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Figure 1: TextureNet takes as input a 3D textured mesh. The mesh is parameterized with a consistent 4-way rotationally

symmetric (4-RoSy) field, which is used to extract oriented patches from the texture at a set of sample points. Networks of

4-RoSy convolutional operators extract features from the patches and used for 3D semantic segmentation.

Abstract

We introduce, TextureNet, a neural network architec-

ture designed to extract features from high-resolution sig-

nals associated with 3D surface meshes (e.g., color texture

maps). The key idea is to utilize a 4-rotational symmetric (4-

RoSy) field to define a domain for convolution on a surface.

Though 4-RoSy fields have several properties favorable for

convolution on surfaces (low distortion, few singularities,

consistent parameterization, etc.), orientations are ambigu-

ous up to 4-fold rotation at any sample point. So, we intro-

duce a new convolutional operator invariant to the 4-RoSy

ambiguity and use it in a deep network to extract features

from high-resolution signals on geodesic neighborhoods of

a surface. In comparison to alternatives, such as PointNet-

based methods which lack a notion of orientation, the co-

herent structure given by these neighborhoods results in sig-

nificantly stronger features. As an example application, we

demonstrate the benefits of our architecture for 3D semantic

segmentation of textured 3D meshes. The results show that

our method outperforms all existing methods on the basis

of mean IoU by a significant margin in both geometry-only

(6.4%) and RGB+Geometry (6.9-8.2%) settings.

1. Introduction

In recent years, there has been tremendous progress in

RGB-D scanning methods that allow reliable tracking and

reconstruction of 3D surfaces using hand-held, consumer-

grade devices [8, 18, 27, 28, 41, 21, 11]. Though these

methods are now able to reconstruct high-resolution tex-

tured 3D meshes suitable for visualization, understanding

the 3D semantics of the scanned scenes is still a relatively

open research problem.

There has been a lot of recent work on semantic seg-

mentation of 3D data using convolutional neural networks

(CNNs). Typically, features extracted from the scanned in-

puts (e.g., positions, normals, height above ground, colors,

etc.) are projected onto a coarse sampling of 3D locations,

and then a network of 3D convolutional filters is trained to

extract features for semantic classification – e.g., using con-

volutions over voxels [42, 25, 30, 36, 9, 13], octrees [33],

point clouds [29, 31], or mesh vertices [24]. The advantage

of these approaches over 2D image-based methods is that

convolutions operate directly on 3D data, and thus are rel-

atively unaffected by view-dependent image effects, such

as perspective, occlusion, lighting, and background clut-

ter. However, the resolution of current 3D representations

is generally quite low (2cm is typical), and so the ability

of 3D CNNs to discriminate fine-scale semantic patterns is

usually far below their color image counterparts [23, 16].

To address this issue, we propose a new convolutional

neural network, TextureNet, that extracts features directly

from high-resolution signals associated with 3D surface

meshes. Given a map that associates high-resolution sig-

nals with a 3D mesh surface (e.g., RGB photographic tex-
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ture), we define convolutional filters that operate on those

signals within domains defined by geodesic surface neigh-

borhoods. This approach combines the advantages of fea-

ture extraction from high-resolution signals (as in [10]) with

the advantages of view-independent convolution on 3D sur-

face domains (as in [39]). This combination is important for

the example in labeling the chair in Figure 1, whose surface

fabric is easily recognizable in a color texture map.

During our investigation of this approach, we had to ad-

dress several research issues, the most significant of which

is how to define on geodesic neighborhoods of a mesh. One

approach could be to compute a global UV parameterization

for the entire surface and then define convolutional opera-

tors directly in UV space; however, that approach may in-

duce significant deformations due to flattening, not always

follow surface features, and/or produce seams at surface

cuts. Another approach could be to compute UV param-

eterizations for local neighborhoods independently; how-

ever, then adjacent neighborhoods might not be oriented

consistently, reducing the ability of a network to properly

learn orientation-dependent features. Instead, we compute

a 4-RoSy (four-fold rotationally symmetric) field on the sur-

face using QuadriFlow [17] and define a new 4-RoSy con-

volutional operator that explicitly accounts for the 4-fold

rotational ambiguity of the cross field parameterization. A

4-RoSy (four-way rotationally symmetric) field is a config-

uration of 4 orthogonal tangent directions associated with

each vertex in the shape of a cross that varies smoothly over

the mesh surface. Since the 4-RoSy field from QuadriFlow

has no seams, aligns to shape features, induces relatively lit-

tle distortion, has few singularities, and consistently orients

adjacent neighborhoods (up to 4-way rotations), it provides

an attractive trade-off between distortion and orientation in-

variance.

Results on 3D semantic segmentation benchmarks show

an improvement of the 4-RoSy convolution on surfaces

over alternative geometry-only approaches (by 6.4%), plus

significantly further improvement when applied to high-

resolution color signals (by 6.9-8.2% ). With ablation stud-

ies, we verify the importance of the consistent orientation

of a 4-RoSy field and demonstrate that our sampling and

convolution operator works better than other alternatives.

Overall, our core research contributions are:

• a novel learning-based method for extracting features

from high-resolution signals living on surfaces embed-

ded in 3D, based on consistent local parameterizations,

• a new 4-RoSy convolutional operator designed for

cross fields on general surfaces in 3D,

• a new deep network architecture, TextureNet, com-

posed of 4-RoSy convolutional operators,

• an extensive experimental investigation of alternative

convolutional operators for semantic segmentation of

surfaces in 3D.

2. Related Work

3D Deep Learning. With the availability of 3D shape

databases [42, 7, 36] and real-world labeled 3D scanning

data [35, 1, 9, 6], there is significant interest in deep learn-

ing on three-dimensional data. Early work developed CNNs

operating on 3D volumetric grids [42, 25]. They have been

used for 3D shape classification [30, 33], semantic segmen-

tation [9, 13], object completion [12], and scene completion

[13]. More recently, researchers have developed methods

that can take a 3D point cloud as input to a neural net-

work and predict object classes or semantic point labels

[29, 31, 39, 37, 2]. AtlasNet [14] learns to generate sur-

faces of the 3D shape. In our work, we utilize a sparse point

sampled data representation, however, we exploit high res-

olution signals on geometric surface structures with a new

4-RoSy surface convolution kernel.

Convolutions on Meshes. Several researchers have pro-

posed methods for applying convolutional neural networks

intrinsically on manifold meshes. FeaStNet [40] proposes

a graph operator that establishes correspondences between

filter weights. Jiang et al. [20] applies differential operators

on unstructured spherical grids. GCNN [24] proposes using

discrete patch operators on tangent planes parameterized by

radius and angles. However, the orientation of their selected

geodesic patches is arbitrary, and the parameterization is

highly distorted or inconsistent at regions with high Gaus-

sian curvature. ACNN [3] observes this limitation and in-

troduces the anisotropic heat kernels derived from principal

curvatures. MoNet [26] further generalizes the architecture

with the learnable gaussian kernels for convolutions. The

principal curvature based frame selection method is adopted

by Xu et al. [43] for segmentation of nonrigid surfaces, by

Tatarchenko et al. [39] for semantic segmentation of point

clouds, and by ADD [4] for shape correspondence in the

spectral domain. It naturally removes orientation ambiguity

but fails to consider frame inconsistency problem, which is

critical when performing feature aggregation. Its problems

are particularly pronounced in indoor scenes (which often

have many planar regions where principal curvatures are

undetermined) and in real-world scans (which often have

noisy and uneven sampling where consistent principal cur-

vatures are difficult to predict). In contrast, we define a 4-

RoSy field that provides consistent orientations for neigh-

boring convolution domains.

Multi-view and 2D-3D Joint Learning. Other re-

searchers have investigated how to incorporate features

from RGB inputs to 3D deep networks. The typical ap-

proach is to simply assign color values to voxels, points,

or mesh vertices and treat them as additional feature chan-

nels. However, given that geometry and RGB data are at

vastly different resolutions, this approach leads to signifi-

cant downsampling of the color signal and thus does not
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Figure 2: TextureNet architecture. We propose a UNet [34] architecture for hierarchical feature extraction. The key innova-

tion in the architecture is the texture convolution layer. We efficiently query the local geodesic patch for each surface point,

associating each neighborhood with a local, orientation-consistent texture coordinate system. This allows us to extract the

local 3D surface features as well as high-resolution signals such as associated RGB input.

take full advantage of the high-frequency patterns therein.

An alternative approach is to combine features extracted

from RGB images in a multi-view CNN [38]. This approach

has been used for 3D semantic segmentation in 3DMV [10],

where features are extracted from 2D RGB images and then

back-projected into a 3D voxel grid where they are merged

and further processed with 3D voxel convolutions. Like our

approach, 3DMV processes high-resolution RGB signals;

however it convolves them in a 2D image plane, where oc-

clusions and background clutter are confounding. In con-

trast, our method directly convolves high-resolution signals

intrinsically on the 3D surface which is view-independent.

3. The TextureNet Approach

Our approach performs convolutions on high-resolution

signals with geodesic convolutions directly on 3D surface

meshes. The input is a 3D mesh associated with a high-

resolution surface signal (e.g., a color texture map), and the

outputs are learned features for a dense set of sample points

that can be used for semantic segmentation and other tasks.

Our main contribution is defining a smooth, consistently

oriented domain for surface convolutions based on four-

way rotationally symmetric (4-RoSy) fields. We observe

that 3D surfaces can be mapped with low-distortion to two-

dimensional parameterizations anchored at dense sample

points with locally consistent orientations and few singu-

larities if we allow for a four-way ambiguity in the orien-

tation at the sample points. We leverage that observation

in TextureNet by computing a 4-RoSy field and point sam-

pling using QuadriFlow [17] and then building a network

using new 4-RoSy convolutional filters (TextureConv) that

are invariant to the four-way rotational ambiguity.

We utilize this network design to learn and extract fea-

tures from high-resolution signals on surfaces by extracting

surface patches with high-resolution signals oriented by the

4-RoSy field at each sample point. The surface patches are

convolved by a few TextureConv layers, pooled at sample

points, and then convolved further with TextureConv lay-

ers in a UNet [34] architecture, as shown in figure 2. For

down-sampling and up-sampling, we use the furthest point

sampling and three-nearest neighbor interpolation method

proposed by PointNet++ [31]. The output of the network is

a set of features associated with point samples that can be

used for classification and other tasks. The following sec-

tions describe the main components of the network in detail.

3.1. HighResolution Signal Representation

Our network takes as input a high-resolution signal as-

sociated with a 3D surface mesh. In the first steps of pro-

cessing, it generates a set of sample points on the mesh

and defines a parameterized high-resolution patch for each

sample (Section 3.2) as follows: For each sample point

pi, we first compute its geodesic neighborhood Ωρ(pi)
(Eq. 1) with radius ρ. Then, we sample an NxN point cloud

{qxy| − N/2 ≤ x, y < N/2}. The texture coordinates for

qxy are ((x+0.5)d, (y+0.5)d) – d is the distance between

the adjacent pixels in the texture patch. In practice, we se-

lect N = 10 and d = 4mm. Finally, we use our newly

proposed “TextureConv” and max-pooling operators (Sec-

tion 3.3) to extract the high-res feature fi for each point pi.

3.2. 4RoSy Surface parameterization

A critical aspect of our network is to define a

consistently-oriented geodesic surface parameterization for

any position on a 3D mesh. Starting with some basic defi-

nitions, for a sampled point p on the surface, we can locally

parameterize its tangent plane by two orthogonal tangent

vectors i and j. Also, for any point q on the surface, there

exists a shortest path on the surface connecting p and q,

e.g., the orange path in figure 3(a). By unfolding it to the

tangent plane, we can map q along the shortest path to q∗.

Using these constructs, we define the local texture coordi-

nate q in p’s neighborhood as

tp(q) =
[

iT jT
]

(q∗ − p).

We additionally define the local geodesic neighborhood of

p with receptive field ρ as

Ωρ(p) = {q | ||tp(q)||∞ < ρ}. (1)
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Figure 3: (a) Local texture coordinates. (b) Visualization

of geodesic neighborhoods Ωρ (ρ = 20 cm) on a set of ran-

domly sampled vertices.

(b) Harmonic Parametrization(a) QuadriFlow Parametrization (c) Geometry Image

Figure 4: (a) With an appropriate method like Quadriflow,

we can get the surface parameterization aligned with shape

features with negligible distortion. (b) Harmonic parame-

terization leads to high distortion in the scale. (c) Geometry

images [15] result in high distortion in the orientation.

The selection for the set of mesh sampled positions {p}
and their tangent vectors i and j is critical for the success

of learning on a surface domain. Ideally, we would select

points whose spacing is uniform and whose tangent direc-

tions are consistently oriented at neighbors, such that the

underlying parameterization has no distortions or seams, as

shown in Figure 4(a). With those properties, we could learn

convolutional operators with translation invariance exactly

as we would for images. Unfortunately, these properties are

only achievable if the surface is a flat plane. For a general

3D surface, we can only hope to select a set of point sam-

ples and tangent vectors that minimize deviations between

spacings of points and distortions of local surface parame-

terizations. Figure 4(b) shows an example where harmonic

surface parameterization introduces large-scale distortion –

a 2D convolution would include a large receptive field at

the nose but a small one at the neck. Figure 4(c) shows a

geometry image [15] parameterization with high distortion

in the orientation – convolutions on such a map would have

randomly distorted and irregular receptive fields, making it

difficult for a network to learn canonical features.

Unfortunately, a smoothly varying direction field on the

surface is usually hard to obtain. According to the study of

the direction field design [32, 22], the best-known approach

to mitigate the distortion is to compute a four-way rotation-

ally symmetric (4-RoSy) orientation field, which minimizes

the deviation by incorporating directional ambiguity. Ad-

ditionally, the orientation field needs a consistent definition

among different geometries, and the most intuitive way is to

make it align with the shape features like the principal cur-

vatures. Fortunately, the extrinsic energy is used by [19, 17]

(a) Cut the green line

Gap

(b) Cut the blue line (c) Cut the orange line

Figure 5: Singularity at a cube vertex, (a)-(c) demonstrate

three different ways of unfolding the local neighborhood.

Such ambiguity is removed around the singularity by our

texture coordinate definition using the shortest path. For

the purple point, (a) is a valid neighborhood, while the blue

points in (b) and orange points in (c) are unfolded along the

paths which are not the shortest. Similarly, the ambiguity in

the gap location is removed.

to realize it. Therefore, we compute the extrinsic 4-Rosy

orientation field at a uniform distribution of point samples

using QuadriFlow [17] and use it to define the tangent vec-

tors at any position on the surface. Because of the direc-

tional ambiguity, we randomly pick one direction from the

cross as i and compute j = n× i for any position.

Although there is a 4-way rotational ambiguity in this lo-

cal parameterization of the surface (which will be addressed

with a new convolutional operator in the next section), the

resulting 4-RoSy field provides a way to extract geodesic

neighborhoods consistently across the entire surface, even

near singularities. Figure 5 (a,b,c) shows the ambiguity

of possible unfolded neighborhoods at a singularity. Since

QuadriFlow [17] treats singularities as faces rather than ver-

tices, all sampled positions have the well-defined orienta-

tion field. More importantly, the parameterization of ev-

ery geodesic neighborhood is well-defined with our shortest

path patch parameterization. For example, only Figure 5(a)

is a valid parameterization for the purple spot, while the

location for the blue and orange spots in Figures 5(b) and

(c) are unfolded along the paths that are not the shortest.

Unfolding a geodesic neighborhood around the singularity

also causes another potential issue that a seam cut is usually

required, leading to a gap at the 3-singularity or multiple-

surface coverage at the 5-singularity. For example, there is

a gap at the bottom-right corner in Figure 5(a) caused by

the seam cut shown as the green dot line. Fortunately, the

location of the seam is also well-defined with our shortest-

path definition: it must be the shortest geodesic path go-

ing through the singularity. Therefore, our definition of the

local neighborhood guarantees a canonical way of surface

parameterization even around corners and singularities.

3.3. 4RoSy Surface Convolution Operator

TextureNet is a network architecture composed of con-

volutional operators acting on geodesic neighborhoods of

sample points with 4-RoSy parameterizations. The input to

each convolutional layer is three-fold: 1) a set of 3D sample

points associated with features (e.g., RGB, normals, or fea-

tures computed from high-resolution surface patches or pre-
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(a) Image Coordinate (b) 3D parametrization

Inconsistent

(c) Inconsistent Frame

Figure 6: (a) Traditional convolution kernel on a regular

grid. (b) Frames defined by the orientation field on a 3D

cube. (c) For the patch highlighted in orange in (b), multi-

layer feature aggregation would be problematic with tradi-

tional convolution due to the frame inconsistency caused by

the directional ambiguity of the orientation field.

vious layers); 2) a coordinate system stored as two tangent

vectors representing the 4-RoSy cross field for each point

sample; and 3) a coarse triangle mesh, where each face

is associated with the set of extracted sampled points and

connectivity indices that support fast geodesic patch query

and texture coordinate computation for the samples inside a

geodesic neighborhood, much like the PTex [5] representa-

tion for textures.

Our key contribution in this section is the design of a

convolution operator suitable for 4-RoSy fields. The prob-

lem is that we cannot use traditional 3x3 convolution ker-

nels on domains parameterized with 4-RoSy fields without

inducing inconsistent feature aggregation at higher levels.

Figure 6 demonstrates the problem for a simple example.

Figure 6(a) shows 3x3 convolution in a traditional flat do-

main. Figure 6(b) shows the frames defined by our 4-RoSy

orientation field of the 3D cube where red spots represent

the singularities. Although the cross-field in the orange

patch is consistent under the 4-RoSy metric, the frames

are not parallel when they are unfolded into a plane (fig-

ure 6(c)). Aggregation of features inside such a patch is

therefore problematic.

“TextureConv” is our solution to remove the directional

ambiguity. It consists of four layers (in figure 2), including

geodesic patch search, texture space grouping, convolution

and aggregation. To extract the geodesic patch for each in-

put point Ωρ(p), we use breadth-first search with the pri-

ority queue to extract the face set in the order of geodesic

distance from face center to p. We estimate the texture co-

ordinate at the face center as well as its local tangent coordi-

nate system, recorded as (tf , if , jf ). In order to expand the

search tree from face u to v, we can approximate the texture

coordinate at the face center as tv = tu+(iu, ju)
T (cv−cu),

where cf represents the center position of the face f . iv
and jv can be computed by rotating the coordinate system

around the shared edge from face u to v. After having the

face set inside the geodesic patch, we can find the sampled

points set associated with these faces. We estimate the tex-

ture coordinate of every sampled point q associated with

each face f as tp(q) = tf + (if , jf )
T (q − cf ). By test-

ing ||tp(q)||∞ < ρ, we can determine the sampled points

inside the geodesic patch Ωρ(p).

The texture space grouping layer segments the local

neighborhood into 3x3 patches in the texture space, each

of which is a square with edge length as 2ρ/3, as shown in

figure 2 (after the “grouping arrow”). We could directly bor-

row the image convolution method linearly transform each

point feature with 9 different weights according to their be-

longing patch. However, we propose a 4-RoSy convolution

kernel to deal with the directional ambiguity. As shown in

figure 2, all sampled points can be categorized as at the cor-

ners ({p1
j}), edges ({p2

j}) or the center ({p3
j}). Each sam-

pled point feature is convolved with a 1x1 convolution as

h1, h2 or h3 based on its category. The extracted 4-rosy fea-

ture removes the ambiguity and allows higher-level feature

aggregation. The channel-wise aggregation operator g can

be max-pooling or average-pooling followed by the ReLu

layer. In the task for semantic segmentation, we choose

max-pooling since it is better at preserving salient signals.

4. TextureNet Evaluation

To investigate the performance of TextureNet, we ran a

series of 3D semantic segmentation experiments for indoor

scenes. In all experiments, we train and test on the standard

splits of the ScanNet [9] and Matterport3D [9] datasets. Fol-

lowing previous works, we report mean class intersection-

over-union (mIoU) results for ScanNet and mean class ac-

curacy for Matterport3D.

Comparison to State-of-the-Art. Our main result is a

comparison of TextureNet to state-of-the-art methods for

3D semantic segmentation. For this experiment, all meth-

ods utilize both color and geometry in their native formats.

Specifically, PointNet++ [31], Tangent Convolution [39],

SplatNet [37] use points with per-point normals and colors;

3DMV [10] uses 2D image features back-projected onto

voxels; and Ours uses high-res 10x10 texture patches ex-

tracted from geodesic neighborhoods at sample points.

Table 1 reports the mean IoU scores for all 20 classes of

the ScanNet benchmark on the ScanNet (v2) and mean class

accuracy on Matterport3D datasets. They show that Tex-

tureNet (Ours) provides the best results on 18/20 classes for

Scannet and 12/20 classes for Matterport3D. Overall, the

mean class IoU for Ours is 8.2% higher than the previous

state-of-the-art (3DMV) on ScanNet (48.4% vs. 56.6%),

and our mean class accuracy is 6.9% higher on Matter-

port3D (56.1% vs. 63.0%).

Qualitative visual comparisons of the results shown in

Figures 7-9 suggest that the differences between methods

are often where high-resolution surface patterns are dis-

criminating (e.g., the curtain and pillows in the top row of

Figure 7) and where geodesic neighborhoods are more in-
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Input wall floor cab bed chair sofa table door wind shf pic cntr desk curt fridg show toil sink bath other avg

PN+ [31] 66.4 91.5 27.8 56.3 64.0 52.7 37.3 28.3 36.1 59.2 6.7 28.0 26.2 45.4 25.6 22.0 63.5 38.8 54.4 20.0 42.5

SplatNet [37] 69.9 92.5 31.1 51.1 65.6 51.0 38.3 19.7 26.7 60.6 0.0 24.5 32.8 40.5 0.0 24.9 59.3 27.1 47.2 22.7 39.3

Tangent [39] 63.3 91.8 36.9 64.6 64.5 56.2 42.7 27.9 35.2 47.4 14.7 35.3 28.2 25.8 28.3 29.4 61.9 48.7 43.7 29.8 43.8

3DMV [10] 60.2 79.6 42.4 53.8 60.6 50.7 41.3 37.8 53.9 64.3 21.4 31.0 43.3 57.4 53.7 20.8 69.3 47.2 48.4 30.1 48.4

Ours 68.0 93.5 49.4 66.4 71.9 63.6 46.4 39.6 56.8 67.1 22.5 44.5 41.1 67.8 41.2 53.5 79.4 56.5 67.2 35.6 56.6

(a) ScanNet (v2) (mean class IoU)

Input wall floor cab bed chair sofa table door wind shf pic cntr desk curt ceil fridg show toil sink bath other avg

PN+ [31] 80.1 81.3 34.1 71.8 59.7 63.5 58.1 49.6 28.7 1.1 34.3 10.1 0.0 68.8 79.3 0.0 29.0 70.4 29.4 62.1 8.5 43.8

SplatNet [37] 90.8 95.7 30.3 19.9 77.6 36.9 19.8 33.6 15.8 15.7 0.0 0.0 0.0 12.3 75.7 0.0 0.0 10.6 4.1 20.3 1.7 26.7

Tangent [39] 56.0 87.7 41.5 73.6 60.7 69.3 38.1 55.0 30.7 33.9 50.6 38.5 19.7 48.0 45.1 22.6 35.9 50.7 49.3 56.4 16.6 46.8

3DMV [10] 79.6 95.5 59.7 82.3 70.5 73.3 48.5 64.3 55.7 8.3 55.4 34.8 2.4 80.1 94.8 4.7 54.0 71.1 47.5 76.7 19.9 56.1

Ours 63.6 91.3 47.6 82.4 66.5 64.5 45.5 69.4 60.9 30.5 77.0 42.3 44.3 75.2 92.3 49.1 66.0 80.1 60.6 86.4 27.5 63.0

(b) Matterport3D (mean class accuracy)

Table 1: Comparison with the state-of-the-art methods for 3D semantic segmentation on the (a) ScanNet v2, and (b) Mat-

terport3D [6] benchmarks. PN+, SplatNet, and Tangent Convolution use points with per-point normal and color as input.

3DMV uses 2D images and voxels. Ours uses grid points with high-res 10x10 texture patches.

GT PointNet++ 3DMV TangentConv SplatNet Ours

Figure 7: Visualization on ScanNet (v2) [9]. In the first row, we correctly predicts the lamp, pillow, picture, and part of the

cabinet, while other methods fail. In the second row, we predict the window and the trash bin correctly, while 3DMV [10]

predicts part of the window as the trash bin and other methods fail. The third row (zoom-in) highlights the differences.

(a) Ground Truth (b) Ball (c) Ours

Figure 8: Visual results using different neighborhoods.

With euclidean ball as a neighborhood, part of the table is

predicted as the chair, since they belong to the same eu-

clidean ball. This issue is solved by extracting features from

the geodesic patches.

formative than Euclidean ones (e.g., the lamp next to the

bed). Figure 8 shows a case where convolutions with the

geodesic neighborhoods clearly outperform their Euclidean

counterparts. In Figure 8(b), part of the table is predicted

as chair, probably because it is in a Euclidean ball cover-

ing nearby chairs. This problem is solved with our method

based on geodesic patch neighborhoods. As shown in Fig-

ure 8(c), the table and the chairs are clearly segmented.

Effect of 4-RoSy Surface Parameterization. Our sec-

ond experiment is designed to test how different surface pa-

rameterizations affect semantic segmentation performance

– i.e., how does the choice of the orientation field affect the

learning process? The simplest choice is to pick an arbi-

trary direction on the tangent plane as the x-axis, similar to

GCNN [24], (Figure 10(a)). A second option adopted by

Tangent Convolution [39] considers a set of points q in a

Euclidean ball centered at p and parameterizes the tangent
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Input wall floor cab bed chair sofa table door wind bkshf pic cntr desk curt fridg show toil sink bath other ave

Random 37.6 92.5 37.0 63.7 28.5 56.9 27.6 15.3 31.0 47.6 16.5 36.6 53.3 51.2 15.4 24.7 59.3 47.6 53.3 27.0 41.1

Intrinsic 47.4 91.9 35.3 62.5 55.8 44.8 37.5 29.8 40.5 40.9 16.7 41.5 39.9 42.1 20.4 24.3 85.6 44.5 58.3 29.5 44.4

EigenVec 45.3 79.0 32.2 53.4 59.8 40.4 32.2 28.8 40.5 43.4 17.8 39.5 32.7 40.6 22.5 25.0 82.4 48.1 54.8 32.6 42.5

Extrinsic 69.8 92.3 44.8 69.4 75.8 67.1 56.8 39.4 41.1 63.1 15.8 57.4 46.5 48.3 36.9 40.0 78.1 54.0 65.4 34.4 54.8

Table 2: Mean IoU for different direction fields on ScanNet (v2). The input is a pointcloud with a normal and rgb color for

each point. Random refers to randomly picking an arbitrary direction for each sampled point. Intrinsic refers to solving for

a 4-rosy field with intrinsic energy. EigenVec refers to solving for a direction field with the principal curvature. Extrinsic is

our method, which solves a 4-rosy field with extrinsic energy.

P
o
in
tN
et
+
+

T
a
n
g
en
tC
o
n
v

S
p
la
tN
et

O
u
rs

G
T

Figure 9: Visual results on Matterport3D [6]. In all exam-

ples, our method is better at predicting the door, the toilet,

the sink, the bathtub, and the curtain.

plane by two eigenvectors corresponding to the largest two

eigenvalues of the covariance matrix
∑

q(p − q)(p − q)T .

A critical problem of this formulation is that the princi-

pal directions cannot be robustly analyzed at planar re-

gions or noisy surfaces (Figure 10(b)). It also introduces

inconsistency to the coordinate systems of the neighbor-

ing points, which vexes the feature aggregation at higher

levels. A third alternative is to use the intrinsic energy

function [19] or other widely used direction field synthesis

technique [32, 22], which is not geometry-aware and there-

fore variant to 3D rigid transformation (Figure 10(c)). Our

choice is to use the extrinsic energy to synthesize the di-

rection field [17, 19], which is globally consistent and only

variant to geometry itself (Figure 10(d)).

To test the impact of this choice, we compare all of these

alternative direction fields to create the local neighborhood

(a) RandomVec (b) EigenVec

(c) Intrinsic (d) Extrinsic

Figure 10: Direction fields from different methods. (a) Ran-

dom directions lead to inconsistent frames. (b) Eigenvectors

suffer from the same issue at flat area. (c) Intrinsic-energy

based orientation field does not align to the shape features.

(d) Our extrinsic-based method generates consistent orien-

tation fields aligned with surface features.

parameterizations for our architecture and compare the re-

sults of 3D semantic segmentation on ScanNet (v1) test

set. As shown in Table 2, the choice for random direction

field performs worst since it does not provide consistent pa-

rameterization. The tangent convolution suffers from the

same issue, but gets a better result since it aligns with the

shape features. The intrinsic parameterization aligns with

the shape features, but is not a canonical parameterization

– for example, different rigid transformations of the same

shape lead to different parameterizations. The extrinsic en-

ergy provides a canonical and consistent surface parame-

terization. As a result, the extrinsic 4-rosy orientation field

achieves the best results.

Effect of 4-RoSy Surface Convolution. Our third exper-

iment is designed to test how the choice for the surface

convolution operator affects learning. In Table 4, PN+(A)
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Input wall floor cab bed chair sofa table door wind bkshf pic cntr desk curt fridg show toil sink bath other ave

XYZ 64.8 90.0 39.3 65.8 74.8 66.6 50.5 33.9 35.6 58.0 14.0 54.3 42.1 45.4 30.9 43.0 67.7 47.9 55.8 32.2 50.6

NRGB 69.8 92.3 44.8 69.4 75.8 67.1 56.8 39.4 41.1 63.1 15.8 57.4 46.5 48.3 36.9 40.0 78.1 54.0 65.4 34.4 54.8

Highres 75.0 94.4 46.8 67.3 78.1 64.0 63.5 44.8 46.0 71.3 21.1 44.4 47.5 52.5 35.2 51.3 80.3 51.7 67.6 40.2 58.1

Table 3: Mean IoU for different color inputs on ScanNet (v2). XYZ represents our network using raw point input; i.e.,

geometry only. NRGB represents our network taking input as the sampled points with per-point normal and color. Highres

represents our network taking per-point normal and the 10x10 surface texture patch for each sampled point.

Input PN+(A) PN+ GCNN1 GCNN ACNN

Geometry 32.6 43.5 48.7 24.6 29.7

NRGB 38.1 48.2 49.6 27.0 32.4

Input RoSy1 RoSy4 RoSy1(m) Ours(A) Ours

Geometry 37.8 30.8 40.3 38.0 50.6

NRGB 47.8 34.5 42.6 39.1 54.8

Table 4: Mean Class IoU with different texture convolution

operators on ScanNet (v2). The input is the pointcloud for

the first row (Geometry) and the pointcloud associated with

the normal and rgb signal for the second row (NRGB).

and PN+ represent PointNet++ with average and max pool-

ing, respectively. GCNN1 and GCNN are geodesic convo-

lutional neural networks [24] with Nρ = 3, Nθ = 1 and

Nρ = Nθ = 3 respectively. ACNN represents anisotropic

convolutional neural networks [3] with Nρ = 3, Nθ = 1.

RoSy1 means a 3x3 convolution along the direction of the

1-rosy orientation field. RoSy4 picks an arbitrary direc-

tion from the cross in the 4-rosy field. RoSy4(m) applies

3x3 convolution for each direction of the cross in the 4-rosy

field, aggregated by max pooling. Ours(A) and Ours repre-

sent our method with average and max pooling aggregation.

We find that GCNN, ACNN and RoSy4 produce the low-

est IoUs, because they suffer from inconsistency of frames

when features are aggregated. GCNN1 does not suffer from

this issue since there is only a single bin in the angle di-

mension. RoSy4(m) uses the max-pooling to canonicalize

the feature extraction, which is independent of the orien-

tation selection, and produces better results than RoSy4.

RoSy1 achieves a higher score by generating a more glob-

ally consistent orientation field with higher distortion. From

this study, the combination of 4-rosy orientation field and

our TextureNet is the best option for the segmentation task

among these methods. Since we precompute the local

parametrization, our training efficiency is similar to GCNN.

Effect of High-Resolution Color. Our fourth experiment

tests how much convolving with high-resolution surface

colors affects semantic segmentation. Table 3 compares the

performance of our network with uncolored sampled points

(XYZ), sampled points with the per-point surface normal

and color (NRGB), and with the per-point normal and the

10x10 color texture patch (Highres) as input. According

to Table 4, our network is already superior with only XYZ

or additional NRGB because of the convolution operator.

We find that providing TextureNet with Highres colors im-

proves the mean class IoU by 3.3%. As expected, the im-

pact is stronger from some semantic classes than others –

e.g., the IoUs for the bookshelf and picture classes increase

63.1→71.3% and 15.8→21.1%, respectively.

Comparisons Using Only Surface Geometry. As a final

experiment, we evaluate the value of the proposed 3D net-

work for semantic segmentation of inputs with only surface

geometry (without color). During experiments on Scan-

Net, TextureNet achieves 50.6% mIoU, which is 6.4% bet-

ter than the previous state-of-the-art. In comparison, Scan-

Net [9] = 30.6%, Tangent Convolution [39] = 40.9%, Point-

Net++ [31] = 43.5%, and SplatNet [37] = 44.2%.

5. Conclusion

TextureNet bridges the gap between 2D image convolu-

tions and 3D deep learning using 4-RoSy surface parameter-

izations. We have demonstarted a new method for learning

from high-resolution signals on 3D meshes by computing

local geodesic neighborhoods with consistent 4-RoSy co-

ordinate systems. We have designed a network of 4-RoSy

texture convolution operators that are able to learn surface

features that significantly improve over the state-of-the-art

performance for 3D semantic segmentation of 3D surfaces

with color (by 6.9-8.2%). Code and data will be publicly

available. Topics for further work include investigating

the utility of TextureNet for extracting features from other

high-resolution signals on meshes (e.g., displacement maps,

bump maps, curvature maps, etc.) and applications of Tex-

tureNet to other vision tasks (e.g., instance detection, pose

estimation, part decomposition, texture synthesis, etc.).
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M. Aubry. A papier-mâché approach to learning 3d surface

generation. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pages 216–224, 2018.

[15] X. Gu, S. J. Gortler, and H. Hoppe. Geometry images. ACM

Transactions on Graphics (TOG), 21(3):355–361, 2002.

[16] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.

In Computer Vision (ICCV), 2017 IEEE International Con-

ference on, pages 2980–2988. IEEE, 2017.

[17] J. Huang, Y. Zhou, M. Nießner, J. R. Shewchuk, and L. J.

Guibas. Quadriflow: A scalable and robust method for quad-

rangulation. In Computer Graphics Forum, volume 37, pages

147–160. Wiley Online Library, 2018.

[18] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,

P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison,

et al. Kinectfusion: real-time 3d reconstruction and inter-

action using a moving depth camera. In Proceedings of the

24th annual ACM symposium on User interface software and

technology, pages 559–568. ACM, 2011.

[19] W. Jakob, M. Tarini, D. Panozzo, and O. Sorkine-Hornung.

Instant field-aligned meshes. ACM Transactions on Graph-

ics, 34(6):189:1–189:15, Oct. 2015.

[20] C. Jiang, J. Huang, K. Kashinath, P. Marcus, M. Niessner,

et al. Spherical cnns on unstructured grids. arXiv preprint

arXiv:1901.02039, 2019.

[21] O. Kähler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. Torr, and

D. Murray. Very high frame rate volumetric integration of

depth images on mobile devices. IEEE transactions on visu-

alization and computer graphics, 21(11):1241–1250, 2015.

[22] Y.-K. Lai, M. Jin, X. Xie, Y. He, J. Palacios, E. Zhang, S.-

M. Hu, and X. Gu. Metric-driven RoSy field design and

remeshing. IEEE Transactions on Visualization and Com-

puter Graphics, 16(1):95–108, 2010.

[23] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 3431–3440, 2015.

[24] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst.

Geodesic convolutional neural networks on riemannian man-

ifolds. In Proceedings of the IEEE international conference

on computer vision workshops, pages 37–45, 2015.

[25] D. Maturana and S. Scherer. Voxnet: A 3d convolutional

neural network for real-time object recognition. In Intelligent

Robots and Systems (IROS), 2015 IEEE/RSJ International

Conference on, pages 922–928. IEEE, 2015.

[26] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and

M. M. Bronstein. Geometric deep learning on graphs and

manifolds using mixture model cnns. In Proc. CVPR, vol-

ume 1, page 3, 2017.

[27] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,

D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and

A. Fitzgibbon. Kinectfusion: Real-time dense surface map-

ping and tracking. In Mixed and augmented reality (ISMAR),

2011 10th IEEE international symposium on, pages 127–

136. IEEE, 2011.
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