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Abstract

We introduce GQA, a new dataset for real-world visual

reasoning and compositional question answering, seeking

to address key shortcomings of previous VQA datasets. We

have developed a strong and robust question engine that

leverages Visual Genome scene graph structures to create

22M diverse reasoning questions, which all come with func-

tional programs that represent their semantics. We use the

programs to gain tight control over the answer distribution

and present a new tunable smoothing technique to mitigate

question biases. Accompanying the dataset is a suite of new

metrics that evaluate essential qualities such as consistency,

grounding and plausibility. A careful analysis is performed

for baselines as well as state-of-the-art models, providing

fine-grained results for different question types and topolo-

gies. Whereas a blind LSTM obtains a mere 42.1%, and

strong VQA models achieve 54.1%, human performance

tops at 89.3%, offering ample opportunity for new research

to explore. We hope GQA will provide an enabling resource

for the next generation of models with enhanced robustness,

improved consistency, and deeper semantic understanding

of vision and language.

1. Introduction

It takes more than a smart guess to answer a good ques-

tion. The ability to assimilate knowledge and use it to draw

inferences is among the holy grails of artificial intelligence.

A tangible form of this goal is embodied in the task of Vi-

sual Question Answering (VQA), where a system has to an-

swer free-form questions by reasoning about presented im-

ages. The task demands a rich set of abilities as varied as

object recognition, commonsense understanding and rela-

tion extraction, spanning both the visual and linguistic do-

mains. In recent years, it has sparked substantial interest

throughout the research community, becoming extremely

Figure 1: Examples from the new GQA dataset for visual reason-

ing and compositional question answering:

Is the bowl to the right of the green apple?

What type of fruit in the image is round?

What color is the fruit on the right side, red or green?

Is there any milk in the bowl to the left of the apple?

popular across the board, with a host of datasets being con-

structed [3, 9, 13, 36, 17] and numerous models being pro-

posed [4, 33, 5, 8, 10].

The multi-modal nature of the task and the diversity of

skills required to address different questions make VQA

particularly challenging. Yet, designing a good test that will

reflect its full qualities and complications may not be that

trivial. Despite the great strides that the field recently made,

it has been established through a series of studies that exist-

ing benchmarks suffer from critical vulnerabilities that ren-

der them highly unreliable in measuring the actual degree

of visual understanding capacities [34, 9, 1, 7, 2, 11, 16].

Most notable among the flaws of current benchmarks

is the strong and prevalent real-world priors displayed

throughout the data [34, 9, 2] – most tomatoes are red and

most tables are wooden. These in turn are exploited by
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VQA models, which become heavily reliant upon such sta-

tistical biases and tendencies within the answer distribution

to largely circumvent the need for true visual scene under-

standing [1, 9, 13, 7]. This situation is exacerbated by the

simplicity of many of the questions, from both linguistic

and semantic perspectives, which in practice rarely require

much beyond object recognition [28]. Consequently, early

benchmarks led to an inflated sense of the state of scene

understanding, severely diminishing their credibility [32].

Aside from that, the lack of annotations regarding ques-

tion structure and content leaves it difficult to understand

the factors affecting models’ behavior and performance and

to identify the root causes behind their mistakes.

To address these shortcomings, while retaining the vi-

sual and semantic richness of real-world images, we intro-

duce GQA, a new dataset for visual reasoning and compo-

sitional question answering. We have developed and care-

fully refined a robust question engine, leveraging content:

information about objects, attributes and relations provided

through Visual Genome Scene Graphs [17], along with

structure: a newly-created extensive linguistic grammar

which couples hundreds of structural patterns and detailed

lexical semantic resources. Together, they are combined in

our engine to generate over 22 million novel and diverse

questions, which all come with structured representations

in the form of functional programs that specify their con-

tents and semantics, and are visually grounded in the image

scene graphs.

GQA questions involve varied reasoning skills, and

multi-step inference in particular. We further use the as-

sociated semantic representations to greatly reduce biases

within the dataset and control for its question type compo-

sition, downsampling it to create a 1.7M balanced dataset.

Contrary to VQA 2.0, here we balance not only binary ques-

tions, but also open ones, by applying a tunable smoothing

technique that makes the answer distribution for each ques-

tion group more uniform. Just like a well-designed exam,

our benchmark makes the educated guesses strategy far less

rewarding, and demands instead more refined comprehen-

sion of both the visual and linguistic contents.

Along with the dataset, we have designed a suite of new

metrics, which include consistency, validity, plausibility,

grounding and distribution scores, to complement the stan-

dard accuracy measure commonly used in assessing meth-

ods’ performance. Indeed, studies have shown that the ac-

curacy metric alone does not account for a range of anoma-

lous behaviors that models demonstrate, such as ignoring

key question words or attending to irrelevant image regions

[1, 7]. Other works have argued for the need to devise new

evaluation measures and techniques to shed more light on

systems’ inner workings [16, 29, 30, 15]. In fact, beyond

providing new metrics, GQA can even directly support the

development of more interpretable models, as it provides

a sentence-long explanation that corroborates each answer,

and further associates each word from both the questions

and the responses with a visual pointer to the relevant re-

gion in the image, similar in nature to datasets by Zhu et al.

[36], Park et al. [26], and Li et al. [19]. These in turn can

serve as a strong supervision signal to train models with en-

hanced transparency and accessibility.

GQA combines the best of both worlds, having clearly

defined and crisp semantic representations on the one hand

but enjoying the semantic and visual richness of real-world

images on the other. Our three main contributions are

(1) the GQA dataset as a resource for studying visual rea-

soning; (2) development of an effective method for generat-

ing a large number of semantically varied questions, which

marries scene graph representations with computational lin-

guistic methods; (3) new metrics for GQA, that allow for

better assessment of system success and failure modes, as

demonstrated through a comprehensive performance analy-

sis of existing models on this task. We hope that the GQA

dataset will provide fertile ground for the development of

novel methods that push the boundaries of question answer-

ing and visual reasoning.

2. Related Work

Recent years have witnessed tremendous progress in vi-

sual understanding. Multiple attempts have been made to

mitigate the systematic biases of VQA datasets as discussed

in section 1 [9, 34, 2, 13], but they fall short in providing

an adequate solution: Some approaches operate over con-

strained and synthetic images [34, 13], neglecting the real-

ism and diversity natural photos provide. Meanwhile, Goyal

et al. [9] associate most of the questions in VQA1.0 with

a pair of similar pictures that result in different answers.

While offering partial relief, this technique fails to address

open questions, leaving their answer distribution largely un-

balanced. In fact, since the method does not cover 29% of

the questions due to limitations of the annotation process,

even within the binary ones biases still remain.1

At the other extreme, Agrawal et al. [2] partition the

questions into training and validation sets such that their re-

spective answer distributions become intentionally dissim-

ilar. While undoubtedly challenging, these adversarial set-

tings penalize models, maybe unjustly, for learning salient

properties of the training data. In the absence of other in-

formation, making an educated guess is a legitimate choice

– a valid and beneficial strategy pursued by machines and

people alike [24, 6, 23]. What we essentially need is a bal-

anced test that is more resilient to such gaming strategies,

as we strive to achieve with GQA.

1For VQA1.0, blind models achieve 50% in accuracy without even con-

sidering the images whatsoever [3]. Similarly, for VQA2.0, 67% and 27%

of the binary and open questions respectively are answered correctly by

such models [9].
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Figure 2: Overview of the GQA construction process. Given an image annotated with a scene graph of its objects, attributes and relations,

we produce compositional questions by traversing the graph. Each question has both a standard natural-language form and a functional

program representing its semantics. Please refer to section 3 for further detail.

In creating GQA, we drew inspiration from the CLEVR

task [13], which consists of compositional questions over

synthetic images. However, its artificial nature and low di-

versity, with only a handful of object classes and properties,

makes it particularly vulnerable to memorization of all com-

binations, thereby reducing its effective degree of composi-

tionality. Conversely, GQA operates over real images and

a large semantic space, making it much more challenging.

Even though our questions are not natural as in other VQA

datasets [9, 36], they display a rich vocabulary and diverse

linguistic and grammatical structures. They may serve in

fact as a cleaner benchmark to asses models in a more con-

trolled and comprehensive fashion, as discussed below.

The task of question generation has been explored in

earlier work, mostly for the purpose of data augmentation.

Contrary to GQA, those datasets are either small in scale

[22] or use only a restricted set of objects and a handful of

non-compositional templates [15, 21]. Neural alternatives

to visual question generation have been recently proposed

[25, 12, 35], but they aim at a quite different goal of creat-

ing engaging but potentially inaccurate questions about the

wider context of the image such as subjective evoked feel-

ings or speculative events that may lead to or result from the

depicted scenes [25].

3. The GQA Dataset

The GQA dataset centers around real-world reasoning,

scene understanding and compositional question answering.

It consists of 113K images and 22M questions of assorted

types and varying compositionality degrees, measuring per-

formance on an array of reasoning skills such as object and

attribute recognition, transitive relation tracking, spatial rea-

soning, logical inference and comparisons. Figure 2 pro-

vides a brief overview of the GQA components and gener-

ation process, and figure 3 presents multiple instances from

the dataset. The dataset along with further information are

available at visualreasoning.net.

The images, questions and corresponding answers are all

accompanied by matching semantic representations: Each

image is annotated with a dense Scene Graph [14, 17],

representing the objects, attributes and relations it contains.

Each question is associated with a functional program

which lists the series of reasoning steps needed to be per-

formed to arrive at the answer. Each answer is augmented

with both textual and visual justifications, pointing to the

relevant region within the image.

The structured representations and detailed annotations

for images and questions offer multiple advantages. They

enable tight control over the answer distribution, which

allows us to create a balanced set of challenging ques-

tions, and support the formulation of a suite of new metrics

that aim to provide deeper insight into models’ behavior.

They facilitate performance assessment along various axes

of question type and topology, and may open the door for

the development of novel methods with more grounded and

transparent knowledge representation and reasoning.

We proceed by describing the GQA question engine and

the four-step dataset construction pipeline: First, we thor-

oughly clean, normalize, consolidate and augment the Vi-

sual Genome scene graphs [17] linked to each image. Then,

we traverse the objects and relations within the graphs, and

marry them with grammatical patterns gleaned from VQA

2.0 [9] and sundry probabilistic grammar rules to produce a

semantically-rich and diverse set of questions. In the third

stage, we use the underlying semantic forms to reduce bi-

6702



ases in the conditional answer distribution, resulting in a

balanced dataset that is more robust against shortcuts and

guesses. Finally, we discuss the question functional repre-

sentation, and explain how we use it to compute entailment

between questions, supporting new evaluation metrics.

3.1. Scene Graph Normalization

Our starting point in creating the GQA dataset is the Vi-

sual Genome Scene Graph annotations [17] that cover 113k

images from COCO [20] and Flickr [31].2 The scene graph

serves as a formalized representation of the image: each

node denotes an object, a visual entity within the image,

like a person, an apple, grass or clouds. It is linked to a

bounding box specifying its position and size, and is marked

up with about 1–3 attributes, properties of the object: e.g.,

its color, shape, material or activity. The objects are con-

nected by relation edges, representing actions (verbs), spa-

tial relations (prepositions), and comparatives.

The scene graphs are annotated with free-form natural

language. In order to use them for question generation we

first have to normalize the graphs and their vocabulary. We

provide here a brief overview of the normalization process,

and present a more detailed description in the supplemen-

tary. First, we create a clean, consolidated and unambiguous

ontology over the graph with 2690 classes including various

objects, attributes and relations. We further augment it with

semantic and linguistic information which will aid us in cre-

ating grammatical questions. Then, we prune inaccurate or

unnatural edges, using combination of object detection con-

fidences, n-gram frequencies, co-occurrence statistics, word

embedding distances, category-based rules, and manual cu-

ration. Finally, we enrich the graph with positional informa-

tion (absolute and relative) as well as semantic properties

(location, weather). By the end of this stage, the resulting

scene graphs have clean, unified, rich and unambiguous se-

mantics for both the nodes and the edges.

3.2. The Question Engine

At the heart of our pipeline is the question engine, re-

sponsible for producing diverse, relevant and grammatical

questions with varying degrees of compositionality. The

generation process harnesses two resources: one is the

scene graphs which fuel the engine with rich content – infor-

mation about objects, attributes and relationships; the other

is the structural patterns, a mold that shapes the content,

casting it into a question.

Our engine operates over 524 patterns, spanning 117

question groups, and 1878 answers which are based on the

scene graphs. Each group is associated with three compo-

nents: (1) a functional program that represents its seman-

tics; (2) A set of textual rephrases which express it in nat-

2We extend Visual Genome dataset with 5k hidden scene graphs col-

lected through crowdsourcing, used for the test set.

A1. Is the tray on top of the table black or light brown? light brown

A2. Are the napkin and the cup the same color? yes

A3. Is the small table both oval and wooden? yes

A4. Is there any fruit to the left of the tray the cup is on top of? yes

A5. Are there any cups to the left of the tray on top of the table? no

B1. What is the brown animal sitting inside of? box

B2. What is the large container made of? cardboard

B3. What animal is in the box? bear

B4. Is there a bag to the right of the green door? no

B5. Is there a box inside the plastic bag? no

Figure 3: Examples of questions from the GQA dataset.

ural language, e.g., “What|Which <type> [do you think]

<is> <theObject>?”; (3) A pair of short and long an-

swers: e.g., <attribute> and “The <object> <is>

<attribute>.” respectively.3

We begin from a seed set of 250 manually constructed

patterns, and extend it with 274 natural patterns derived

from VQA1.0 [3] through templatization of words from

our ontology.4 To increase the question diversity, apart

from using synonyms for objects and attributes, we incor-

porate probabilistic sections into the patterns, such as op-

tional phrases [x] and alternate expressions (x|y), which get

instantiated at random.

It is important to note that the patterns do not strictly

limit the structure or depth of each question, but only

outline their high-level form, as many of the template

fields can be populated with nested compositional refer-

ences. For instance, in the pattern above, we may replace

<theObject> with “the apple to the left of

the white refrigerator”.

To achieve that compositionality, we compute for each

object a set of candidate references, which can either be

direct, e.g. the bear, this animal, or indirect, using mod-

ifiers, e.g. the white bear, the bear on the left, the animal

behind the tree, the bear that is wearing a coat. Direct ref-

erences are used when the uniqueness of the object can be

confidently confirmed by object detectors, making the cor-

responding references unambiguous. Alternatively, we use

indirect references, leading to multi-step questions as varied

3Note that the long answers can serve as textual justifications, espe-

cially for questions that require increased reasoning such as logical infer-

ence, where a question like “Is there a red apple in the picture?” may have

the answer: “No, there is an apple, but it is green”
4For instance, a question-answer pair in VQA1.0 such as “What color

is the apple? red” turns after templatization into “What <type> <is>

the <object>? <attribute>”.
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Figure 4: Examples of entailment relations between different

question types. Refer to section 3.3 for further detail.

as Who is looking at the animal that is wearing the red coat

in front of the window?, and thus greatly increasing the pat-

terns’ effective flexibility. This is the key ingredient behind

the automatic generation of compositional questions.

Finally, we compute a set of decoys for the scene graph

elements. Indeed, some questions, such as negative ones or

those that involve logical inference, pertain to the absence

of an object or to an incorrect attribute. Examples include

Is the apple green? for a red apple, or Is the girl eating ice

cream? when she is in fact eating a cake. Given a triplet

(s, r, o), (e.g. (girl, eating, cake) we select a distractor ô

considering its likelihood to be in relation with s and its

plausibility to co-occur in the context of the other objects

in the depicted scene. A similar technique is applied in se-

lecting attribute decoys (e.g. a green apple). While choos-

ing distractors, we exclude from consideration candidates

that we deem too similar (e.g. pink and orange), based on a

manually defined list for each concept in the ontology.

Having all resources prepared: (1) the clean scene

graphs, (2) the structural patterns, (3) the object references

and (4) the decoys, we can proceed to generating the ques-

tions! We traverse the graph, and for each object, object-

attribute pair or subject-relation-object triplet, we produce

relevant questions by instantiating a randomly selected

question pattern, e.g. “What <type> is <theObject>,

<attribute> or <cAttribute>?”, populating all the

fields with the matching information, yielding, for example,

the question: “What (color) (is) the (apple on the table),

(red) or (green)?”. When choosing object references, we

avoid selecting those that disclose the answer or repeat in-

formation, e.g. “What color is the red apple?” or “Which

dessert sits besides the apple to the left of the cake?”. We

also avoid asking about relations that tend to have multiple

instances for the same object, e.g. asking what object is on

the table, as there may be multiple valid answers.

By the end of this stage, we obtain a diverse set of 22M

interesting, challenging and grammatical questions, pertain-

ing to each and every aspect of the image.

3.3. Functional Representation and Entailment

Each question pattern is associated with a structured rep-

resentation in the form of a functional program. For in-

stance, the question What color is the apple on the white

table? is semantically equivalent to the following program:

select: table → filter: white → relate(subject,on): apple

→ query: color. As we can see, these programs are com-

posed of atomic operations such as object selection, traver-

sal along a relation edge, or an attribute verification, which

are then chained together to create challenging reasoning

questions.

The semantically unambiguous representations offer

multiple advantages over free-form unrestricted questions.

For one thing, they enable comprehensive assessment of

methods by dissecting their performance along different

axes of question textual and semantic lengths, type and

topology, thus facilitating the diagnosis of their success and

failure modes (section 4.2). Second, they aid us in balancing

the dataset distribution, mitigating its question-conditional

priors and guarding against educated guesses (section 3.4).

Finally, they allow us to identify entailment and equivalence

relations between different questions: knowing the answer

to the question What color is the apple? allows a coherent

learner to infer the answer to the questions Is the apple red?

Is it green? etc. The same goes especially for questions

that involve logical inference like or and and operations or

spatial reasoning, e.g. left and right.

As further discussed in section 4.4, this entailment prop-

erty can be used to measure the coherence and consistency

of the models, shedding new light on their inner work-

ings, compared to the widespread but potentially mislead-

ing accuracy metric. We define direct entailment relations

between the various functional programs and use these to

recursively compute all the questions that can be entailed

from a given source. A complete catalog of the functions,

their associated question types, and the entailment relations

between them is provided in the supplementary.

3.4. Sampling and Balancing

One of the main issues of existing VQA datasets is the

prevalent question-conditional biases that allow learners to

make educated guesses without truly understanding the pre-

sented images, as explained in section 1. However, precise

representation of the question semantics can allow tighter

control over these biases, having the potential to greatly al-

leviate the problem. We leverage this observation and use

the functional programs attached to each question to smooth

out the answer distribution.

Given a question’s functional program, we derive two la-

bels, global and local: The global label assigns the question

to its answer type, e.g. color for What color is the apple?.

The local label further considers the main subject/s of the

question, e.g. apple-color or table-material. We use these

labels to partition the questions into groups, and smooth the

answer distribution of each group within the two levels of

granularity, first globally, and then locally.

For each group, we first compute its answer distribution
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Figure 5: Visualization of the balancing process. The conditional answer distribution before (left) and after (middle) the balancing for

a selection of question groups. We show the top 10 answers, where the column height corresponds to the relative frequency of each

answer. We can see that on the left the distributions are heavily biased, while on the middle it is more uniform and with heavier tails, while

intentionally retaining the original real-world tendencies up to a tunable degree. Right: An illustration of the balancing process.

P for each group, which we then downsample (formally, us-

ing rejection-sampling) to fit a smoother answer distribution

Q derived through the following procedure: We iterate over

the answers of that group in decreasing frequency order, and

reweight P ’s head up to the current iteration to make it more

comparable to the tail size. While repeating this operation

as we go through the answers, iteratively “moving” prob-

ability from the head into the tail [27], we also maintain

minimum and maximum ratios between each pair of subse-

quent answers (sorted by frequency). This ensures that the

relative frequency-based answer ranking stays the same.

The advantage of this scheme is that it retains the general

real-world tendencies, smoothing them out up to a tunable

degree to make the benchmark more challenging and less

biased. Refer to figure 5 for a visualization and to the sup-

plementary for a precise depiction of the procedure. Since

balancing is performed in two granularity levels, the ob-

tained answer distributions are made more uniform both lo-

cally and globally. Quantitatively, the entropy of the answer

distribution is increased by 72%, confirming the success of

this stage.

Finally, we downsample the questions based on their

type to control the dataset type composition, and filter out

redundant questions that are too semantically similar to ex-

isting ones. We split the dataset into 70% train, 10% valida-

tion, 10% test and 10% challenge, making sure that all the

questions about a given image appear in the same split.

4. Analysis and Baseline Experiments

In the following, we provide an analysis of the GQA

dataset and evaluate the performance of baselines, state-of-

the-art models and human subjects, revealing a large gap

from the latter. To establish the diversity and realism of

GQA questions, we test transfer performance between the

GQA and VQA datasets. We then introduce the new metrics

that complement our dataset, present quantitative results

and discuss their implications and merits. In the supplemen-

tary, we perform a head-to-head comparison between GQA

and the popular VQA 2.0 dataset [9], and proceed with fur-

ther diagnosis of the current top-performing model, MAC

[10], evaluating it along multiple axes such as training-set

size, question length and compositionality degree.

4.1. Dataset Analysis and Comparison

The GQA dataset consists of 22,669,678 questions over

113,018 images, which cover wide range of reasoning skills

and vary in length and number of required inference-steps

(figure 6). The dataset has a vocabulary size of 3097 words

and 1878 possible answers. While smaller than natural lan-

guage datasets, further investigation reveals that it covers

88.8% and 70.6% of VQA questions and answers respec-

tively, corroborating its wide diversity. A wide selection of

dataset visualizations is provided in the supplementary.

We associate each question with two types: structural

and semantic. The structural type is derived from the final

operation in the question’s functional program. It can be

(1) verify for yes/no questions, (2) query for all open ques-

tions, (3) choose for questions that present two alternatives

to choose from, e.g. “Is it red or blue?”; (4) logical which

involve logical inference, and (5) compare for comparison

questions between two or more objects. The semantic type

refers to the main subject of the question: (1) object: for

existence questions, (2) attribute: consider the properties or

position of an object, (3) category: related to object identi-

fication within some class, (4) relation: for questions ask-

ing about the subject or object of a described relation (e.g.

“what is the girl wearing?”), and (5) global: about overall

properties of the scene such as weather or place. As shown

in figure 6, the questions’ types vary at both the semantic

and structural levels.
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4.2. Baseline Experiments

We analyze an assortment of models as well as human

subjects on GQA. The evaluation results are shown in ta-

ble 1. Baselines include a “blind” LSTM model with ac-

cess to the questions only, a “deaf” CNN model with ac-

cess to the images only, an LSTM+CNN model, and two

prior models based on the question group, local or global,

which return the most common answer for each group, as

defined in section 3.3. We can see that they all achieve low

results of 17.82%–41.07%. For the LSTM model, inspec-

tion of specific question types reveals that it achieves only

22.7% for open query questions, and not far above chance

for binary question types. We also evaluate the performance

of the bottom-up attention model [4] – the winner of the

2017 VQA challenge, and the MAC model [10] – a state-

of-the-art compositional attention model for CLEVR [13].

While surpassing the baselines, they still perform well be-

low human scores5, offering ample opportunity for further

research in the visual reasoning domain.

4.3. Transfer Performance

We tested the transfer performance between the GQA

and VQA datasets, training on one and testing on the other:

A MAC model trained on GQA achieves 52.1% on VQA

before fine-tuning and 60.5% afterwards. Compare these

with 51.6% for LSTM+CNN and 68.3% for MAC, when

both are trained and tested on VQA. These quite good re-

sults demonstrate the realism and diversity of GQA ques-

tions, showing that the dataset can serve as a good proxy for

human-like questions. In contrast, MAC trained on VQA

gets 39.8% on GQA before fine-tuning and 46.5% after-

wards, illustrating the further challenge GQA poses.

4.4. New Evaluation Metrics

Apart from the standard accuracy metric and the more

detailed type-based diagnosis our dataset supports, we in-

troduce five new metrics to get further insight into visual

reasoning methods and point to missing capabilities we be-

lieve coherent reasoning models should possess.

Consistency. This metric measures responses consis-

tency across different questions. Recall that in section 3.3,

we used the questions’ semantic representation to derive

equivalence and entailment relations between them. When

being presented with a new question, any learner striving to

be trustworthy should not contradict its previous answers.

It should not answer green to a new question about an apple

it has just identified as red.

For each question-answer pair (q, a), we define a set

Eq = q1, q2, . . . , qn of entailed questions, the answers to

5To evaluate human performance, we used Amazon Mechanical Turk

to collect human responses for 4000 random questions, taking the majority

over 5 answers per question.
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Figure 6: Top: Dataset statistics, partitioned into structural types,

semantic types, and the number of reasoning steps. Bottom: VQA

datasets question length distribution.

which can be unambiguously inferred given (q, a). For in-

stance, given the question-answer pair Is there a red apple

to the left of the white plate? yes, we can infer the answers

to questions such as Is the plate to the right of the apple?,

Is there a red fruit to the left of the plate?, What is the white

thing to the right of the apple?, etc. For each question q in

Q – the set of questions the model answered correctly, we

measure the model’s accuracy over the entailed questions

Eq and then average these scores across all questions in Q.

We see that while people have exceptional consistency

of 98.4%, even the best models are inconsistent in about 1

out of 5 questions, and models such as LSTM contradict

themselves almost half the time. Achieving high consis-

tency may require deeper understanding of the question se-

mantics in the context of the image, and, in contrast with

accuracy, is more robust against educated guesses as it in-

spects connections between related questions, and thus may

serve as a better measure of models’ true visual understand-

ing skills.

Validity and Plausibility. The validity metric checks

whether a given answer is in the question scope, e.g. re-

sponding some color to a color question. The plausibility

score goes a step further, measuring whether the answer

is reasonable, or makes sense, given the question (e.g. ele-

phant usually do not eat, say, pizza). Specifically, we check

whether the answer occurs at least once in relation with

the question’s subject, across the whole dataset. Thus, we

consider e.g., red and green as plausible apple colors and,

conversely, purple as implausible.6 The experiments show

that models fail to respond with plausible or even valid an-

swers at least 5–15% of the times, indicating limited com-

6While the plausibility metric may not be fully precise especially for

infrequent objects due to potential data scarcity issues, it may provide a

good sense of the general level of world knowledge the model has acquired.

6706



Metric Global Prior Local Prior CNN LSTM CNN+LSTM BottomUp MAC Humans

Open 16.52 16.99 1.74 22.69 31.80 34.83 38.91 87.4

Binary 42.99 47.53 36.05 61.90 63.26 66.64 71.23 91.2

Query 16.52 16.99 1.55 22.69 31.80 34.83 38.91 87.4

Compare 35.59 41.91 36.34 57.79 56.62 56.32 60.04 93.1

Choose 17.45 26.58 0.85 57.15 61.40 66.56 70.59 94.3

Logical 50.32 50.11 47.18 61.73 62.05 64.03 69.99 88.5

Verify 53.40 58.80 47.02 65.78 67.00 71.45 75.45 90.1

Global 24.70 20.19 8.64 27.22 56.57 60.29 60.82 92.3

Object 49.96 54.00 47.33 74.33 75.90 78.45 81.49 88.1

Attribute 34.89 42.67 22.66 48.28 50.91 53.88 59.82 90.7

Relation 22.88 20.16 11.60 33.24 39.45 42.84 46.16 89.2

Category 15.26 17.31 3.56 22.33 37.49 41.18 44.38 90.3

Distribution 130.86 21.56 19.99 17.93 7.46 5.98 5.34 -

Grounding - - - - - 78.47 82.24 -

Validity 89.02 84.44 35.78 96.39 96.02 96.18 96.16 98.9

Plausibility 75.34 84.42 34.84 87.30 84.25 84.57 84.48 97.2

Consistency 51.78 54.34 62.40 68.68 74.57 78.71 81.59 98.4

Accuracy 28.93 31.31 17.82 41.07 46.55 49.74 54.06 89.3

Table 1: Results for baselines and state-of-the-art models on the GQA dataset. All results refer to the test set. Models are evaluated for

overall accuracy as well as accuracy per type. In addition, they are evaluated by validity, plausibility, distribution, consistency, and when

possible, grounding metrics. Please refer to the text for further detail.

prehension of some questions. Given that these properties

are noticeable statistics of the dataset’s conditional answer

distribution, not even depending on the specific images, we

would expect a sound method to achieve higher scores.

Distribution. To get further insight into the extent to

which methods manage to model the conditional answer

distribution, we define the distribution metric, which mea-

sures the overall match between the true answer distribu-

tion and the model predicted distribution, using Chi-Square

statistic [18]. It allows us to see if the model predicts not

only the most common answers but also the less frequent

ones. Indeed, the experiments demonstrate that the leading

SOTA models score lower than the baselines (for this met-

ric, lower is better), indicating increased capacity in fitting

more subtle trends of the dataset’s distribution.

Grounding. For attention-based models, the grounding

score checks whether the model attends to regions within

the image that are relevant to the question. For each dataset

instance, we define a pointer r to the visual region which

the question or answer refer to, and measure the model’s

visual attention (probability) over that region. This metric

allows us to evaluate the degree to which the model grounds

its reasoning in the image, rather than just making educated

guesses based on question priors or world tendencies.

Indeed, the models mostly attend to the relevant regions

in the image, with grounding scores of about 80%. To ver-

ify the reliability of the metric, we further perform exper-

iments with spatial features instead of the object-informed

ones used by BottomUp [4] and MAC [10], which lead to

a much lower 43% score, demonstrating that object-based

features provide models with better granularity for the task,

allowing them to focus on more pertinent regions than with

the coarser spatial features.

5. Conclusion

In this paper, we introduced the GQA dataset for real-

world visual reasoning and compositional question answer-

ing. We described the dataset generation process, provided

baseline experiments and defined new measures to get more

insight into models’ behavior and performance. We believe

this benchmark can help drive VQA research in the right

directions of deeper semantic understanding, sound reason-

ing, enhanced robustness and improved consistency. A po-

tential avenue towards such goals may involve more inti-

mate integration between visual knowledge extraction and

question answering, two flourishing fields that oftentimes

have been pursued independently. We strongly hope that

GQA will motivate and support the development of more

compositional, interpretable and cogent reasoning models,

to advance research in scene understanding and visual ques-

tion answering.
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