point features
may be transparently adopted by the description, too.

Let 1 be one of the original lines measured in the image
plane !. Vertical lines distinguish themselves from the fact
that they intersect with the vanishing point of the vertical
direction, as in

(KRewg)'1=0, )

where Ry, notably permits the rotation of points from the
body frame of the vehicle into the camera frame (can be
arbitrary), and K represents the matrix of intrinsic camera
parameters. (2) can be reformulated as

g” (Rew K'1) =g'n =0, 3)

where n is the searched normalised bearing measurement
expressed in the body frame of the vehicle. It is easy to
recognise that—due to the form of g—the third coordinate

ILine vectors in the image plane are 3-vectors 1 such that any image
point on the line x fulfils x7'1 = 0.

of n needs to remain 0, hence it represents a measurement
in the horizontal plane. It is furthermore easy to prove that
n in fact represents the normal of the ray corresponding to
the bearing measurement.

T4, Ts, and T3 for themselves take a special form in
the case of planar motion. The rotation of each camera
matrix notably remains a pure rotation about the z-axis,
whereas the translation has a zero component along the ver-
tical direction. It is again easy to prove that—under these
conditions—only a single non-trivial equation from (1) is
remaining. With 5 degrees of freedom (originating from 2
planar relative displacements and an unobservability of the
overall scale), the problem can be solved from 5 bearing
correspondences across the three views.

We leave the discussion about the planar trifocal tensor
here, and refer the interested reader to [11], as our primary
interest lies in the form of the bearing measurements. The
motion model is now replaced to take into account the spe-
cial properties of non-holonomic ground vehicles.

3.2. The Ackermann motion model

As exploited in the original work of Scaramuzza et al.
[31], the motion of a ground vehicle can be approximated
to lie on a circular arc contained in the ground plane. As
indicated in Figure 1, the heading of the vehicle furthermore
remains tangential to that arc. A minimal parametrisation
of the motion is hence given by the inscribed arc-angle 6,
as well as the radius of this circle 7. The centre of the circle
is commonly called the Instantaneous Centre of Rotation
(ICR), and even the front wheels of steering ground vehicles
travel along circular trajectories which are centered around
the ICR. We adopt the convention that the y-axis of the car
is pointing in the forward-direction, while the z-axis points
to the right. Let us denote the relative displacement by t and
R. It permits the transformation of points from the second
back to the first frame using the equation pr, = Rpr, +t.
R and t are given by

1 —cosf 1 —cosf
t = r sin 6 = — sin @ 4
0 sin 6 0
cosf) sinf O
R = —sinf cosf 0], (®))

0 0 1

where d fixes the length of the displacement along y. Note
that this form differs from the one presented in [31] in that
it does not employ half angles. The equivalence of both can
however be proven quite easily using half-angle formulae
and by substituting p = cog 7 in [31]. Fixing the displace-
ment along y helps us to ensure that the overall translational
displacement does not vanish if 6 approaches zero.
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4. 1-feature n-view solver

We now proceed to the core of our contribution, which
is a novel algorithm for estimating non-holonomic motion
over n views and from a single feature correspondence. We
start by seeing our ideal-case assumptions and its implica-
tions on the motion model. We then see how a constraint
over n views can be obtained from an n-linearity, and how
this constraint permits the solution of the motion via a uni-
variate rank minimisation objective. We proceed with a se-
quence of substitutions and approximations that finally re-
sult in a solver that merely requires finding the roots of a
uni-variate polynomial. To the end of accurate and robust
results, this solver is finally embedded into histogram vot-
ing and multi-feature optimisation procedures.

4.1. Extending the motion model

We now move to a window of n successive frames which
are denoted by F;, where i = {0, --- ,n — 1}. Our assump-
tion is still that the vehicle travels along a circular trajec-
tory, and that the heading of the vehicle remains tangen-
tial to the arc. We furthermore assume that the tangential
speed of the vehicle (and thus also its rotational velocity)
remains constant during the capturing of the frames. Note
that these assumptions are no more restrictive than the orig-
inal assumptions in [31]. We merely assume that the vehicle
speed can be regarded as constant over short time intervals,
an assumption that is equally valid for any number of frames
captured within the same time interval. More frames within
the same time-span are easily captured by increasing the
camera framerate.

Denoting the relative rotation angle between successive
frames 6, the relative pose of subsequent frames are now
simply given by employing angle-multiples:

d 1 — cos(i0)
t, = — sin(i6)
sin § 0
cos(if)  sin(if) 0
R; = |—sin(if) cos(if) Of. (6)
0 0 1

4.2. n-linearity in the case of Ackermann motion

The derivation of our n-view solver starts with the basic
incidence relationship that needs to be fulfilled in each view.
Let X = [az Yy oz 1]T be a point on the feature that is
observed by the bearing measurements n;, ¢ € [0...n — 1].
As explained in Section 3.1, n corresponds to a horizontal
vector that represents the normal vector of a vertical plane
that contains both the camera centre and the observed fea-
ture (e.g. a vertical line or an arbitrary, single 3D point). Let
P; be the normalised camera projection matrix for frame

ICR

Figure 2. General Ackermann motion model used throughout this
paper. Please see text for detailed explanations.

F;. The transformed world point X needs to intersect with
the measured vertical plane, which leads us to the constraint

n/P;X = 0. (7

Each camera matrix P; is a function of the motion parame-
ters

P;=[R] | -Rlt]. ®)
After substituting the camera matrices in (7), replacing the
pose parameters with their expressions given in (6), remov-
ing the trivial line 0 - z = 0, and factoring out d, we obtain

cos(if) —sin(if) = 1(9 (1 —cos(if))| |*

[«’Un, ym] in(i0) (i0) mL) L (i0) y| =0.

S| 2 COS( 2 sin(@) Sin|( 2 d

)]

The constraints from each view can be stacked into an n-
linear problem, which finally leads to

100
(0 ¥my) (0 1 0)

cos(if) —sin(if) g5 (1 — cos(if)) T
(CO <sin(i(9) cos(i0) 19)# sin(i0) > |:l/:| =0.

Sn(9)

(E <<< —1)0) —sin((n—1)8) k(1 — cos((n - 1)9)))
Fans Yo sin((n —1)0)  cos((n —1)0) ’m.l(g) sin((n — 1)0)

(10)

Note that this form is similar to the n-linearity presented

in [14] (Chapter 17), the difference being a specialization to

the non-holonomic, planar case.

4.3. From rank minimisation to a univariate poly-
nomial objective

Our objective (10) is of the form Ax = 0, where A is
a matrix function of the angle interval 6. In order to have a
non-trivial solution, A needs to be rank deficient. The so-
lution of 6 can hence be enforced by solving the rank min-
imisation problem

Bopr = argminrank (A (6)) . (11)
0
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What follows is a sequence of substitutions and simplifi-
cations that will transform this optimisation objective into
finding the roots of a simple univariate polynomial. The
procedure starts with ensuring that A becomes a polyno-
mial matrix function.

The first substitution that we apply is given by replac-
ing trigonometric functions of angle multiples by functions
that only involve cos 6 and sin 6. This is achieved by using
Viete’s formulae

2k+1<i ;
sin(if) = Z (-1)k <2k N 1> cos™2*=1(p) sin?*+1(9)

wet
N k(7 i—2k . 2k
cos(if) = kE:O(fl) <2k> cos'™“¥(0) sin“" ()

12)
We then apply the Weierstrass substitution (also known
as the tangent half-angle substitution) given by

122
{cos@- el (13)

M _ 4
sinf = Trer

We finally substitute (13) in (12), the result into (10), and
multiply the equation with (1 4 22)(»~1 to largely reduce
the degree of the denominator. We obtain

" Co =Sy HZ((1+:2)= )
(»Lnn l/nn) <S(1 Cy 7%50 :
=0
(z Ynn_1) Cn1 =Sy %((1 + 32)2('1*1) —Ch1) d
n,—1  JInnpg Spo1 Ch _I‘erzz So1
(14
where
2k<i ;
Ci=(1+ Zz)n’]” Z (,1)}6 <2k> (1— Z2)1—2k<2z>2k
k=0
2k+1<i ; .
S;= (14221 Z (-1)* <2k L 1) (1 — 22)i=2k=1(g)2k+1
k=0
15)

It is interesting to observe that the denominator in this
expression cancels out so the problem takes the form

p2n—10(z) pl2n—1(z) pl2n-1()] [e

pl2n —1](=) pl2n—1(z) pl2n —1(2)], , |d

= B[2n — 1](2) =0, (16)

SRS

where p[k]|(z) and B[k](z) denote a degree-k polynomial
and matrix in z, respectively.

Since rank(B) = rank(B7B), our optimisation objec-
tive finally becomes

Zopt = argminrank (M[4n — 2|(z)), (17)

where M[4n — 2](z) = B[2n — 1](2)TB[2n — 1](2) is a
3 x 3 polynomial matrix function of z. M is a positive semi-
definite matrix, and its rank can be minimized by minimis-
ing its smallest eigenvalue (which, in particular, is equiva-
lent to minimizing the smallest singular value of the original
matrix A). The objective becomes

Zopt = argmin min (so}\ve (det(M — )\I))> . (18)

While this objective looks compact, it is indeed hard to
optimise as it depends on an iterative, internal resolution of
the smallest eigenvalue of M, which—though possible—is
hard to compute in closed form, especially considering the
elevated order of the z-polynomials contained in M. How-
ever, it is also clear that in the ideal noise-free case, the rank
deficiency is fulfilled and the smallest eigenvalue of M at
the optimum simply becomes zero. We therefore set A to
zero, and simply solve the final objective

Zopt = argmin (det (M)) . (19)

Note that this is equivalent to seeking the real roots of a
univariate polynomial in z, which we solve using Sturm’s
root bracketing approach. Due to our local assumption on
the vehicle motion model, § € (-7, 7), thus leading to
z € (—1,1). The determinant polynomials are of order
12n — 6, and typically return only one or two real roots.
It is clear that the introduction of noise will perturb this
solution, but we prove in our experimental results section
that this influence is marginal. Furthermore, the determi-
nant constraint has the significant advantage of being much
less affected by local minima than the original rank mini-
mization objective, which is especially the case if only con-
sidering a single feature correspondence. The solution of
the above objective therefore returns a very good starting
point for a concluding refinement over all inliers.

4.4. Robustness via Histogram Voting

Since using only a single feature correspondence to ob-
tain a hypothesis for 6, a straightforward solution to deal
with outliers is given by performing histogram voting [31].
We simply take all roots identified from our determinant
constraint and set up the histogram using the Freedman-
Diaconis rule for automatic bin sizing [5]. We finally pick
the center of the dominant bin as an initial guess, and define
the inlier set as the set of correspondences that contributed
to the dominant bin.

4.5. Solution refinement

The final solution is refined over all inlier correspon-
dences. This refinement is achieved by stacking all inlier
correspondences into an extended, multi-correspondence
form of (10). This remains a problem of the form A (6)x =
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0, and can again be optimized by performing a rank mini-
mization of A over #. In our concluding refinement step,
this nonlinear least-squares problem is solved exactly by
minimizing the smallest singular value of A using a bisec-
tioning 1D line search. We kindly refer the reader to our
supplementary material for further details about the method.

5. Experimental evaluation

We test our algorithm on both synthetic and real data. It
is clear that the success of our method depends on a suf-
ficient validity of the Ackermann motion assumption. Our
experiments therefore focus on a comparison against the 2-
view 1-point solver proposed in [31], which operates under
the same assumptions than our method. We execute differ-
ent simulation experiments in order to test the accuracy and
sensitivity of our method, which includes an analysis of the
performance under increasing violation of the Ackermann
assumption. We conclude with tests on popular, real-data
benchmark sequences and compare both methods against
ground truth recorded by an accurate Inertial Navigation
System.

5.1. Experiments on simulated data

We start by seeing the definition of a default random ex-
periment for our simulations. Without loss of generality, we
assume that the pose of the first frame equals to [I\O]. We
furthermore fix the displacement d along y to 1 for all our
experiments, which again has no impact on generality due
to scale unobservability. We then add 5 further views by ro-
tating each new view by 6 = 5° with respect to the previous
one, and apply the Ackermann motion model. The orien-
tation of the camera on the vehicle is fixed such that the
image plane is negative and the principal axis is pointing in
the forward direction

0
0 —1]. (20)
1

The camera model is assumed to be perspective with a fo-
cal length of 721.53, and a principal point in the center of
the image which has a size of 1242 x 375. To conclude,
we generate 15 random correspondences across all views
by defining random points in the first image, normalizing
them, defining random depths of about 8, and reprojecting
the hereby obtained 3D landmarks into all views. We con-
clude by adding normally distributed noise with a standard
deviation of 5 pixels to each image point.

The method from [31] is denoted 1-pt, whereas our one-
feature n-view method is denoted by 1FNV. In order to be
fair, 1-pt is evaluated over each pair of subsequent views,
followed by averaging of all results. 1FNV is evaluated over
the entire window. We conduct six types of experiments for

which each time one of the default parameters is changed
and varied over a certain range. For each experiment and
each setting, we run 1000 random experiments and calculate
the mean and standard deviation of the recovered 6 with
respect to ground truth. Our experiments are as follows:

e Variation of 0: In our first experiment, we change the
value of the inter-frame rotation angle 6 from 0 to 8 de-
grees. As indicated in Figure 3(a), it can be observed
that a larger inter-frame rotation angle leads to a re-
duction of the error with respect to ground truth. The
figure also demonstrates that using more views over a
larger window represents an improvement over the 2-
view solver 1-pt.

e Variation of the number of views: We vary the number
of views from 3 to 9. The result is illustrated in Fig-
ure 3(b). As expected, 1IFNV performs better as the
number of views is increasing, and furthermore outper-
forms 1-pt as soon as more than five views are taken
into account.

o Number of correspondences: Here we change the num-
ber of correspondences from as few as one until 80.
The result is indicated in Figure 3(c). It can clearly
be observed that the multiple observations over an ex-
tended window of views help 1IFNV to maintain a high
level of accuracy even in the minimal case of a single
correspondence. This demonstrates a high ability to
operate in feature-poor environments.

e [mage noise: As shown in 3(d), taking multiple obser-
vations of features also leads to a better signal-to-noise
ratio, thus again demonstrating an improvement given
by 1FNV.

e Deviation from Ackermann: Taking an extended win-
dow of views of course diminishes the validity of our
model if the Ackermann motion assumption is vio-
lated. A limit on the size of the window is typically
given by the vehicle speed and the camera framerate.
We generate deviations from the Ackermann model
by simulating a dynamic rotational velocity which
changes linearly over time. The orientation of the ve-
hicle is obtained by integrating this rotational veloc-
ity, and the position is extrapolated by assuming con-
stant tangential velocity. The linear model for the rota-
tional velocity is defined as w = 0.1k - wp - ¢ + wo,
where w defines a per-frame rotation change varied
by k times 10% of the initial rotational velocity per
frame, wg = 5°. k is varied from O to 4. As expected,
our model performs slightly worse than 1-pt for devi-
ations from the Ackermann model shown in 3(e). As
we will see in Section 5.3, the validity of the model re-
mains however sufficient for 1IFNV to outperform 1-pt
on real data.
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Figure 3. Comparison between our proposed method (/ FNV) and the method from [31] ({-pr) for different perturbation factors. Each value
is averaged over 1000 random experiments. Details are provided in the text.

e Focal length: The focal length impacts on the error
in the bearing normals n after normalization. As illus-
trated in 3(f), both methods show only a slight increase
in the error even if the focal length is reduced by 50%.

5.2. Validity of the determinant solver

As mentioned in Section 4.3, our final rank minimisa-
tion is approximated by the determinant function. Here we
provide a separate experiment that analyses the error com-
mitted by this operation. We conduct 1500 random experi-
ments as outlined in the previous section, and show the error
after the determinant minimization, and after the minimisa-
tion of the smallest singular value. Figure 4 shows the distri-
bution of the errors, indicating that the determinant already
provides a very good approximation of the SVD solution
as the mean is very close the zero, and the standard devia-
tion insignificantly larger than the one of the singular value
minimisation.

5.3. Experiment on Real Data

We conclude with tests on real data, where we rely on the
KITTI benchmark dataset[8]. These datasets are fully cal-
ibrated and contain images captured by a forward-looking
camera mounted on a vehicle driving through a city. The
dataset allows us to compare our method against ground
truth which was obtained using high-standard GPS/IMU

200
© 150 Det
S — SVD
2100
2 50
o | \
-0.01 -0.005 0 0.005 0.01

residual cost

Figure 4. Distribution of errors for the determinant solver and the
minimisation of the smallest singular value. Results are obtained
over 1500 experiments.

sensors. We use several different sequences that provide a
mix of characteristics such as significant rotation or simple
forward motion. Our camera is fixed on the windscreen and
doesn’t fully satisfy the requirements given by the Acker-
mann motion model (i.e. position on top of the back wheel
axis), but—as proven in [31]—the restrictive model is still
applicable if the rotation angle 6 between two camera poses
is sufficiently small, which is the case in our datasets. To
conclude, we use the scale from ground truth to correctly
rescale the translation for both algorithms. We finally eval-
uate the relative pose error between the ground truth and the
estimated trajectory by utilising the tools from the TUM-
RGBD[33] sequence, which return the Relative Pose Error
(RPE) divided into rotation and translation accuracy and
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Figure 5. Comparison between 1pt method and 1FNV method
with ground truth _0046.

produce both the RMS and median of errors. Our experi-
ments are conducted on a computer with §GB RAM and an
Intel Core 17 2.4 GHz CPU, and the C++ implementation
uses OpenCV [1], Eigen [10], and OpenGV [18]. An exam-
ple result is indicated in Figure 5, which shows that 1IFNV
performs closer to ground-truth than 1-pt.

Results are indicated in Table 1. Our algorithm generally
returns good performance. Note furthermore that the inten-
tion behind our experiments on real data is not to demon-
strate outstanding performance over large scale, as the one-
point solvers are only applicable if the Ackermann assump-
tion is sufficiently fulfilled. The algorithms hence can only
serve to provide a good initial guess for a final optimisation.
Our experiments aim at proving that:

e Our algorithm has the ability to outperform 1-pt par-
ticularly in the situation where the Ackermann con-
straint is well fulfilled. This behavior can be observed
on dataset _0046, which does not contain sharp turns.

e We have the ability to use line features, which—
if sufficiently available—can provide higher accuracy
than point features. This behavior is demonstrated on
dataset _0095, which does contain a sufficiently large
amount of lines in the building facades.

e While being more susceptible to violations of the Ack-
ermann assumption, the fact that we use correspon-
dences over many views nonetheless returns elevated
overall robustness of our method. This is demonstrated
by the fact that we generally provide the lowest RMS
error.

6. Conclusion

We have presented a new algorithm to estimate the pla-
nar motion of ground vehicles for which the motion is non-
holonomic and can be locally approximated by a circular
arc. The derivation is based on an extension of the planar
tri-focal tensor to the case of an arbitrary number of views
and the Ackermann motion model. We are furthermore able
to include both point and vertical line features into the es-
timation. We prove that—starting from a sufficiently large

method Error Datasets
0046 | 0095 | 0104
Rmse(R) | 0.3338 | 0.4170 | 0.3633
1pt Median(R) | 0.0037 | 0.0044 | 0.0027
Rmse(t) 0.0465 | 0.0984 | 0.0954
Median(t) | 0.0430 | 0.0890 | 0.0731
Rmse(R) | 0.2735 | 0.3753 | 0.3213
1FNV Median(R) | 0.0033 | 0.0050 | 0.0034
(point features) Rmse(t) 0.0383 | 0.0629 | 0.0495
Median(t) | 0.0281 | 0.0432 | 0.0325
Rmse(R) | 0.5537 | 0.4160 | 0.3951
1FNV Median(R) | 0.0062 | 0.0056 | 0.0053
(line features) Rmse(t) 0.0384 | 0.0628 | 0.0497
Median(t) | 0.0290 | 0.0427 | 0.0319

Table 1. Performance Comparison on KITTI Datasets

window and a number of frames—the improved signal-to-
noise ratio leads to an increase in the accuracy of the inter-
frame rotation angle. This conclusion is particularly sup-
ported by our results on real data. However, a question that
is not yet exhaustively addressed by our work is how the
size of the window is impacting on the validity of the Ack-
ermann model. While it seems that the conditions of our
analysed real data lead to a situation in which the gain in
signal-to-noise ratio prevails over a reduced validity of the
Ackermann model, it is also clear that this depends on a suf-
ficiently large camera framerate. Our future work addresses
this issue by assuming a linear model for the first-order dif-
ferential of the vehicle orientation. Given that the intercept
of this model can be propagated over time, this formulation
can still be cast as a uni-variate rank minimization problem
in which only the slope of the linear model is estimated.
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